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Abstract

We provide for the first time a complete list of forbidden minors (obstruc-
tions) for the family of graphs with vertex cover 6. This paper shows how to
limit both the search space of graphs and improve the efficiency of an obstruc-
tion checking algorithm when restricted to k–Vertex Cover graph families.
In particular, our upper bounds 2k + 1 (2k + 2) on the maximum number of
vertices for connected (disconnected) obstructions are shown to be sharp for all
k > 0.

1 Introduction

The main contribution of this paper is the characterization of graphs with vertex cover
at most 6 by its obstruction set (forbidden minors). The general problem of vertex
cover (which is NP -complete; see [GJ79]) asks whether a graph has a set of vertices
of size at most k that covers all edges (a more formal definition is given below).
Earlier Cattell and Dinneen in [CD94] classified the families of graphs with vertex
cover at most 5 by using the computational machinery now described in [CDD+97].
Our current results are based on a more family-specific approach where we limit the
search space of graphs. In this paper, as our primary limiting factor, we prove an exact
upper bound on the number of vertices for an obstruction to any k–Vertex Cover

family.

The numbers of obstructions for 1–Vertex Cover to 5–Vertex Cover, along
with our new result for 6–Vertex Cover, are listed below in Table 1.

1



Table 1: Numbers of obstructions for k–Vertex Cover, 1 ≤ k ≤ 6.

k
Connected
obstructions

Disconnected
obstructions

Total
obstructions

1 1 1 2
2 2 2 4
3 3 5 8
4 8 10 18
5 31 25 56
6 188 72 260

We had known that the set of obstructions for 6–Vertex Cover is finite by the
now-famous Graph Minor Theorem (GMT) of Robertson and Seymour [RS85]. They
proved Wagner’s conjecture which states that there are a finite number of obstructions
for any graph family closed under the minor order. Unfortunately the proof of the
GMT does not indicate how to find these obstructions. The set of planar graphs is
the best known example of a family with “forbidden graphs”, where Kuratowski’s
characterization provides us with K5 and K3,3 as the only obstructions to planarity.
Another example is the set of 103 irreducible graphs (35 minor-order obstructions) for
the projective plane [GHW79, Arc80]. A lot of work has recently been done concerning
the development of general methods for computing minor-order obstructions, such as
mentioned in the papers [FL89, APS91, LA91, Pro93].

1.1 Preliminary definitions

In this paper we use standard graph theory definitions (e.g. see [CL86]). A graph is
a pair (V,E), where V is a finite set of vertices and E is a set of undirected edges
connecting two vertices of V . An edge between vertices x and y of V will be denoted
by xy.

A partial order is a reflexive, transitive and antisymmetry binary relation. A
graph H is a minor of a graph G, denoted H ≤m G, if a graph isomorphic to H can
be obtained from G by a sequence of a operations chosen from:

i. delete a vertex,

ii. delete an edge, or

iii. contract an edge (removing any multiple edges or loops that form).

The minor order is the set of finite graphs ordered by ≤m and is easily seen to be a
partial order.

A family F of graphs is a lower ideal, under a partial order ≤p, if whenever a
graph G ∈ F implies that H ∈ F for any H ≤p G. For this paper we will always
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take ≤p to be the minor order ≤m. An obstruction (often called forbidden minor) O
for a lower ideal F is a minor-order minimal graph not in F . Thus, for example, K5
and K3,3 are the ‘smallest’ non-planar graphs (under the minor order). Recall that
by the GMT, a complete set of obstructions provides a finite characterization for any
(minor-order) lower ideal F .

The graph families of interest in this paper are based on the following problem.

Problem 1. Vertex Cover
Input: Graph G = (V,E) and a positive integer k ≤ |V |.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that V ′ contains at least one
vertex from every edge in E?

A set V ′ in the above problem is called a vertex cover for the graph G. The
family of graphs that have a vertex cover of size at most k will be denoted by
k–Vertex Cover. For a given graph G, let V C(G) denote the least k such that
G has vertex cover of cardinality k. Figure 1 shows an example of a graph G with
V C(G) = 4.

Figure 1: An example of a graph of vertex cover 4. The black vertices denote one
possible vertex cover.

For completeness, we repeat from [CD94] the simple proof that the k–Vertex Cover
graph families are closed under the minor-order operators.

Lemma 2. The graph family k–Vertex Cover is a lower ideal in the minor order.

Proof. Assume a graph G = (V,E) has a minimal vertex cover V ′ ⊆ V of size k.
If H = G\uv for some uv ∈ E (edge deletion), then V ′ is also a vertex cover for H.
Likewise, if u ∈ V is an isolated vertex ofG, V ′ also covers H = G\u (vertex deletion).
For any edge uv ∈ E, observer that |{u, v}∩V ′| ≥ 1. Let w be the new vertex created
from u and v in H = G/uv (edge contraction). Clearly, V ′′ = (V ′ ∪ w)\{u, v} is a
vertex cover of H with size at most k. Since any minor of G can be created by
repeating the above operations, k–Vertex Cover is a lower ideal. 2
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Finally, as another related reference, we define the following graph problem (see
[GJ79, DCF96]).

Problem 3. Feedback Vertex Set
Input: A graph G = (V,E) and a non-negative integer k ≤ |V |.
Question: Is there a subset V ′ ∈ V with |V ′| ≤ k such that V ′ contains at least one
vertex form every cycle in G?

A set V ′ in this problem is called a feedback vertex set for the graph G. The family
of graphs that have a feedback vertex set of size at most k is denoted by k–Feedback
Vertex Set. Similar to Lemma 2 it is easy to see that k–Feedback Vertex Set
is a lower ideal in the minor order.

1.2 Outline of the paper

We now describe the organization of our paper. In the next section we explain our
computational model and prove some general results relating to how to compute ob-
structions for any k–Vertex Cover lower ideal. This is followed by Section 3 where
we prove some specific results regarding 6–Vertex Cover, namely edge bounds.
After a short conclusion and references, we list all of the connected obstructions for
6–Vertex Cover in Figures 11–16.

2 Computing Minor-Order Obstructions

We now begin to describe how we compute the obstructions for k–Vertex Cover.
Our basic method is simply to generate and check all graphs that are potential ob-
structions. In practice, this search method can be used for an arbitrary lower ideal if
one can (1) bound the search space of graphs to a reasonable size and (2) easily decide
whether an arbitrary graph is an obstruction. With respect to k–Vertex Cover,
we show how to do both of these tasks efficiently in this and the next sections.

In earlier work, Cattell and Dinneen in [CD94] bounded the search space to graphs
of pathwidth at most k+1 when they computed the k–Vertex Cover obstructions
for 1 ≤ k ≤ 5. Their generation process was self-terminating but, unfortunately, many
isomorphic graphs were created during the generation of the search space. These
superfluous graphs had to be either caught by an isomorphism checking program or
eliminated by other means. For k = 6 using this approach did not seem feasible.
Armed with McKay’s graph generation program geng (part of his Gtools/Nauty
package [McK90]) and some tight new upper bounds on the structure of vertex cover
obstructions, we have succeeded in the characterization of 6–Vertex Cover.

Although we are primarily interested in computing the obstructions for the spe-
cific case of 6–Vertex Cover, the ideas presented here may be extended to other
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k–Vertex Cover families, or even to other parameterized families of minor-order
lower ideals. One example is the observation that the search space can be restricted
to connected graphs; the disconnected obstructions for k–Vertex Cover are eas-
ily obtained from the connected obstructions for smaller values of k (see below and
[CD94, Din97]).

2.1 Directly checking non-isomorphic graphs

We now discuss a natural method for finding a set of obstructions for a lower ideal
from an available set of non-isomorphic graphs. We need to generate (e.g., using
nauty) a complete set of non-isomorphic connected graphs, which is large enough
to contain the set of obstructions sought. Our initial programming model is simply
described as follows.

Program FindAllObstructions(GraphFamily F)
repeat

Get a graph G from the input stream
if G is an obstruction of F then Save G

until no more graphs
end

By using a graph membership algorithm for a given lower ideal F , an algorithm
to decide if a graph is an obstruction is almost trivial. If a given graph G is an
obstruction for F , then G is a minimal graph such that G /∈ F . For a lower ideal F
we only need to check that each ‘one-step’ minor of G is in F . A general algorithm
to decide if G is an obstruction for F is presented below.

Procedure IsObstruction(GraphMembershipAlgorithm GA, Graph G)
if GA(G) = true then return false
for each edge e in G do

G′ = the resulting graph after deleting e in G

if GA(G′) = false then return false
+ G′′ = the resulting graph after contracting e in G

+ if GA(G′′) = false then return false
endfor
return true

end

To decide if a graph is an obstruction it helps to have an efficient membership
algorithm GA for the targeted lower ideal F . For example, our decision algorithm for
the 6–Vertex Cover family of graphs is an implementation of the Balasubramanian
et. al. linear-time vertex cover algorithm [BFR98].
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The above algorithm IsObstruction will work for any minor-order lower ideal.
For a given input finite graph G, if the graph family membership algorithm GA

operates in polynomial time, then this algorithm IsObstruction has polynomial-
time complexity. However, for some particular lower ideals, the algorithm can be
simplified (e.g., remove lines marked with +’s). For the k–Vertex Cover families,
the following theorem is very useful.

Theorem 4. A graph G = (V,E) is an obstruction for k–Vertex Cover if and
only if V C(G) = k + 1 and V C(G\uv) = k for all uv ∈ E.

Proof. Let the graph G be an obstruction for k–Vertex Cover. This implies that
if any edge in G is deleted then the vertex cover decreases, by the definition of an
obstruction. The size of the vertex cover decreases by one to exactly k, otherwise
V C(G) < k + 1.

Now we prove the other direction. Let G = (V,E) be a graph, and F denote a
fixed k–Vertex Cover lower ideal such that G ∈ F . Suppose if any edge in G is
deleted, then the resulting graph G′ ∈ F . Thus for each edge uv in G, a set of vertices
V ′ of cardinality k can be found which covers all edges in G except edge uv.

Let u be the reserved vertex and v be the deleted vertex after uv is contracted.
Since V ′ covers all edges in G except uv, V ′ covers each edge wv where w = u. We
have w ∈ V ′. After contraction of uv, for each edge wv, a new edge wu is made in
G′. Since w ∈ V ′, V ′ covers wu. Thus all new edges are covered by V ′. Hence after
doing any edge contraction for any edge uv in G, a vertex cover V ′ where |V ′| = k
covers all edges in the resulting graph G′. That is G′ ∈ F . Therefore if each edge
deletion causes G′ ∈ F and G ∈ F , then G is an obstruction. 2

Thus according to the above theorem, for k–Vertex Cover, our obstruction
deciding algorithm is simplified. This means that it does not have to check edge-
contraction minors (i.e., create the graphs G′′ in the IsObstruction procedure).
This greatly reduces the overall computation time for deciding if a graph is an ob-
struction since doing any one edge contraction, with most graph data structures, is
not relatively efficient (as compared with the actual time needed to delete any one
edge).

Unfortunately the previous theorem does not hold for most other lower ideals,
such as k–Feedback Vertex Set. For example, in the Figure 2, the graph G has
a feedback vertex set with size 2. If we delete any edge of G then the resulting graph
contains a feedback vertex set with size 1. But if the edge uv is contracted, the
resulting graph still requires a feedback vertex set of size 2.

2.2 Properties of connected k–Vertex Cover obstructions

The number of connected non-isomorphic graphs of order n increases exponentially.
For n = 11, the number of connected graphs is 1006700565. If we could process one
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u v

Figure 2: A graph G illustrating that checking edge contractions for k–Feedback
Vertex Set is important.

graph per microsecond we would still need over 11 days of running time. Since there
exist obstructions larger than this for 6–Vertex Cover we clearly need a more
restricted search space. Thus we will filter the input by exploiting other properties
of the k–Vertex Cover obstructions.

A few important properties for k–Vertex Cover obstructions are now system-
atically presented. As mentioned above, we need these results to tightly constrain the
search space to a manageable number of graphs. We first mention some basic proper-
ties concerning k–Vertex Cover here. (The interested reader may consult [DCF96]
for similar properties for the k–Feedback Vertex Set lower ideals.) In the next
section we will give additional results that specialize for the 6–Vertex Cover lower
ideal.

Lemma 5. Any connected obstruction for the k–Vertex Cover lower ideal is a
biconnected graph.

Proof. Suppose v is a cut-vertex in a connected obstructionO for k–Vertex Cover.
Let C1, C2, . . . , Cm≥2 be the connected components of O\{v} and C ′i = O[V (Ci)∪{v}],
where O[X] denotes the subgraph induced by vertices X. Each C ′i denotes the part
of the graph containing the component Ci, the vertex v, and the edges between v and
Ci.

Since O is an obstruction to k–Vertex Cover. We have

m∑

i=1

V C(Ci) = k .

Any vertex cover for
⋃m
i=1C

′
i is also a vertex cover for O, where vertex v may be

repeated in several C ′i. Thus,

m∑

i=1

V C(C ′i) ≥ V C(O) = k + 1 .
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This implies that there exists an i such that V C(C ′i) = V C(Ci) + 1. Now O′ =
(
⋃
j �=iCj) ∪ C ′i is a proper subgraph of O. But V C(O′) = k + 1 contradicts O being

an obstruction. So O does not have any cut-vertices. Therefore, O is a biconnected
graph. 2

Lemma 5 implies that any vertex in a connected obstructionO for k–Vertex Cover
has at least n edges, where n is the order of O.

Lemma 6 (Cattell–Dinneen). In an obstruction for k–Vertex Cover, any two
vertices with degree 2 do not have the same neighborhood.

Proof. Suppose u and v are two vertices with degree 2 in an obstruction O for
k–Vertex Cover and have the same neighborhood {x, y}.

To cover the four edges: ux, vx, uy, vy in O, either {u, v} or {x, y} is sufficient.
If any edge of above four edges is deleted. To cover all edges in this structure, two
vertices are still necessary. For example, if ux is deleted, v and y have to be used
to cover the remaining 3 edges. Thus the graph O′ obtained by deleting any edge
incident to u or v satisfies V C(O′) = V C(O). Thus O is not an obstruction for
k–Vertex Cover.

Therefore in an obstruction of k–Vertex Cover, any two vertices with degree 2
do not have the same neighbors. 2

A nice filter for our graph generator is the following result.

Lemma 7. A vertex in an obstruction for k–Vertex Cover has degree at most
k + 1.

Proof. Suppose u is a vertex with degree at least k+2 in an obstruction O = (V,E)
for k–Vertex Cover. Let O′ be the resulting graph by deleting any edge uv of O.
Since O is an obstruction for k–Vertex Cover, we have V C(O′) = k. Hence, in G
there is a set of vertices V ′ ⊆ V which covers all edges in G except uv and |V ′| = k.
Since V ′ does not cover edge uv, u /∈ V ′ and v /∈ V ′.

Thus V ′ must contain all the neighbors of u except v. Hence V ′ contains at
least k + 2 − 1 vertices in the neighborhood of u. Thus we have |V ′| ≥ k + 1 > k,
contradicting V ′ being a witness vertex cover to O′.

Hence the degree of u is at most k + 1. Therefore a vertex in an obstruction for
k–Vertex Cover has maximum degree k + 1. 2

Lemma 8. There is only one connected obstruction for k–Vertex Cover with k+2
vertices, which is the complete graph Kk+2. Furthermore, no other obstruction for
k–Vertex Cover has fewer vertices.

8



Proof. Let Kk+2 be the complete graph with k + 2 vertices. Choose any vertex set
V ′ ⊆ V such that |V ′| = k. Then,

Kk+2\V
′ � K2 .

Thus V ′ in Kk+2 covers all edges in Kk+2 except one edge.

Hence, if any edge in Kk+2 is deleted, the resulting graph K ′ has V C(K ′) = k.
Thus Kk+2 is an obstruction for k–Vertex Cover (using Theorem 4).

Note for any connected graph G with order n ≤ k+2 we have G ≤m Kk+2. Since
Kk+2 is an obstruction for k–Vertex Cover, G is not an obstruction. 2

The previous lemma shows that Kk+2 is the smallest connected obstruction for
k–Vertex Cover. The next lemma shows this is the unique obstruction with max-
imum degree.

Lemma 9. If a vertex in a connected obstruction for k–Vertex Cover has degree
k + 1, then this obstruction is the complete graph with k + 2 vertices (Kk+2).

Proof. Suppose O = (V,E) is a connected obstruction for k–Vertex Cover and
u is a vertex in O with degree k + 1 and let N(u) be the neighborhood of u. Thus
|N(u)| = k + 1.

Let uv be any edge incident to u. Let O′ = O\uv; we know V C(O′) = k. This
is illustrated in Figure 3. Let V ′ be a minimum vertex cover of O′. We have u /∈ V ′

and v /∈ V ′ (otherwise O′ is not an obstruction).

u
v

N(u)

Figure 3: A vertex u in O with degree k+1. The black vertices must be in the vertex
cover whenever uv is deleted.

Since V ′ covers all edges incident to u except uv, we have V ′ = N(u)\{v}. Since
N(u)\{v} is the vertex cover for O′, v is not adjacent to any other vertex w where
w /∈ N(u), otherwise, w must also be in V ′. Thus N(v) ⊆ N(u) ∪ {u}.
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Since v is any vertex in N(u), any vertex in N(u) is connected to u or vertices in
N(u). Thus {u} ∪N(u) = V . Hence O has k + 2 vertices.

By Lemma 8, a connected obstruction with k + 2 vertices for k–Vertex Cover

is the complete graph Kk+2, thus O = Kk+2 in this case. 2

This lemma shows that for any obstruction O = (V,E) for k–Vertex Cover, if
∆ is the maximum degree of O and |V | > k + 2 then ∆ < k + 1.

2.3 Vertex bounds for k–Vertex Cover

We now present two important results that yield sharp upper bounds on the number
of vertices for connected and disconnected k–Vertex Cover obstructions. In the
next section, when focusing on 6–Vertex Cover, we will give some edge bounds
that may be generalized (with some effort) to k–Vertex Cover.

Theorem 10. A connected obstruction for k–Vertex Cover has at most 2k + 1
vertices.

Proof. Assume graph O = (V,E) is a connected obstruction for k–Vertex Cover,
where |V | = 2k+2. We prove O is not a connected obstruction for k–Vertex Cover
by contradictions. The same argument also holds for graphs with more vertices.

If O is a connected obstruction of k–Vertex Cover, then V C(O) = k+1. Hence
V can be split into two subsets V1 and V2, as indicated in Figure 4, such that V1 is a
k + 1 vertex cover and V2 = V \V1. Thus |V2| = 2k + 2− (k + 1) = k + 1. Obviously,

V1

V2

Figure 4: Splitting the vertex set of O into two subsets.

no edge exists between any pair of vertices in V2, otherwise V1 is not a vertex cover.
Each vertex in V1 has at least one vertex in V2 as a neighbor, otherwise it can be
moved from V1 to V2. (i.e., the vertex is not needed in this minimal vertex cover).

Thus the neighborhood of V2, N(V2) is V1. We now prove that no subset S of V2
has |N(S)| < |S|. [This result, in fact, will immediately exclude the case |V | > 2k+2.]
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By way of contradiction, assume V3 = S is a minimal subset in V2 such that
|N(V3)| < |V3|. We say V3 is minimal whenever if T is any subset in V3 then |N(T )| ≥
|T |. Note V3 will contain at least 3 vertices since every vertex has degree at least 2
in biconnected graphs (see Lemma 5).

Let V4 = N(V3). Thus all edges adjacent to V3 are covered by V4. Thus V4 ⊆ V1
and |V4| < |V3|. Let V5 = V2\V3 and V6 = V1\V4. O can be further split as indicated
in Figure 5.

V4

V3
V5

V6

Figure 5: Splitting the vertex set of O into four subsets.

We summarize some facts about this partition of 2k + 2 vertices of O.

1. V4 ∪ V6 is the vertex cover of size k + 1.

2. V3 ∪ V5 = V2, where no edge connects V3 and V5 since no edges are in V2.

3. N(V3) = V4 and |V4| < |V3|. And thus |V5| < |V6|.

4. Some edges must exist between V4 and V6 or between V4 and V5, otherwise O
is not connected.

5. Some edges might exist within V4 or within V6.

We now prove the disconnected case of part (4) must hold (which will contradict
the existence of V3).

Since V3 is assumed minimal, no subset T in V3 has |N(T )| < |T |. Thus if we
delete any vertex in V3, leaving V ′3 , then any subset T in V ′3 has |N(T )| ≥ |T |.

Recall that a matching in a bipartite graph is a set of independent edges (with no
common end points). Recall Hall’s Marriage Theorem [Hal35] (e.g., see [CL86]):
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Hall’s Marriage Theorem:
A bipartite graph B = (X1, X2, E) has a matching of cardinality |X1| if and only if
for each subset A ⊆ X1, |N(A)| ≥ |A|.

Thus there is a matching of cardinality |V ′3 | in the bipartite induced subgraph O′ =
(V ′3 , N(V3)) in O. Thus there are |V ′3 | = |V3| − 1 independent edges between the set
V3 and the set V4.

Let us now delete all edges between V4 and V5 and all edges between V4 and V6. Let
C1 = O[V3 ∪ V4], C2 = O[V5 ∪ V6] be these disconnected components in the resulting
graph. (The induced graph C1 is connected, while the induced graph C2 may or may
not be.)

As discussed above, there exists |V3| − 1 independent edges in C1. Thus to cover
these edges, V C(C1) ≥ |V3| − 1. We know |V4| < |V3| and all edges incident to V3 are
covered by V4, thus V C(C1) = |V4|.

Now consider the graph C2. Suppose, V C(C2) < |V6|. Since all deleted edges
are also covered by V4, V4 ∪ V C(C2) must cover all edges in O. Thus V C(O) =
|V4| + V C(C2) < |V4| + |V6| = k + 1. This contradicts that O is an obstruction for
k–Vertex Cover. Thus the assumption that V C(C2) < |V6| is not correct. Hence
V C(C2) = |V6| even though edges between C1 and C2 were deleted.

Thus V C(C1 ∪ C2) = |V4| + |V6| = k + 1. Therefore O can not be a connected
obstruction for k–Vertex Cover since the resulting graph still requires a k + 1
vertex cover whenever all edges between V4 and V5 and all edges between V4 and V6
are deleted.

Therefore the assumption that there exists a minimal subset V3 in V2 is not correct.
Hence any subset S in V2 has |N(S)| ≥ |S|.

Once again, by applying Hall’s Marriage Theorem, there is a matching of cardi-
nality k+1 in the induced bipartite subgraph O′ = (V2, V1) of O. To cover these k+1
independent edges, a vertex cover of size k + 1 is necessary. We know that if O is a
connected graph, there must exist other edges in O except these k + 1 independent
edges. If those edges are deleted, the resulting graph still has vertex cover k + 1.
Thus O can not be a connected obstruction for k–Vertex Cover if it has more
than 2k + 1 vertices. 2

By extending the above result, we have the following corollary.

Corollary 11. Any obstruction for k–Vertex Cover has order at most 2k + 2.

Proof. LetO(i–Vertex Cover) represent the set of obstructions for the lower ideal
i–Vertex Cover. First we use induction to prove any disconnected obstruction for
k–Vertex Cover has order at most 2k + 2.

Basis step. k = 0: we know that when k = 0, the only obstruction K2 has order at
most 2. In this case, the theorem holds.
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Induction step. Induction hypothesis: assume for i = 0, 1, 2, . . . , k−1, the theorem
holds.

Let O1 ∈ O((k − 1− i)–Vertex Cover) and O2 ∈ O(i–Vertex Cover) where
0 ≤ i ≤ k − 1. Then a disconnected obstruction O3 ∈ O(k–Vertex Cover) can be
obtained as O3 = O1 ∪O2 (e.g., see [Din97]).

We know a connected obstruction for i–Vertex Cover has order at most 2i+1
by Theorem 10 and, by our hypothesis, a disconnected obstruction for i–Vertex Cover
has order at most 2i + 2 whenever i = 0, 1, 2, . . . , k − 1. Thus any obstruction
O1 ∈ O((k − 1− i)–Vertex Cover) has order at most 2(k − 1 − i) + 2 = 2k − 2i
and obstruction O2 ∈ O(i–Vertex Cover) where i = 0, 1, 2, . . . , k − i has order at
most 2i+2. Thus a disconnected obstruction O3 ∈ O(k–Vertex Cover) has order
at most (2k − 2i) + (2i+ 2) = 2k + 2.

Therefore any obstruction for k–Vertex Cover has order at most 2k + 2. 2

We conclude this section, which has been discussing properties of k–Vertex Cover
obstructions, with some observations. The known obstructions for the small cases (see
[CD94] for k ≤ 5, in addition to this paper’s k = 6) indicate a very interesting feature:
the more vertices, the fewer edges. As proven above, a complete graph Kk+2 is
the smallest obstruction (and only one), but it seems to have the largest number of
edges. The cycle obstruction C2k+1 appears to be the only connected obstruction with
the largest number of vertices (and appears to have the smallest number of edges).
We strongly believe:

Conjecture 12. The cycle C2k+1 is the only (and largest) connected obstruction for
k–Vertex Cover with 2k + 1 vertices.

It would be nice to have some general results for k–Vertex Cover relating the
order and the size of the obstructions. In the next section we concentrate bounding
the number of edges of the 6–Vertex Cover family which further enables us to
characterize this family by forbidden minors.

3 Computing all obstructions for 6–Vertex Cover

Now we are ready to present specific edge bounds for the 6–Vertex Cover ob-
structions. In the previous section, we have proved some useful vertex properties for
k–Vertex Cover. In conjunction with these properties we can further reduce the
search space for finding all of the obstructions for 6–Vertex Cover.

Let us briefly recap what we know about any connected obstruction O = (V,E)
for 6–Vertex Cover:

1. It is biconnected.
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2. 8 ≤ |V | ≤ 13.

3. The maximum degree for any vertex is 7.

4. If one vertex has a maximum degree 7 then O = K8.
Thus if |V | > 8 then the maximum degree is at most 6. Hence |E| ≤ |V | · 3.

5. Two vertices of degree 2 can not have the same neighborhood.

The search space can be reduced by (1) to (4), and (5) can be taken as a pretest
condition so that the time for finding all obstructions for 6–Vertex Cover is im-
proved.

However, these constraints are not sufficient for finding all 6–Vertex Cover
obstructions in a reasonable amount of time. Considering there are about 4.0× 1010

biconnected graphs with 12 vertices, maximum degree 7, and at most 42 edges, we
needed to develop other bounds to reduce the search space. Furthermore, although
we believe Conjecture 12 is true, it is still open. So we had to check other potential
graphs with 13 vertices by the way of brute force. Thus we divide our process for
finding all the connected obstructions for 6–Vertex Cover into two steps.

(1) We find all connected obstructions with order at most 11 for 6–Vertex Cover.
This step is very straight forward. Our algorithm IsObstruction is applied to all
non-isomorphic biconnected graphs with a number of vertices between 9 and 11, of
maximum degree 6, and of maximum number of edges 33.

(2) To find all connected obstructions of order 12 and 13 for 6–Vertex Cover, new
degree and edge bounds were found and used, as indicated below in the next section.

3.1 6–Vertex Cover obstructions with 12 and 13 vertices

By the Lemma 9, we know that if a connected obstruction O has a vertex of degree
7 for 6–Vertex Cover, then this obstruction must be K8. Thus we only have to
consider graphs with maximum degree 6. Furthermore, if the degree for O is 6, we
can prove the following statement.

Statement 1: If a connected obstruction O = (V,E) for 6–Vertex Cover
has a vertex of degree 6, then |V | ≤ 10. Furthermore, if |V | = 10 then
|E| ≤ 24, and if |V | = 9 then |E| ≤ 25.

Proof. Consider a connected obstruction O = (V,E) for 6–Vertex Cover with
degree 6. Let u be a vertex in O which has degree 6. Let N(u) be the neighborhood
of u.

Let v be any vertex in N(u). If the edge uv is deleted, with O′ being the resulting
graph, then V C(O′) = 6. Let V ′ be a vertex cover of O′, then u /∈ V ′ and v /∈ V ′.
Thus (N(u)\{v}) ⊂ V ′. We know |N(u)\{v}| = 5, thus only one other vertex w can
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exist in V ′ such that w /∈ N(u). This means v has at most one neighbor vertex w
where w /∈ N(u) ∪ {u}. Since v can be taken to be any vertex in N(u), if any edge
incident to u is deleted, then a vertex cover V ′ must contain 5 vertices in N(u) plus
a possible outside vertex w.

Let W be the set V \({u} ∪N(u)). To achieve the maximum number of vertices
and the maximum number of edges of O, consider the following two cases.

case 1: No edges inside W .

In this case, no edge connects two vertices in W . Since any vertex in N(u)
can have only one edge incident to a vertex in W , there are at most 6 edges
between N(u) and W . Since no edge connects any pair of vertices in W and
O is a biconnected graph (any vertex in O must have degree at least 2), any
vertex in W must have at least two edges connected to vertices in N(u). Thus
in this case, there are at most 3 vertices in W as showed in Figure 6. Hence
in this case, V = {u} ∪ N(u) ∪ W , and the maximum number of vertices is
1 + 6 + 3 = 10.

Since any vertex v in N(u) has one edge adjacent to u and possibly at most
one edge adjacent to a vertex in W , and with degree at most 6, v can have at
most 4 edges connected to vertices in N(u). Thus there are at most 12 edges
between the set of vertices in N(u). Hence in this case, the maximum number
of edges is 6 + 12 + 6 = 24.

u

N

W

v

Figure 6: Case 1: no edge between vertices of W .

case 2: At least one edge inside W .

Let H be the induced subgraph O[W ]. and let H ′ be the resulting graph after
deleting all isolated vertices in H. We assume H has at least one edge. As
in case 1, if any edge incident to u is deleted, then only one vertex in W can
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be introduced into the vertex cover V ′ of O′. Thus V C(H ′) = 1, otherwise all
edges in H ′ can not be covered by V ′. Only stars have vertex cover 1.

Suppose H is a star which has at least two edges wx and wy. Because O is
biconnected, x and y must have more than one neighbor. Thus x must be
connected to a vertex s ∈ N(u) and y must be connected to a vertex t ∈ N(u).
Since any vertex in N(u) can have only one edge out from N(u), we have s = t.
If edge us is deleted, then only x can be in the vertex cover V ′ of O′ and both
w and y can not be in V ′. Thus edge wy can not be covered by V ′. Similarly,
if edge ut is deleted, then edge wx can not be covered. Thus H ′ can have only
one edge.

Let wx be the edge in H ′, and suppose H has at least one isolated vertex y.
Thus y must have at least two edges connect to two vertices in N(u). Let yv
be an edge where v ∈ N(u). If edge uv is deleted, then y must be in the vertex
cover V ′ of O′ and both w and x can not be in V ′. Thus the edge wx can not
be covered. Thus V ′ can not cover all edges in the resulting graph O′. This
contradicts O being an obstruction of 6–Vertex Cover. Thus H can not have
any isolated vertices.

Thus in this case, H = H ′ and only one edge in H ′. Thus |W | = 2. Hence in
this case, the maximum number of vertices of O is 1 + 6 + 2 = 9, as showed in
Figure 7.

u

N

W

H

Figure 7: Case 2: at least one edges connects two vertices in W .

We now calculate the maximum number of edges of O in this case. There are at
most 6 edges between N(u) and W and there are at most 12 edges inside N(u).
Thus the maximal number of edge of O in this case is 6+12+6+1 = 25. Hence
in this case, the maximum number of vertices is 9 and the maximum number of
edges is 25.

By case 1 and case 2, the statement is true. 2
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We note that the arguments of the above proof may be applied for k–Vertex Cover
families for larger k.

A consequence of this proof is the following: if a connected obstruction O for
6–Vertex Cover has 11 or more vertices then the degree of every vertex is less
than or equal to 5. Thus any obstruction O for 6–Vertex Cover has at most 30
or 32 edges for orders 12 and 13, respectively. We improve these edge bounds below.

Statement 2: If a connected obstruction O = (V,E) for 6–Vertex Cover
has 12 vertices then |E| ≤ 24. Further, if O has 13 vertices then |E| ≤ 26.

Proof. Consider a connected obstruction O = (V,E) for 6–Vertex Cover of de-
gree 5. Let u be a vertex in O with degree 5. Let v be any vertex in N(u). If edge uv
is deleted, with O′ being the resulting graph, then V C(O′) = 6. Let V ′ be the vertex
cover of O′, then |V ′| = 6 and (N(u)\{v}) ⊂ V ′. Thus v can have at most two edges
connected to two vertices that are not in N(u)∪ {u}. Since v is any neighbor of u, if
any edge incident to u is deleted then only two vertices can be in the vertex cover V ′

which are not in N(u).

Let W be the set of all vertices which are not in {u}∪N(u). Let H be the induced
subgraph O[W ]. Let H ′ be H minus isolated vertices. Since in O, if any edge incident
to u is deleted then all edges of H ′ must be covered by at most two vertices, we have
V C(H ′) ≤ 2.

1. If H ′ is an empty graph.

In this case, all vertices in H are isolated. Thus all vertices in W are only
connected to N(u). Since any vertex in N(u) can only be connected to at most
two vertices in W , the total number of edges between W and N(u) is 10. Since
O is biconnected, any vertex in W must have at least 2 edges connected to
N(u). Thus |W | ≤ 5. Thus in this case the maximum number of vertices of O
is |{u} ∪N(u) ∪W | = 1 + 5 + 5 = 11.

2. If H ′ is a disconnected graph.

Since V C(H ′) ≤ 2, H can have at most two components C1, C2 and V C(C1) =
1, V C(C2) = 1. Thus C1 and C2 must be two stars.

Now we prove each component can have only one edge. Suppose without losing
generality, C1 has only one edge st, and C2 has two edges xy and xz. Since
O is a biconnected graph, y and z must have degree at least 2. Thus y must
connected to a vertex v ∈ N(u). If uv is deleted, then in order to cover the
edge yv, y must be in the vertex cover V ′ of the resulting graph O′. Thus only
one vertex can be in V ′ from s, t, x, z. But to cover the edge st and the edge
xz, two vertices are necessary. Thus at least one edge can not be covered. Thus
C2 can not have more than one edge. Hence if H ′ is disconnected then H ′ can
have at most two components and each of them has only one edge.
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Suppose H has at least one isolated vertex w, then w must have at least two
edges connected to two vertices in N(u). Let wv be an edge in O and v ∈ N(u).
If edge uv is deleted, w must be in the vertex cover set V ′ of O′. Only other one
vertex can be in V ′ from H ′. But in order to cover those two edges (stars) in H ′,
2 additional vertices from H ′ must be in V ′. Thus V ′ would have more than 6
vertices. Thus this case can not happen. Therefore, if H ′ has two disconnected
edges, then H = H ′. Thus H ′ contains all vertices in W . Hence in this case,
the maximum number of vertices of O is 1 + 5 + 4 = 10.

3. If H ′ is a connected graph (with at least one edge).

For this case, we discuss the structure of H ′ as follows.

(a) H ′ has cycles.

Since V C(H ′) ≤ 2 and C5 is an obstruction for 2–Vertex Cover, H ′

can only have one cycle, either C3 (a cycle with 3 vertices) or C4 (a cycle
with 4 vertices).

To cover all edges in C3 or C4, two vertices on the cycle are necessary in
the vertex cover V ′ of the graph O′ (created by deleting an edge incident
to u in O). If a vertex w in H is not on the cycle, then w must have at
least one edge incident to a vertex v in N(u). If uv is deleted, w must be
in the vertex cover V ′. Thus the remaining cycle can not be covered by
V ′. Hence w does not exist in H. Thus in this case H = H ′ and H ′ can
either be
(1) C3,
(2) C4 or
(3) C4 with a chord.
Thus in this case the maximum number of vertices of O is |{u} ∪N(U) ∪
W | = 10.

(b) H ′ is a tree.

If H ′ is a tree, since V C(H ′) ≤ 2, H ′ can only have a path with length at
most 3.

• H ′ has a path with length 3.
Let wxyz be the path with length 3 in H. Thus at least two vertices
in the path are necessary to cover all edges in this path. Since H ′ is
a tree of diameter 3, if H ′ has any extra edges which are not on the
path, these edges must be incident to x, or y. Suppose x has an edge
connected to an extra vertex s. Since O is biconnected, s must have
degree at least 2. Thus s must have an edge connected to a vertex v

in N(u). If uv is deleted in O then s ∈ V ′ where |V ′| = 6 and V ′ is
the vertex cover for the resulting graph. Thus only one other vertex in
{w, x, y, z} can be in V ′. But in order to cover all edges on the path,
two vertices are necessary. Thus s can not exist in H ′. Thus H ′ = P3,
where P3 is a path with 3 edges. Similarly by earlier arguments, H
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can not have isolated vertices. Therefore in this case, H = H ′ = P3,
the maximum order is 1 + 5 + 4 = 10.

• H ′ has diameter at most 2.
Here H ′ must be a star Si. As we know, each vertex in O has a degree
at most 5, thus H ′ = Si where 1 ≤ i ≤ 5.

— H ′ = S1.
In this case. H ′ is an edge between 2 vertices. Thus at least two
edges must exist between vertices in N(u) and vertices in H ′. To
cover this edge in H ′, any vertex in H ′ is necessary.
Recall that any vertex in N(u) can have at most two edges con-
nected to vertices in H ′. To achieve maximum number of isolated
vertices in H, suppose two edges come from H ′ are all incident to
a vertex in N(u), then there are at most 4 vertices in N(u) that
have edges connected to isolated vertices in H.
We say any vertex v in N(u) can have at most one edge connected
to an isolated vertix in H. Otherwise if v has at least two edges
connected to isolated vertices i1 and i2 in H, then when uv is
deleted, both i1 and i2 have to be in the vertex cover V ′. Thus
the edge of H ′ can not be covered. Since each isolated vertex in
H must have at least two edges connected to vertices in N(u), the
maximum number of isolated vertices in H is 2. Thus in this case,
the maximum number of vertices of O is 1 + 5 + 2 + 2 = 10.

— H ′ = S2.
In this case, H ′ has 3 vertices and 2 edges. In order to achieve the
maximum number of vertices of O, H must have isolated vertices.
Let v be any vertex in N(u), then v can only have one edge con-
nected to an isolated vertex in H, otherwise the edges in H ′ can
not be covered once uv being deleted.
Because O is biconnected, the two leaves of H ′ must have at least
two edges connected to N(u). If they all connect to one vertex
in N(u), then at most 4 vertices in N(u) can have edges connect
to isolated vertices in H. Because O is biconnected, any isolated
vertex in H must have at least two edges connected to vertices
in N(u). Thus the maximum number of isolated vertices in H is
2. Thus in this case, the maximum number of vertices of O is
1 + 5 + 3 + 2 = 11, as showed in Figure 8.

— H ′ = S3.
In this case H ′ has 4 vertices and 3 edges. Similar to the previous
case, the three leaves of H ′ have at least three edges connected to
N(u). If any vertex v in N(u) has one edge connected to a leaf of
H ′, then this vertex can not have any edge connected to an isolated
vertex in H and also it can not have any edge connected to any
other leaf ofH ′. Thus there are at least 3 vertices in N(u) that can
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H

Figure 8: The case H ′ = S2.

not have any edge connected to an isolated vertex in H. Thus at
most 2 edges can between vertices in N(u) and isolated vertices in
H. Hence H can have at most 1 isolated vertex. Therefore in this
case, the maximum number of vertices of O is 1 + 5 + 4 + 1 = 11
as showed in Figure 9.

W
N

H

u

Figure 9: The case H ′ = S3.

— H ′ = S4.
In this case, H ′ has 5 vertices and 4 edges. Similar to the previous
cases, the four leaves of H ′ have at least 4 edges connected to
N(u). Each vertex in N(u) can have at most one edge connected
to a leaf in H ′. Thus there are at least 4 vertices in N(u) that can
not have any edges connected to any isolated vertices in H. Thus
there is at most 1 edge between N(u) and the isolated vertices in
H. Thus the number of isolated vertices in this case is 0. Since

20



each isolated vertex has at least two edges connected to N(u).
Therefore in this case, the maximum number of vertices of O is
1 + 5 + 5 + 0 = 11.

— H ′ = S5.
In this case H ′ has 6 vertices and 5 edges. In this case, H can not
have any isolated vertices because the maximum degree in O is 5.
Thus H = H ′. Thus in this case the maximal number of vertices
of O is 1 + 5 + 6 = 12. In this case O has the maximum number
of vertices compared with all cases above.
Now we compute the maximum number of edges in this case.
Let r be the root vertex of H ′. Thus r has degree 5. Thus r can
not have any edges connected to N(u). Let v be any vertex in
N(u). Thus v can have only one edge connected to a leaf of H ′. If
v has two edges connected to two leaves of H ′, then if uv is deleted
in O, the two leaves of H ′ have to be in the vertex cover V ′ of the
resulting graph O′. Thus the root of H ′ has no chance to be in V ′,
thus all edges in H ′ can not be covered by V ′. Thus in this case
each vertex in N(u) can have at most one edge connected to H ′.
Since O is biconnected, each leaf of H ′ must have at least one
edge connected to N(u), otherwise these leaves would have degree
1. Hence there must be exactly 5 edges between vertices in N(u)
and leaves in H ′.
Each vertex v in N(u) have one edge connected to u and one edge
connected to a leaf of H ′. Thus each v ∈ N(u) can have 3 edges
connected to the vertices in N(u). Thus there are at most 7 edges
within the set N(u).
Therefore in this case, the maximum number of edges of O is
5 + 7 + 5 + 5 = 22 as showed in Figure 10.

W
N

H

u

Figure 10: The case H ′ = S5.
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By cases 1–3, it is shown that if any vertex in O = (V,E) has a degree 5, then
|V | ≤ 12 (In case 3b when H ′ is a star with 5 edges). Here when |V | = 12, |E| ≤ 22.

Earlier in statement 1, we have proved that if any vertex in a connected obstruction
O = (V,E) for 6–Vertex Cover has maximum degree 6, then |V | ≤ 10. And since
|E| ≤ 24 when |V | = 12 and O has maximum degree 4, the two results show that if
|V | = 12 and maximum degree of O is at most 5, then |E| ≤ 24. By same reasoning,
if |V | = 13, where the maximum degree is at most 4, then |E| ≤ 26. 2

According to statement 2, we have two new edge bounds for an obstruction with
12 vertices or 13 vertices, and one new degree bound for an obstruction with 13
vertices. Now the search space for finding all obstructions with orders 12 and 13 for
6–Vertex Cover has been extremely reduced.

In summary, to find all obstructions with 12 vertices for 6–Vertex Cover, we
only need to test all non-isomorphic (biconnected) graphs with maximum degree 5 and
at most 24 edges. For finding all obstructions with 13 vertices for 6–Vertex Cover,
we only need to check all non-isomorphic graphs with maximum degree 4 and at most
26 edges. This search space is very manageable; it requires about two months of
computation time! In Figures 11–16, we display all 188 connected obstructions for
6–Vertex Cover.

4 Conclusion

Our main result was the successful characterization of the 6–Vertex Cover graph
family by computing its 260 forbidden minors. From the current counts of all the
known vertex cover obstructions sets (see Table 1), we notice that the number of
connected obstructions grows quite rapidly. We suspect that there are between 1500
and 2000 obstructions for 7–Vertex Cover. The present search space for tackling
the case k = 7 is probably too large for the filtered method used here. Thus a more
direct approach will be needed. Can the bounded pathwidth scheme of [CD94] be
combined with this approach? It would help if we had available an efficient bounded
pathwidth (non-isomorphic) graph generator.

We finish by mentioning a couple of other areas left open by our research. It
would be nice to have a proof that C2k+1 is the only connected obstruction for
k–Vertex Cover, since we now known that 2k+ 1 is an upper bound on the num-
ber of vertices. There are some interesting open questions regarding edge bounds for
k–Vertex Cover. As we pointed out earlier, the obstructions start having fewer
edges as the number of vertices increases. More theoretical results that generalizes
our specific bounds for k = 6 seem possible.
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Figure 11: All connected obstructions for 6–Vertex Cover.
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Figure 12: All connected obstructions for 6–Vertex Cover (continued).
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Figure 13: All connected obstructions for 6–Vertex Cover (continued).
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Figure 14: All connected obstructions for 6–Vertex Cover (continued).
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Figure 15: All connected obstructions for 6–Vertex Cover (continued).
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Figure 16: All connected obstructions for 6–Vertex Cover (continued).
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