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LARGE CAYLEY GRAPHS AND DIGRAPHS WITH SMALL

DEGREE AND DIAMETER

P. R. HAFNER

Abstract. We review the status of the Degree/Diameter problem for both,

graphs and digraphs and present new Cayley digraphs which yield improve-

ments over some of the previously known largest vertex transitive digraphs of

given degree and diameter.

1. Introduction

Interconnection networks (for example of computers, or of components on a

microchip) can be modelled conveniently by graphs or digraphs depending on

whether the communication between nodes is two-way or only one-way. In prac-

tice, such networks are subject to two fundamental restrictions: the number of

connections that can be attached at any one node is limited, as is the number

of intermediate nodes on the communications path between two nodes. We have

arrived at the

Degree/Diameter Problem: �nd (di-)graphs of maximal order with given

(in- and out-)degree � and diameter D.

In this paper we discuss this problem for undirected and directed graphs and

present new Cayley digraphs which improve known results in the case of vertex

transitive graphs.

2. Notation and Terminology

We will consider directed and undirected graphs �. The distance from a vertex

x to a vertex y is the length of a shortest path from x to y. The set of all vertices of

� whose distance from a vertex x equals i is denoted by �i(x). The diameter of the

(di)graph � is the maximum of all distances between pairs of vertices of �. Graphs

of degree � and diameter D are called (�; D) graphs (similarly for digraphs). A

graph is said to be �-regular if all its vertices have degree �; a digraph is called

�-regular if all its vertices have in- and outdegree �.

A (di)graph is called vertex transitive if its automorphism group is transitive on

the set of vertices, a digraph is called arc transitive if its automorphism group is

transitive on the set of arcs. In the context of networks, vertex transitive (di)graphs

are advantageous because identical routing algorithms can be used at each vertex.
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2 P. R. HAFNER

Examples of vertex transitive graphs and digraphs can be obtained by construct-

ing the Cayley (di)graph of a group G relative to a generating set X. The elements

of the group G form the set of vertices of the Cayley digraph Cay(G;X); there is

an arc from g to h if h = gx for some x 2 X. If the generating set X is closed under

inversion we can consider the pairs of opposite arcs between adjacent vertices as

undirected edges and refer to this as the Cayley graph of G relative to X. Alge-

braically, the diameter of Cay(G;X) is the maximum number of terms required to

write elements of G as words in the alphabet X.

As an aside we recall that the Petersen graph is vertex transitive but not a Cayley

graph. Sabidussi [37] showed that all vertex transitive graphs can be obtained as

Cayley coset graphs of groups relative to some set of generators. Similar results

hold for digraphs [27].

We now de�ne some elementary classes of groups which have been used in [22]

to construct large graphs. First of all, there are metacyclic groups, i.e. semidirect

products of cyclic groups: if the multiplicative order of the unit a 2 Zn divides m, a

semidirect product of Zm with Zn can be de�ned using the followingmultiplication:

[x; y][u; v] = [x+ u modm; yau + v mod n]:

In Table 1 groups of this kind are identi�ed by DH; our detailed listing in the

appendix uses the symbol m �a n, e.g. 6�3 28.

Another useful type of groups are semidirect products of a cyclic group Zm with

a direct sum Zn�Zn. An automorphism � of Zn�Zn is determined by the images

of the generators �([1; 0]) = [x; y] and �([0; 1]) = [z; t]. If the order of � divides m

we can de�ne a multiplication on Zm � Zn � Zn by:

[c; d; e][f; g; h] = [c+ f modm; [d; e]

�
x y

z t

�f
+ [g; h] mod n]:

In Table 1 we identify groups of this kind by DH�; our detailed listing in the

appendix uses the symbol m �� n
2, e.g. 8 �� 3

2; the action of the cyclic group is

not encoded into this symbol and is speci�ed separately.

A further kind of group is indicated in Table 1 by DH��. These are semidirect

products of G = m �a n with itself, where the action is by conjugation.

The line digraph L(�) of a digraph � has the arcs of � as vertices; arcs of L(�)

correspond to walks of length 2 in �. If � is �-regular with n vertices then L(�) is

also �-regular and has �n vertices [28, 23]. Clearly, iteration of this construction

produces an in�nite sequence of �-regular graphs.

3. The Undirected Case

The order n of a graph � with diameter D and maximum degree � satis�es the

inequality

n � 1 +�+ �(�� 1) + � � �+�(�� 1)D�1:(1)

Graphs for which equality holds in (1) are calledMoore Graphs. After distinguishing

a vertex x in a Moore graph, any vertex in �i(x); 0 < i < D, is adjacent only

to vertices in �i�1(x) and �i+1(x), while vertices in �D(x) are adjacent only to

vertices in �D�1(x) and �D(x). In other words: after the edges between vertices
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in �D(x) are removed, the Moore graph � becomes a tree whose internal vertices

have degree �. Inequality (1) with `�' replaced by `�' applies to graphs of order n

with maximum degree � and odd girth 2D + 1, so that Moore graphs appear also

as solutions of the extremal problem associated with given girth 2D + 1 and given

maximum degree �.

There are only very few Moore graphs [31, 4, 16]:

� D n Description

2 D 2D + 1 (2D + 1)-gon

3 2 10 Petersen

7 2 50 Ho�man-Singleton

57 2 3250 ?

It is not known if there exists a graph with � = 57, D = 2 and n = 3250. Asch-

bacher [1] showed that a (57, 2)-graph of order 3250 cannot be distance-transitive.

The only graph whose order di�ers from the Moore bound by 1 is the square

[5, 25]. This implies that the entries (3; 3), (4; 2), and (5; 2) in Table 1 are indeed

optimal, a fact which goes back to Elspas [24]. More recently it has been shown

that for � = 3, D � 4 the Moore bound cannot be missed by 2 [32].

Table 1 is an update of [9] and contains the orders of the largest known (�; D)

graphs with annotations indicating the nature of the graphs. Comparison of the

Moore bound with the orders listed in the table shows that, mostly, the Moore

bound is missed by a considerable margin.

Graphs appearing in Table 1

2cy connections between two cycles [3]

Allwr graphs found by Allwright [2]

Cam Cayley graphs of linear groups [12]

CR� chordal rings found by Quisquater [36]

vC compound graphs by von Conta [40]

DH, DH�, DH�� Cayley graphs of metacyclic and related groups [22]

Dinn Cayley graphs found by Dinneen [21]

Cn cycle on n vertices

GFS graph by G�omez, Fiol and Serra [29]

Hq incidence graph of a regular generalized hexagon [6]

HS Ho�man-Singleton graph

Kn complete graph

Lente graph designed by Lente, Univ. Paris Sud, France

P Petersen graph

Pq incidence graph of a projective plane [30]

Qq incidence graph of a regular generalized quadrangle [6]

T tournament
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D 2 3 4 5 6 7 8 9 10

�

3
P

10

C5 � F4

20

vC

38

vC

70

GFS

130

CR�

184

CR�

320

2cy

540

2cy

938

4
K3 �C5

15

Allwr

41

C5 �C19

95

H 0

3

364

H3(K3)

740

DH

1 155

DH��

3 025

DH

7550

DH

16555

5
K3 �X8

24

Lente

70

Q4(K3)

186

H 0

3
d

532

H4(K3)

2754

DH

5 334

DH

15 532

DH

49932

DH

145584

6
K4 �X8

32

C5 � C21

105

DH�

360

DH

1230

H5(K4)

7860

DH

18 775

DH

69 540

DH

275540

DH

945574

7
HS

502

DH�

144

DH�

600

DH

2756

H4(K4) < H5

10566

DH

47 304

DH

214500

DH

945574

Cam

4773696

8
P 0

7

57

DH

234

DH

1 012

DH�

4704

H7(K6)

39396

DH

127134

DH

654696

DH��

2408704

Cam

7738848

9
P 0

8
d

57

Q0

8

585

DH

1 430

DH

7344

H8(K6)

75198

DH

264024

DH��

1 354896

DH

4980696

Cam

19845936

10
P 0

9

91

Q0

8
d

650

DH

2 200

DH�

12288

H9(K6)

133500

DH

554580

DH��

3 069504

DH

9003000

Q7�2H7

47059200

11
P 0

9
d

94

Q0

8
d

715

Q7(T4)

3 200

DH

17458

H7(T4)

156864

DH

945574

Cam

4 773696

Cam

25048800

Q7�6H8

179755200

12
P 0

11

133

Q0

8
d

780

Q0

8
�X8

4 680

DH

26871

H11(K6)

355812

Dinn

1 732514

DH

10007820

DH

48532122

Q8�6H9

466338600

13
P 0

11
d

136

Q0

8
d

845

Q9(T4)

6 560

DH

37056

H9(T4)

531440

Cam

2 723040

DH

15027252

DH

72598920

Q9�6H9

762616400

14
P 0

13

183

Q0

8
d

910

Q9(T5)

8 200

DH

53955

H13(K7)

806636

K1�8H11

6 200460

Dinn

29992052

P9�7H11

164755080

Q8�6H11

1 865452680

15
P 0

13
d

186

(
Q2;4)
0

1215

Q11(T4)

11712

DH

69972

H11(T4)

1417248

DH

7 100796

DH

38471006

P11�1H11

282740976

Q11�6H11

3 630989376

Table 1. Largest known undirected (�; D) graphs
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Operations on graphs used in Table 1

G �H twisted product of graphs [7]

Gd duplication of some vertices of G [20]

B0 quotient of a bipartite graph B by a polarity [19]

B(K) substitution of vertices of a bipartite graph B by

complete graphs K [15]

B(K) < B compound of B(K) and a bipartite graph B and

a tournament T [29]


B the component with polarity of the cartesian

product of a bipartite graph B with itself [18]

G�iH various compounding operations [29]

4. The Directed Case

The order n of a digraph � with diameter D and maximum degree � satis�es

the inequality

n � 1 + �+ �2 + � � �+�D:(2)

As in the undirected case, the right hand side in inequality (2) is known as the

Moore bound (because it derives from a similar tree model). The only cases when

equality holds in (2) are � = 1 or D = 1 [35, 11]. Table 2 contains the orders of the

largest known (�; D) digraphs. Almost all entries correspond to Kautz digraphs

K(�; D) whose order is �D +�D�1. The vertices of a Kautz digraph are words

x1x2 � � �xD of length D with xi 6= xi+1 in an alphabet of � + 1 letters; arcs go

from x1x2 � � �xD to x2 � � �xDy. These digraphs can be obtained from the complete

digraph on �+ 1 vertices (no loops) by line digraph iteration. For i � 4 the (2; i)

digraphs in Table 3 are obtained by line digraph iteration from a (2; 4) digraph on

25 vertices found by computer search [28]. No improvements have been made on

this list since 1984.

� n D 2 3 4 5 6 7 8

2 6 12 25 50 100 200 400

3 12 36 108 324 972 2 916 8748

4 20 80 320 1 280 5 120 20 480 81920

5 30 150 750 3 750 18 750 93 750 468750

6 42 252 1 512 9 072 54 432 326592 1 959552

7 56 392 2 744 19 208 134456 941192 6 588344

Table 2. Orders of largest known (�; D) digraphs

Recent studies have also focussed on the degree/diameter problem for vertex

symmetric digraphs [26, 21, 27, 14]. In Table 3 we collect the current state of this

problem, highlighting our new results by bold numbers. Details of the new digraphs

are given in the appendix.
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D 2 3 4 5 6 7 8 9 10

�

2
K

6

FM

10

FM

20

Z��Z

27

Z��Z2

72

LD

144

FM

171

FM

336

FM

504

3
K

12

Z��Z

27

FM

60

Z��Z

165

Z��Z

333
2G2

1152

Z��Z

1 860

Z��Z

4 446

Z��Z

10 849

4
K

20

�

60

Z��Z

168

Z��Z

444

Z��Z

1260

2G2

7200

Z��Z

12 090

Z��Z

38 134

Z��Z

132 012

5
K

30

�

120

�

360
2G2

1152

Z��Z

3 582

2G2

28800

Z��Z

54 505

2G2

259200

Z��Z

752 914

6
K

42

�

210

�

840

�

2520

Z��Z

7 776

2G2

88200

Z��Z

170 898

2G2

1411200

3G3C

5 184000

7
K

56

�

336

�

1680

�

6720

�

20160
2G2

225792

Z��Z

521 906

2G2

5644800
3G3C

5 184000

8
K

72

�

504

�

3024

�

15120

�

60480
2G2

508032

Z��Z

1 371 582

2G2

18289152

3G3C

113799168

9
K

90

�

720

�

5040

�

30240

�

151200
2G2

1 036800

Z��Z

2 965 270

2G2

50803200

3G3C

384072192

10
K

110

�

990

�

7920

�

55400

�

332640
2G2

1 960220

�

6 652800
2G2

125452800

3G3C

1 119744000

Table 3. Largest known vertex symmetric (�; D) digraphs

The new results presented here have been produced by computer search. Typi-

cally, a group G is selected and a set of � generators chosen at random, followed

by computation of the diameter of the resulting Cayley digraph. Vertex transitiv-

ity allows to restrict the computation to distances from the identity element. The

output of such a run might look as follows (� = 4, order 168):

dist 0: new 1; total 1

dist 1: new 4; total 5

dist 2: new 16; total 21

dist 3: new 55; total 76

dist 4: new 86; total 162

dist 5: new 6; total 168

Note that in the �rst few steps the number of elements produced is 1, �, �2, but

then the geometric progression stops in this example. The small number of elements

with distance 5 might create the hope that a `better' choice of generators would

lead to a digraph of diameter 4 on 168 vertices.

The annotations in Table 3 have the following meaning:
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Graphs appearing in Table 3

FM digraph found by computer search by Faber and Moore [26]

� digraph on permutations ��(D) [26]

K Kautz digraph [33, 34]

LD line digraph of an arc symmetric digraph

nGn digraph composition [14]

nGnC generalized digraph composition [14]

Z��Z digraphs built from semi-direct products of

cyclic groups ([21] and present paper)

Z��Z
2 arc symmetric Cayley graph described in present paper

In addition to the new entries labelled Z��Z there are two new ones of degree 2:

a Cayley digraph of order 72, degree 2 and diameter 6 is obtained as Cayley graph

of the 2-generator group

G = hx; y j xyxy = yxyx = xy6x�2y�3 = yx6y�2x�3 = 1i:

It is not hard to see that this graph is arc-transitive, and therefore its line digraph

is vertex transitive, providing the entry (2; 7) of order 144. The group was found

as a semidirect product of Z8 acting on Z3 � Z3.

5. Remarks

1. Semidirect products of cyclic groups are abundant and therefore a good

hunting ground for Cayley graphs. We note that these graphs are also competitive

with regard to average distance and can improve the results in [38].

2. Most computations were done by programs written in C; results for smaller or-

ders were veri�ed using the computer algebra package CAYLEY [13]. This package

was also used to produce some auxiliary �les.

3. In the drive for improved results, the following `trick' was occasionally success-

ful. When a group turned out to be a good candidate for a pair (�; D) by producing

a good number of `near misses' (as exempli�ed in section 4) the generators involved

in these cases were collected and later the sampling of generators restricted to the

pool of collected elements. No statistical analysis of this phenomenon is available,

but the successes came as a surprise.
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Appendix A. Groups and Generators for New Cayley Digraphs

For an explanation of the entries in the column headed `Group' refer to section 2.
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(�, D) Order Group Generators
Order of

Generator

( 2, 6 ) 72 8�� 3
2 [ 1 1 2 ] 8

[ 1 0 ] ! [ 1 1 ] [ 3 2 2 ] 8

[ 0 1 ] ! [ 1 0 ]

( 3, 5 ) 165 5�4 33 [ 4 17 ] 15

[ 4 4 ] 15

[ 2 21 ] 5

( 3, 8 ) 1860 12�88 155 [ 8 108 ] 15

[ 1 93 ] 12

[ 11 68 ] 12

( 3, 9 ) 4446 18�4 247 [ 12 50 ] 39

[ 7 125 ] 18

[ 10 231 ] 9

( 3, 10 ) 10 849 19�407 571 [ 2 19 ] 19

[ 7 480 ] 19

[ 15 502 ] 19

( 4, 4 ) 168 6�3 28 [ 4 3 ] 12

[ 0 12 ] 7

[ 1 22 ] 6

[ 1 3 ] 6

( 4, 5 ) 444 12�8 37 [ 5 33 ] 12

[ 11 25 ] 12

[ 10 17 ] 6

[ 3 18 ] 4

( 4, 6 ) 1260 12�2 105 [ 9 87 ] 28

[ 4 89 ] 15

[ 7 8 ] 12

[ 10 45 ] 6

( 4, 8 ) 12 090 30�4 403 [ 5 165 ] 186

[ 12 285 ] 65

[ 1 92 ] 30

[ 22 39 ] 15

( 4, 9 ) 38 134 46�180 829 [ 15 507 ] 46

[ 18 276 ] 23

[ 6 637 ] 23

[ 22 542 ] 23

( 4, 10 ) 132012 36�1593 3667 [ 23 1710 ] 36

[ 26 3100 ] 18

[ 14 707 ] 18

[ 15 2346 ] 12

( 5, 6 ) 3582 18�37 199 [ 5 13 ] 18

[ 16 53 ] 9

[ 8 123 ] 9

[ 14 34 ] 9

[ 15 110 ] 6



LARGE CAYLEY GRAPHS 9

(�, D) Order Group Generators
Order of

Generator

( 5, 8 ) 54 505 55�512 991 [ 17 201 ] 55

[ 43 430 ] 55

[ 49 898 ] 55

[ 27 951 ] 55

[ 9 528 ] 55

( 5, 10 ) 752914 194�2069 3881 [ 183 1044 ] 194

[ 30 1822 ] 97

[ 184 1253 ] 97

[ 188 1265 ] 97

[ 160 2480 ] 97

( 6, 6 ) 7776 24�� 18
2 [ 7 2 8 ] 24

[ 1 0 ] ! [0 1 ] [ 23 8 6 ] 24

[ 0 1 ] ! [7 16 ] [ 13 7 5 ] 24

[ 5 4 5 ] 24

[ 2 14 5 ] 12

[ 6 17 5 ] 4

( 6, 8 ) 170898 78�1236 2191 [ 48 79 ] 91

[ 66 76 ] 91

[ 17 998 ] 78

[ 7 872 ] 78

[ 40 1389 ] 39

[ 34 1491 ] 39

( 7, 8 ) 521906 154�700 3389 [ 139 798 ] 154

[ 71 2968 ] 154

[ 50 3016 ] 77

[ 48 1301 ] 77

[ 33 2433 ] 14

[ 70 2042 ] 11

[ 56 1956 ] 11

( 8, 8 ) 1 371582 414�408 3313 [ 305 241 ] 414

[ 95 1838 ] 414

[ 193 353 ] 414

[ 287 650 ] 414

[ 224 138 ] 207

[ 102 3186 ] 69

[ 330 2254 ] 69

[ 153 1940 ] 46

( 9, 8 ) 2 965270 770�32 3851 [ 419 1605 ] 770

[ 431 3461 ] 770

[ 194 3715 ] 385

[ 514 1381 ] 385

[ 334 943 ] 385

[ 296 304 ] 385

[ 755 2906 ] 154

[ 623 3338 ] 110

[ 60 733 ] 77
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