
CDMTCS
Research
Report
Series

Automata with Equational
Constraints

Michael J. Dinneen
Bakhadyr Khoussainov
Department of Computer Science
University of Auckland

CDMTCS-111
August 1999

Centre for Discrete Mathematics and
Theoretical Computer Science

Automata with Equational Constraints

Michael J. Dinneen and Bakhadyr Khoussainov

Department of Computer Science,
University of Auckland, Auckland, New Zealand

{mjd,bmk}@cs.auckland.ac.nz

Abstract

We introduce the concept of finite automata with algebraic constraints. We
show that the languages accepted by these automata are closed under the Boolean
operations. We give efficient polynomial-time algorithms for some decision prob-
lems related to these automata and their languages, including sufficient conditions
for when we can determinize automata in polynomial time.

1 Introduction

The study of complexity-theoretic, algebraic or computability-theoretic properties of a
set of problems is usually motivated by the fact that the set is closed under certain
natural operations. For example, the set may be Boolean, that is closed under the
operations of union, intersection and complementation. For instance, the set of all
Turing decidable problems is Boolean. Also the set of problems decidable in polynomial
time (e.g. the class P) and set of regular languages are Boolean classes. An important
non-Boolean class, which forms a lattice under the union and intersection operations,
is the set of all Turing recognizable problems. In general, the investigation of natural
closure properties and their complexities for sets of languages is traditional for computer
science.

In this paper we introduce and investigate new classes of decidable problems based
on finite automata. Each of these classes is a subset of the regular languages. Informally
each class consists of all languages accepted by finite automata whose transition tables
satisfy a given set of algebraic constraints. We will show that these classes (of decidable
problems) are Boolean which is of interest. Additionally, we will show that the set of
all these classes forms a lattice. The introduction of these new classes allows us to
recast standard problems in finite automata theory (e.g, the determinization problem,
minimization problem) and solve new algorithmic questions about finite automata.

One motivation for introducing algebraic constraints comes from a purely compu-
tational point of view. Consider a set of tasks {a1, a2, . . . , an} to be executed on a
computer. During a run the computer produces a sequence of states by executing the
instructions for each task. Usually each run follows some set of rules specified by the

1

system software or constraints inherited from the system hardware. In a typical parallel
environment the run may be allowed to follow different sequences of states to complete
the set of tasks. The system may utilize the algebraic constraints of the type aiaj = ajai
for some i and j. This allows execution of tasks ai and aj in any order (i.e., parallel
execution).

Another motivation for studying automata with constraints comes from a purely al-
gebraic point of view. Finite automata can be identified as finite algebras [2, 3]. Hence
many fundamental concepts from algebra, in particular from the theory of finitely pre-
sented algebras (e.g., groups, semigroups) can be applied in the study of finite automata
recognizable languages.

We now give a brief outline of the paper. In the next section we introduce automata
with equational constraints, called E–automata, and provide two simple examples. We
next study the properties of the languages accepted by E–automata, called E–languages,
and show some closure properties of these languages. Also in Section 3, we study minimal
deterministic E–automata and the structure between different classes of E–languages.
Section 4 is devoted to the study of computational problems for E–automata. Here
we discuss the issue of determinization of nondeterministic E–automata and provide
sufficient conditions for when this can be done in polynomial time. We also present
polynomial-time algorithms for solving some natural problems related to E–automata.

2 Preliminaries

We fix a finite alphabet Σ and let Σ∗ denote the set of all finite strings over Σ. An
algebraic equation is a pair of finite strings of Σ∗. We will use E to denote a fixed set of
equations. Note that the set E may be infinite. Recall that a finite automaton M is a
four tuple (S, I,∆, F), where S is a finite set of states, I is the set of initial states, ∆ is
a transition partial function from S ×Σ to subsets of S, and F is the set of final states.
If for all s ∈ S and σ ∈ Σ the cardinality of ∆(s, σ) is one and I is a singleton then the
automaton is deterministic. We can naturally extend the transition function ∆ to the
function ∆∗ from from S ×Σ∗ to subsets of S. A string w is accepted by an automaton
M if |∆∗(s, w) ∩ F | ≥ 1 for some initial state s in I.

Definition 1. An E–automaton is a finite automaton (S, I,∆, F) such that ∆∗(s, u) =
∆∗(s, v) for all states s ∈ S and equations (u, v) in E.

Note that any automaton satisfying some setE of equational constraints is considered
an E–automaton. We now give two examples of E–automata.

Example 2. Let E = {(aiaj , ajai) | i 6= j and ai, aj ∈ Σ}. We call automata satisfying
the equations E commutative. An example of a commutative automaton over Σ = {a, b}
is given below. The reader can verify that ∆∗(s, ab) = ∆∗(s, ba) for all states s of the
automaton.

2

a

a

b
b

a, b

a

a, b

a, b

Example 3. Let E = {(a, bb)}. An example of a deterministic E-automaton over
Σ = {a, b} is given below.

b
b

a

b

b

a

b b

a

a a

a

a

b

Note that the automaton in Example 2 is also an {(a, bb)}–automaton.

Definition 4. An E–language is the set of all strings in Σ∗ that are accepted by some
E–automaton.

We observe that every E–language is finite automata recognizable (i.e., a regular
language). However, there exists regular languages that are not E–languages for some
E.

We now want to characterize the E–languages of the previous two examples. First
consider commutative automata. For a string w over Σ = {σ1, σ2, . . . , σn} let the sig-
nature of w be the vector (d1, d2, . . . , dn) where di is the number of σi occuring in w.
Two strings are called signature equivalent if they have the same signature. A signature-
closed language is a language L such that w ∈ L implies w′ ∈ L for all w′ signature
equivalent to w.

Fact 5. Let L be a regular language. Then L is a signature-closed language if and only
if it is recognized by a commutative automaton.

Proof. First assume L is a signature-closed language. Consider a minimum deterministic
automaton M that accepts L. By the Myhill-Nerode Theorem, the states of M are ∼
equivalence classes where w1 ∼ w2 if and only if for all z ∈ Σ∗, w1 ·z ∈ L ⇐⇒ w2 ·z ∈ L.
We show that M is a commutative automaton. It suffices to show that if two strings w1

and w2 have the same signature then w1 ∼ w2. Suppose w1 6∼ w2. Then there exists a z
such that, without loss of generality, w1 ·z ∈ L and w2 ·z 6∈ L. If w1 and w2 are signature
equivalent then also w1 ·z and w2 ·z are signature equivalent. Since L is signature-closed
w1 · z ∈ L implies w2 · z ∈ L. This is a contradiction. Hence ∆∗(s, ab) = ∆∗(s, ba) for
all states s of M , where ∆ is the transition function of M .

Now assume L is accepted by a commutative automaton M . If w = w1w2 . . . wn is
accepted by M than so is any permutation w′ of w. Note that w and w′ have the same
signature. Thus, L is a signature-closed language.

3

Regarding our second example above say that two strings w1 and w2 are (a, bb)–
equivalent if w2 can be obtained from w1 by a finite sequence of substring replacements
a with bb or bb with a. A language L is said to be (a, bb)-closed if w ∈ L implies w′ ∈ L
for each w′ that is (a, bb)–equivalent to w. One can prove the following result.

Fact 6. Let L be a regular language. Then L is (a, bb)-closed if and only if it is recog-
nized by an E–automaton, where {(a, bb)} ⊆ E.

3 Properties of E–Languages

We will present the basic properties of E–languages in three parts. We first show that
the class of E–languages for fixed E is closed under the Boolean operators. We next
show that the minimization of a deterministic E–automaton preserves the equations
from E. In the third part we compare the classes of E–languages and show that the set
of all classes of E–languages forms a lattice.

3.1 Set-theoretic properties

In this subsection we study set-theoretic properties of E–languages. Let the alphabet
Σ and the set of equations E be fixed throughout this section. We first show that
E–languages are closed under union and intersection.

Lemma 7. If L1 and L2 are E–languages then so are L1 ∪ L2 and L1 ∩ L2.

Proof. The proof follows the standard constructions for automata. Let A1 = (S1, I1,∆1, F1)
and A2 = (S2, I2,∆2, F2) be E–automata accepting the languages L1 and L2, respec-
tively. Assume that S1 and S2 have no states in common. The automaton (S1 ∪S2, I1 ∪
I2,∆1 ∪ ∆2, F1 ∪ F2) accepts the union L1 ∪ L2. One also observes that this is an
E–automaton.

We now construct an E–automaton that accepts L1 ∩ L2. Consider the automaton
(S1 × S2, I1 × I2,∆, F1 × F2) where

∆((s1, s2), σ) = ∆1(s1, σ)×∆2(s2, σ), for all s1 ∈ S1, s2 ∈ S2, and σ ∈ Σ.

Note that this automaton accepts the intersection of the two languages. To show that
this automata is an E–automaton take (u, v) ∈ E and (s1, s2) ∈ S1 × S2. Then the
following equalities hold:

∆∗((s1, s2), u) = ∆∗1(s1, u)×∆∗2(s2, u) = ∆∗1(s1, v)×∆∗2(s2, v) = ∆∗((s1, s2), v).

This shows that the constructed automaton is an E–automaton.

To show that E–languages are closed under complementation we need a method
to convert E–automata to deterministic E–automata. Again, we will show that the
standard subset construction preserves equations from E.

4

Recall that the determinization of an automaton M = (S, I,∆, F) is an automaton
Md = (Sd, Id,∆d, Fd) where

Sd = {X | X ⊆ S}
Id = {I}

∆d(X, σ) =
⋃
x∈X ∆(x, σ), for X ∈ Sd and σ ∈ Σ

Fd = {X | X ∈ Sd and |X ∩ F | ≥ 1}.

We note that M and Md accept the same language.

Lemma 8. If M is an E–automaton then so is Md.

Proof. It suffices to check that Md satisfies the equational constraints of E. Indeed, for
(u, v) ∈ E and X ∈ Sd we have

∆∗d(X, u) =
⋃
x∈X

∆∗(x, u) =
⋃
x∈X

∆∗(x, v) = ∆∗d(X, v).

We can use the previous lemma to show that E–languages are closed under comple-
mentation.

Lemma 9. If L is an E–language then so is the complement L = Σ∗ \ L.

Proof. Since L is an E–language there exists an E–automaton M that accepts L. By
the previous lemma we can construct a deterministic E–automaton Md = (S, I,∆, F)
that also accepts L. The automaton (S, I,∆, S \ F) is an E–automaton and accepts
L.

We now mention that some standard closure properties of regular languages do
not hold for E–languages. Consider the concatenation of two languages L1 · L2 =
{u · v | u ∈ L1 and v ∈ L2}. Take L1 = {ab, ba} and L2 = {a}, which are both signature-
closed languages. However, the concatenation language L1 · L2 = {aba, baa} is not a
signature-closed language.

3.2 Minimal deterministic E–automata

We show that the standard procedure for minimizing deterministic E–automata pre-
serves the set of equations E. Recall that an automaton is minimal if it has the fewest
number of states for accepting a given regular language. For a regular language L there
is an unique minimal deterministic automaton ML [4].

Theorem 10. If L is an E–language then ML is an E–automaton.

Proof. We use the Myhill-Nerode Theorem. Take a deterministic E-automaton M =
(S, I,∆, F) that accepts L. Assume all states of M are reachable from the initial state.

5

The states of the minimal automaton ML = (SL, IL,∆L, FL) correspond to the equiva-
lence classes of the following relation. Two states s1 and s2 of M are equivalent, denoted
by s1 ∼ s2, if for all u ∈ Σ∗,

∆∗(s1, u) ∈ F ⇐⇒ ∆∗(s2, u) ∈ F.

Recall that FL is the equivalence classes that contain states of F . ∆L is defined as
follows. For all sL ∈ SL and σ ∈ Σ, ∆L(sL, σ) = ∆(s, σ)L, where sL is the equivalence
class containing the state s.

Now we show that ML is an E–automaton. Indeed, let sL ∈ SL and (u, v) ∈ E.
Then

∆∗L(sL, u) = ∆∗(s, u)L = ∆∗(s, v)L = ∆∗L(sL, v).

3.3 Global structure of E–languages

The previous sections indicate that we can study the class of E–languages for a given
set of equations E. For example, E–languages are closed under the union, intersection
and complementation operations. Many other results for regular languages also hold for
E–languages and lead to the study of their computational properties.

The introduction of E–languages gives rise to a natural algebraic structure that
relates classes of E–languages, for different E. The aim of this subsection is to introduce
and investigate properties of this structure.

We define the class RE = {L | L is an E–language} of regular languages for a given
alphabet Σ and set of equations E. For example, R∅ is the set of all regular languages.
Also when E = {σ = λ | σ ∈ Σ}, where λ is the empty string, RE = {∅,Σ∗}.

Consider the set C = {RE | E ⊆ Σ∗ × Σ∗} of classes of E–languages. Informally, each
element of this set represents the class of languages that are decidable by automata that
satisfy certain algebraic constraints. Naturally this set is partially ordered under the
set-theoretic inclusion. Note that for E1 ⊆ E2 we have RE2 ⊆ RE1 . The following lemma
shows that this partially ordered set is also a complete lower semi-lattice, that is every
subset of C has a greatest lower bound.

Lemma 11. Let {Ei} be a set of equations and let E =
⋃
Ei. Then RE =

⋂
REi .

Proof. If L is an E–language then L is also an Ei–language for any i. Hence RE ⊆
⋂
REi.

Assume that L is anEi–language for every i. Take a deterministic Ei–automatonMi that
accepts L for each i. Furthermore, by Theorem 10, we can assume each Mi is minimal.
Since there is an unique deterministic minimal automaton M for L we conclude that
L ∈ RE. Therefore RE =

⋂
REi.

We can also show that C is an upper semi-lattice.

Corollary 12. Let X be a class of regular languages. Then there exists a minimum
class RE′ that contains X. Hence for any RE1 , RE2 ∈ C there exists a least upper bound
containing both RE1 and RE2 .

6

Proof. Let I = {E | X ⊆ RE}. Note that I 6= ∅ because X ⊆ R∅. By the previous fact⋂
E∈I RE = RE′ were E′ =

⋃
E∈I E. Clearly, RE′ is the desired class of languages.

We can combine the above two results into the following theorem.

Theorem 13. The set C = {RE | E ⊆ Σ∗ ×Σ∗} of classes of E–languages forms a
lattice (C,∨,∧), where RE1 ∨RE2 corresponds to taking the minimum RE that contains
RE1 ∪RE2 and RE1 ∧RE2 is equal to the intersection RE1 ∩RE2 .

4 Algorithmic Problems for E–Automata

In this section we study computational issues regarding to the determinization process
of E–automata and related decision problems.

4.1 Determinization of E–automata

We now recall the standard process for generating the states of a deterministic automa-
ton Md from a nondeterministic automaton M = (S, I,∆, F). The states of Md are
subsets of S. This process works in levels where

L1 = {I} and Li+1 =
⋃
σ∈Σ

{
⋃
t∈T ∆(t, σ) | T ∈ Li} \ (L1 ∪ L2 ∪ . . . ∪ Li).

This generation process terminates at height k where Lk = ∅. Define height(M) = k.
Below we will consider the height function restricted to a class K of automata. The class
K has polynomial height if there exists a polynomial p such that height(M) ≤ p(|M |)
where |M | = |S| for all M ∈ K.

For an automaton M the determinization process may yield a deterministic automa-
ton M ′ that is exponential in the size of M , that is, one state M ′ for each subset of
states of M . For example, the language

L = {w ∈ {0, 1}∗ | w has a 1 in the n-th character from right}

has a (nondeterministic) automata with n + 1 states. One can see that the minimal
deterministic automaton that accepts L requires at least 2n−1 states. Below we show that
for some types of E–automata we can bound the number of states for the determinized
automata by a polynomial function of n, where n is the number of states of the input
automaton.

Definition 14. Fix a set of equations E. Two strings u and v are E–equivalent if for
any E–automaton M = (S, I,∆, F), ∆∗(s, u) = ∆∗(s, v) for all s ∈ S. The breadth
function bE(n) is defined as the number of E–non-equivalent strings of length n.

Intuitively the breadth function gives us an upper bound on the maximum number of
states generated (at level n) during a breadth-first determinization of an E-automaton.
We now give an example.

7

Example 15. Let E = {(aiaj , ajai) | i 6= j and ai, aj ∈ Σ}. Recall that E–automata

are commutative. With k = |Σ| the breadth function bE(n) =
(
n+1
k−1

)
= O(nk−1).

We now present sufficient conditions for when the determinization process runs in
polynomial time.

Theorem 16. Let K be a class of E–automata that satisfies the following two condi-
tions:

1. the class K has polynomial height, and

2. the breadth function bE is bounded by a polynomial.

Then we can determinize any M ∈ K in polynomial time.

Proof. The determinization process will generate exactly height(M) levels in computing
the states of the deterministic equivalent automaton Md. At level i there are at most
bE(i) states included in set Li. Since Σ is fixed, generating level i+ 1 from level i takes
time proportional to the size of Li. We can check in constant time, using an appropriate
dictionary data structure (e.g. virtual array [1]), whether a state X (subset of S) of the
deterministic machine Md has been previously generated. We can generate X in time
proportional to the size of M . Since M is in a class K of polynomial height, the number
of states of the deterministic machine is at most bE(height(M)) · height(M). Thus, the
total time to produce the deterministic machine is polynomial bounded.

The above theorem is strong in the sense that we need both hypothesis. We give
two observations to illustrate this.

Fact 17. There exists a class of automata K that has polynomial height but for which
the determinization process requires exponential time.

Proof. For E = ∅ and Σ = {0, 1} consider the family K = {Mn} of automata where Mn

is displayed below.

Mn

. . .
0, 11 0, 1 0, 1

0, 1

s1 s2 sns0

The automaton Mn accepts the previously mentioned language

{w ∈ {0, 1}∗ | w has a 1 in the n-th character from right}.

We claim that height(Mn) is n + 1. Take any generated state X = {si1, si2 , . . . , sik} ⊆
{s0, . . . , sn} where ij < ij+1. We show that there is a string of length at most n + 1
that yields X in the determinization process. Note that si1 = s0 for all possible X. If
k = 1 then X is {s0} which is the initial state {I}. Otherwise k > 1 and denote 00 as
an empty string. Now consider the string

w = 0(ik−ik−1−1)1 . . . 0(i3−i2−1)10(i2−i1−1)1

8

The reader can easily see that the state X is generated at level |w| which is at most
n+ 1. Hence K has polynomial height. Clearly there are exponential possible X so the
proof is completed.

Fact 18. There exists a class of E–automata K such that the breadth function bE is
bounded by a polynomial but for which the determinization process requires more than
polynomial time.

Proof. In this example let E = ∅ and Σ = {0}. Clearly for any unary alphabet, the
breadth function bE(n) = 1 is bounded by a polynomial. Consider the family K = {Un}
of automata where Un is displayed below.

. . .

...
. . .

Un

The automaton Un has n disjoint cycles where the cycle i from the left is of length pi,
where pi is the i-th prime number. Besides the singleton start state, the subsets of states
generated by the determinization process all have cardinality n. In fact, any combination
of states from the cycles (one from each) will be generated since the lengths of all the
cycles are relatively prime. Note that there are exponential number of possibilities so
the proof is completed.

We mention that the class of E–languages over an unary alphabet, where E is not
trivial, is finite. Therefore the case E = ∅ is required for the previous fact.

We now give one example of an application of Theorem 16.

Example 19. Let E = {00 = 01} and Σ = {0, 1}. The breadth function bE(n) = n+ 1
since the strings 0n, 10n−1, 120n−2, . . . , 1n are representatives of the E–equivalence classes
of strings of length n. Consider the family K = {An} of automata where An is displayed
below

An

. . .
0, 11 0, 1 0, 1

1

s1 s2 sns0

Note that each An is an E–automaton. The automaton An accepts the language

Ln = {1m · w | m ∈ {1, 2, . . .} and w ∈ Σn}.

9

The class K has polynomial height by an argument similar to the one given for the
automaton Mn in Fact 17. By the above theorem the determinization process for class
K yields deterministic automata in polynomial time (and polynomial size) of An. In
fact, the determinization is quadratic and moreover yields the minimum deterministic
automaton for Ln.

4.2 Recognizing E–automata and E–languages

Several problems occur naturally when dealing with E–automata. In this section we
address a few of them for a fixed finite set E.

Theorem 20. For a given automatonM we can decide in time O(n·m) whether M is an
E–automaton, where n is the number of states of M and m is the number of transitions
of M . Furthermore, if M is deterministic we can decide in linear time whether M is an
E–automaton.

Proof. Let S be the set of states of M . For a given state s of S we can determine
whether s satisfies E by checking if ∆∗(s, u) = ∆∗(s, v) for all (u, v) ∈ E. First note
that the lengths of u and v are independent of n. To calculate ∆∗(s, u) we build a
sequence of subsets S0 = {s}, S1, S2, . . . , S|u| of S. For the i-th character σ in u we
generate Si =

⋃
x∈Si−1

∆(x, σ) This union can be done in time O(m), so determining
∆∗(s, u) is at most O(|u| ·m) = O(m). Now since the number of equations is finite we
can decide, in time O(m), whether a given state s satisfies E. After repeating this check
for all s ∈M , we see that the total running time is O(n ·m).

If M is a deterministic automaton then ∆∗(s, u) is a single state and can be computed
in time proportional to the length of u, which is a constant. So we can decide whether a
given state s satisfies E in constant time. Thus, after checking all states, we can decide
if M is an E–automaton in time O(n).

Corollary 21. For a given language L accepted by a deterministic automaton M we
can decide in time O(n2) whether L is an E–language, where n is the number of states
of M .

Proof. By standard techniques we can minimize the deterministic automaton M in
O(n2) time [4]. Now the constructed minimal automaton ML accepting L is an E–
automaton by Theorem 10 if and only if L is an E–language. By the above theorem
we can decide whether ML is an E–automaton in linear time. Thus whether L is an
E–language is decided in O(n2) time.

We observe that, since any regular language is accepted by a deterministic automa-
ton, we can decide whether any regular language is also an E–language.

5 Conclusion

This paper develops the new notion of E–automata and studies the languages that
they accept. Emphasis was given to show that these E–languages correspond to natural

10

classes of decision problems within the regular languages. We showed that we can decide
whether an automaton is an E–automata in polynomial time (linear time for determin-
istic automaton). We have also shown that knowing what algebraic constraints a family
of automata satisfies may be useful in predicting the growth of the determinization pro-
cess. We think that the concept of automata with equational constraints is useful from
a computational and algebraic point of view. We hope that research in this direction
may lead to interesting results in the theory of formal languages and automata.

References

[1] G. Brassard and P. Bratley. Fundamentals of Algorithms (Chapter 5), Prentice
Hall, 1996.

[2] J. R. Büchi. Finite Automata, Their Algebras and Grammars: Towards a Theory
of Formal Expressions, D. Siefkes (editor), Springer-Verlag, 1989.

[3] F. Géceg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation, Addison–Wesley, 1979.

11

