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Abstract

This paper deals with the calculation of the Hausdorff measure of
regular ω-languages, that is, subsets of the Cantor space definable by
finite automata. Using methods for decomposing regular ω-languages
into disjoint unions of parts of simple structure we derive two sufficient
conditions under which ω-languages with a closure definable by a finite
automaton have the same Hausdorff measure as this closure.

The first of these condition is related to the homogeneity of the local
behaviour of the Hausdorff dimension of the underlying set, and the
other with a certain topological density of the set in its closure.
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Regular ω-languages are not only famous because they are definable
by finite automata but also because they are the ones definable in Büchi’s
[Büc62] restricted monadic second order arithmetic (cf. the survey [Tho90]
or [PP04]).

Hausdorff dimension and Hausdorff measure for regular ω-languages
have been proved to be computable (cf. [Ban89, MW88, Edg08] or [MS94,
Sta98a]). The computation of the Hausdorff measure of a regularω-language
uses several properties which do not hold for larger classes of ω-languages
(cf. [Sta93, MS94, Sta98b]). These properties show that subsets of the Can-
tor space definable by finite automata really deserve the name “regular”.

For instance, Theorem 21 of [MS94] shows a strong connection of Haus-
dorff dimension and topological density for regular ω-languages closed in
Cantor space, and the measure-category-theorem of [Sta98b] shows that this
connection can be extended to arbitrary regular ω-languages.

Our investigations relate the Hausdorff measure of a subset of the Can-
tor space to the Hausdorff measure of its closure. A first result shows that
under a certain homogeneity condition the measure of a regular ω-language
coincides with the measure of its closure. The proof uses the decomposition
theorem of [Sta98a] which is based on McNaughton’s theorem [McN66] and
extends in some sense earlier decompositions of [Arn83, SW74, Wag79].

A second result is a sufficient condition under which sets topologically
large relative to its closure have the same Hausdorff measure as their clo-
sure. Here, for the case of finite measure, we rely on the measure-category
theorem derived in [Sta98b, Theorem 4]. The extension to sets of infinite
measure requires a closer inspection of the decomposition of regular ω-lan-
guages closed in Cantor space.

The paper is organised as follows. After introducing some notation in
Section 2 some properties of Hausdorff measure and dimension are listed.
Then the third section deals with decompositions of regular ω-languages
derived from the accepting automata. This concerns the general decompo-
sition as in [Sta98a], a new decomposition according to non-null Hausdorff
measure and the decomposition of closed sets mentioned above. Then in Sec-
tion 4 we derive the results on the coincidence of the Hausdorff measures of
ω-languages of a certain shape and their closures.

1 Notation
In this section we introduce the notation used throughout the paper. By IN=
{0,1,2, . . .} we denote the set of natural numbers. Its elements will be usually
denoted by letters i, . . . ,n. Let X be an alphabet of cardinality |X | = r ≥ 2.
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Then X∗ is the set of finite words on X , including the empty word e, and Xω

is the set of infinite strings (ω-words) over X . Subsets of X∗ will be referred
to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗∪ Xω let w ·η be their concatenation. This con-
catenation product extends in an obvious way to subsets W ⊆ X∗ and B ⊆
X∗∪ Xω. For a language W let W∗ := ⋃

i∈IN W i, and Wω := {w1 · · ·wi · · · : wi ∈
W \ {e}} be the set of infinite strings formed by concatenating non-empty
words in W . Furthermore, |w| is the length of the word w ∈ X∗ and pref(B)
is the set of all finite prefixes of strings in B ⊆ X∗∪ Xω. We shall abbreviate
w ∈pref({η}) (η ∈ X∗∪ Xω) by w v η.

As usual, we consider Xω as a topological space (Cantor space). The clo-
sure (smallest closed set containing F) of a subset F ⊆ Xω,C (F), is described
as C (F) := {ξ : pref({ξ}) ⊆ pref(F)}. The open sets in Cantor space are the
ω-languages of the form W · Xω.

We assume the reader to be familiar with the basic facts of the theory
of regular languages and finite automata. We postpone the definition of
regularity for ω-languages to Section 3. For more details on ω-languages
and regular ω-languages see the book [PP04] or the survey papers [Sta97,
Tho90].

2 Hausdorff Dimension and Hausdorff Measure
First, we shall describe briefly the basic formulae needed for the definition
of Hausdorff dimension and Hausdorff measure. For more background and
motivation see Section 1 of [MS94].

We recall the definition of the Hausdorff measure and Hausdorff dimen-
sion (see [Edg08, Fal90]) of a subset of Xω. In the setting of languages and
ω-languages this can be read as follows (see [Sta93, Sta98a]). For F ⊆ Xω,
r = |X | ≥ 2 and 0≤α≤ 1 the equation

ILα(F) := lim
l→∞

inf
{ ∑

w∈W
r−α·|w| : F ⊆W · Xω∧∀w(w ∈W →|w| ≥ l)

}
(1)

defines the α-dimensional metric outer measure on Xω. The measure ILα

satisfies the following properties (see [Edg08, Fal90, MS94]).

Proposition 1 Let F ⊆ Xω, V ⊆ X∗ and α ∈ [0,1].

1. If ILα(F)<∞ then ILα+ε(F)= 0 for all ε> 0.

2. If F ⊆ {ξ : ξ ∈ Xω∧pref(ξ)⊆V } and
∑

v∈V r−α·|v| <∞ then ILα(F)= 0.

3. It holds the scaling property ILα(w ·F)= r−α·|w| · ILα(F).
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4. If V is prefix-free then ILα(F ∩V · Xω)=∑
w∈V ILα(F ∩w · Xω).

Then the Hausdorff dimension of F is defined as

dimF := sup{α :α= 0∨ ILα(F)=∞}= inf{α : ILα(F)= 0} .

It should be mentioned that dim is countably stable and invariant under
scaling, that is, for Fi ⊆ Xω we have

dim
⋃

i∈IN Fi = sup{dimFi : i ∈ IN} and dimw ·F0 = dimF0 . (2)

In particular, every at most countable subset E ⊆ Xω has Hausdorff di-
mension dimE = 0, and the measure IL0 is the counting measure, that is,
IL0(E)= |E| if E is finite and IL0(E)=∞, otherwise.

Hausdorff dimension and measure need not be distributed uniformly on a
set. In order to describe a certain homogeneity we use the following concept
(cf. [MS94, Section 4]). We say that an ω-language F has locally positive
α-dimensional measure provided ILα(F∩w ·Xω)> 0 for all w ∈pref(F). Then
the following technical result is true.

Proposition 2 Let F ⊆ Xω have dimF = α, ILα(F) < ∞ and locally posi-
tive α-dimensional measure. If F ′ ⊆ F and ILα(F ′) = ILα(F) then pref(F ′) =
pref(F) and, consequently, C (F ′)=C (F).

Proof. First observe that F ′ ⊆ F implies ILα(F ′∩w · Xω) ≤ ILα(F ∩w · Xω)
for all w ∈ X∗. Then the general identity (see Proposition 1.4) ILα(E) =∑

w∈X n ILα(E∩w ·Xω) and the hypothesis ILα(F ′)= ILα(F)<∞ imply ILα(F ′∩
w · Xω)= ILα(F ∩w · Xω).

Obviously, pref(F ′) ⊆ pref(F). Let now w ∈ pref(F). Then ILα(F ∩w ·
Xω)> 0 which in view of ILα(F ′∩w·Xω)= ILα(F∩w·Xω) implies w ∈pref(F ′).

o

We add a further relation of the Hausdorff dimension and the measure ILα

for ω-languages (see [Sta93, MS94]) of a special shape.

Proposition 3 Let α= dimWω. Then ILα(Wω)≤ 1, and if, moreover, ILα(Wω)>
0 then Wω has locally positive α-dimensional measure.

Proof. The first part is Proposition 6.6 of [Sta93]. Let w ∈ pref(Wω). Then
there is a v ∈ X∗ such that wv ∈W∗, and, consequently wv·Wω ⊆Wω∩w·Xω.
Now Proposition 1.3 yields 0< ILα(wv ·Wω)≤ ILα(Wω∩w · Xω). o
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3 Decomposition of Regular ω-languages

As usual we call a language W ⊆ X∗ regular if there is a finite (deterministic)
automaton A = (X ;S; s0;δ), where S is the finite set of states, s0 ∈ S is the
initial state and δ : S× X → S is the transition function1, such that W = {w :
δ(s0;w) ∈ S′} for some fixed set S′ ⊆ S.

An ω-language F ⊆ Xω is called regular provided there are a finite (deter-
ministic) automaton A = (X ;S; s0;δ) and a table T ⊆ {S′ : S′ ⊆ S} such that
for ξ ∈ Xω it holds ξ ∈ F if and only if Inf(A;ξ) ∈ T where Inf(A;ξ) is the set
of all states s ∈ S through which the automaton A runs infinitely often when
reading the input ξ. Observe that S′ = Inf(A;ξ) holds for a subset S′ ⊆ S if
and only if

1. there is a word u ∈ X∗ such that δ(s0;u) ∈ S′, and

2. for all s, s′ ∈ S′ there are non-empty words w,v ∈ X∗ such that δ(s,w)=
s′ and δ(s′,v)= s.

Thus, to ease our notation, unless stated otherwise in the sequel we will
assume all automata to be initially connected, that is, S = {δ(s0;w) : w ∈ X∗}
and the tables T to be contained in {Inf(A;ξ) : ξ ∈ Xω}.

The ω-language F = {ξ : Inf(A;ξ) ∈ T } is the disjoint union of all sets
FS′ = {ξ : Inf(A;ξ)= S′} where S′ ∈T .

We are going to split F into smaller mutually disjoint parts. Let A =
(X ;S; s0;δ) be fixed. We refer to a word v ∈ X∗ as (s;S′)-loop completing if
and only if

1. v is not the empty word,

2. δ(s,v)= s and {δ(s,v′) : v′ v v}= S′, and

3. {δ(s,v′) : v′ v v′′}⊂ S′ for all proper prefixes v′′ @ v with δ(s,v′′)= s.

and we call a word w ∈ X∗ (s;S′)-loop entering provided

1. δ(s0;v)= s and

2. if w = w′ · x for some x ∈ X then δ(s0;w′) ∉ S′.

1We use the same symbol δ to denote the usual extension of the function δ to S× X∗.
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3.1 The general case
Denote by V(s;S′) the set of all (s;S′)-loop completing words and by W(s;S′)
the set of all (s;S′)-loop entering words. Both languages are regular and
constructable from the finite automaton A = (X ;S; s0;δ). Moreover, V(s;S′) is
prefix-free, whereas W(s;S′) need not be so. Nevertheless, every ξ ∈ FS′ has
a unique representation ξ = w · v1 · · ·vi · · · where w ∈ W(s;S′) and vi ∈ V(s;S′).
Here the state s ∈ S′ is uniquely determined as the state succeeding the last
state ŝ ∉ S′ in the sequence (δ(s0;u))u@ξ. Thus we obtain the following (see
[Sta98b]).

Lemma 4 (Decomposition Lemma) Let A = (X ;S; s0;δ) be a finite automa-
ton, T ⊆ {Inf(A;ξ) : ξ ∈ Xω} be a table and let F = {ξ : Inf(A;ξ) ∈T }. Then

F =⋃
S′∈T

⋃
s∈S′

⋃
w∈W(s;S′)

w ·Vω
(s;S′) , (3)

and the sets w ·Vω
(s;S′) are pairwise disjoint.

As an immediate consequence of the Decomposition Lemma we obtain that
every regular ω-language has the form

⋃n
i=1 Wi ·Vω

i where Wi,Vi are regular
languages (see [Büc62, PP04, Sta97] or [Tho90]). The converse is also true,
that is, if W ⊆ X∗ and F,E ⊆ Xω are regular then also Wω,W ·E and E∪F
are regular ω-languages. Note, however, that the representation of Eq. (3) is
much finer, since it splits a regular ω-language F =⋃n

i=1 Wi ·Vω
i into mutually

disjoint parts w ·Vω
i ,w ∈ Wi, i ∈ {1, . . . ,n}, where, additionally, the languages

Vi are prefix-free.

3.2 Decomposition according to Hausdorff measure
Next we are going to construct, depending on the automaton A = (X ;S; s0;δ),
a subset F ′ of the set F in Eq. (3) on which the Hausdorff measure ILα is
concentrated. To this end we need some properties of the measure ILα for
regular ω-languages.

Since regular ω-languages are Borel sets in Cantor space (cf. [Sta97,
Tho90]), ILα is not only an outer measure but a measure on the class of
regular ω-languages. Thus we have the following (cf. [Fal86]).

Proposition 5 If (Fi)i∈IN is a family of mutually disjoint regularω-languages
then ILα(

⋃
i∈IN Fi)=∑

i∈IN ILα(Fi).

Moreover, the following are shown in [Sta93] and [MS94].

Proposition 6 ([Sta93, Theorem 4.7]) If F ⊆ Xω is a non-empty regular
ω-language and α= dimF then ILα(F)> 0.
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Proposition 7 ([Sta93, Theorem 4.6],[MS94, Theorem 6]) Let V ⊆ X∗ be
regular and prefix-free. Then ILα(Vω)= ILα(C (Vω)).

From Eq. (3), Proposition 5 and Proposition 1.3 we obtain a formula for
the Hausdorff measure ILα(F) of F:

ILα(F)=∑
S′∈T

∑
s∈S′(

∑
w∈W(s;S′)

r−α·|w|) · ILα(Vω
(s;S′)) . (4)

The following lemma shows that several of the sets w·Vω
(s;S′) do not contribute

to the measure ILα(F) of F.

Proposition 8 Let A = (X ;S; s0;δ) be a finite automaton and V(s;S′) 6= ;.
Then S′′ ⊂ S′ implies Vω

(s;S′′) ⊆C (Vω
(s;S′)).

Moreover, we have ILα(Vω
(s;S′′))= 0 for α= dimVω

(s;S′) .

Proof. To prove the first assertion it suffices to show pref(Vω
(s;S′′))⊆pref(Vω

(s;S′)).
Let As := (X ;S; s;δ). Then ζ ∈ Vω

(s;S′) if and only if Inf(As;ζ) = S′ and
{δ(s,u) : u @ ξ} ⊆ S′. Consequently, for v ∈ V∗

(s;S′′) and ξ ∈ Vω
(s;S′) we have

Inf(As;v·ξ)= S′ whence V∗
(s;S′′)·Vω

(s;S′) =Vω
(s;S′) and thus pref(Vω

(s;S′′))⊆pref(Vω
(s;S′)).

As Vω
(s;S′′) and Vω

(s;S′) are disjoint subsets of C (Vω
(s;S′)) the second assertion

follows from the first one and Proposition 7. o

Proposition 8 shows that for an ω-language F accepted by an automaton
A = (X ;S; s0;δ) and a table T ⊆ {Inf(A;ξ) : ξ ∈ Xω} the measure ILα(F) for
α= dimF is concentrated only on subsets w ·Vω

(s,S′) for which S′ is maximal
w.r.t. set inclusion in T .

If α = dimF and we choose among the maximal sets S′ ∈ T those for
which ILα(w ·Vω

(s;S′))> 0 we eliminate all sets w ·Vω
(s;S′) with ILα(w ·Vω

(s;S′))= 0
in Eq. (3) and obtain the following.

Theorem 9 Let A = (X ;S; s0;δ) be a finite automaton, T ⊆ {Inf(A;ξ) : ξ ∈ Xω}
be a table, F = {ξ : Inf(A;ξ) ∈T } and α= dimF.

If S := {S′ : S′ ∈ T ∧∃s(s ∈ S′∧ ILα(Vω
(s,S′)) > 0)} the ω-language F ′ = {ξ :

Inf(A;ξ) ∈S } satisfies F ′ ⊆ F and ILα(F)= ILα(F ′).
Moreover, the ω-language F ′ has a decomposition

F ′ =⋃
S′∈S

⋃
s∈S′

⋃
w∈W(s;S′)

w ·Vω
(s;S′) , (5)

where ILα(w ·Vω
(s;S′))> 0 for all sets w ·Vω

(s;S′) .
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3.3 The case of closed ω-languages
In [SW74, Wag79] it was observed that the tables T of finite automata A =
(X ;S; s0;δ) accepting regular ω-languages closed in Cantor topology have the
following simple structure.

Lemma 10 Let A = (X ;S; s0;δ) be an initially connected finite automaton
and let T ⊆ {Inf(A;ξ) : ξ ∈ Xω} be a table such that the ω-language F = {ξ :
Inf(A;ξ) ∈T } is closed. Then T satisfies the following properties.

1. If S′ ∈T , S′′ ∈ {Inf(A;ξ) : ξ ∈ Xω} and S′∩S′′ 6= ; then S′∪S′′ ∈T .

2. If S′ ∈ T , S′′ ∈ {Inf(A;ξ) : ξ ∈ Xω} and δ(s′′,v) ∈ S′ for some s′′ ∈ S′′ and
v ∈ X∗ then S′′ ∈T .

Informally speaking, Condition 1 of Lemma 10 shows that the table T is
fully determined by the automaton A and its strongly connected compo-
nents (SCCs), that is, subsets S′ ∈ T satisfying the condition ∀s∀s′(s, s′ ∈
S′ →∃w∃v(w 6= e 6= v∧δ(s,w) = s′∧δ(s′,v) = s)). In connection with Proposi-
tion 8 one observes that strongly connected components are maximal sets in
{Inf(A;ξ) : ξ ∈ Xω}.

Condition 2 implies that we can partition the set of states into an accept-
ing part S+ := {s : ∃S′∃v(S′ ∈ T ∧ v ∈ X∗∧δ(s,v) ∈ S′)} and a rejecting part
S− := S \ S+ such that F = {ξ : Inf(A;ξ)⊆ S+}.

As we shall see in the following theorem among the strongly connected
components S′ ⊆ S+ the terminal ones play a special rôle. A similar obser-
vation was made in [MS94, Section 3] in connection with the calculation
of the Hausdorff measure of closed regular ω-languages. Here we call a
strongly connected component S′ ∈ T terminal in T provided δ(s,v) ∈ S′ or
δ(s,v) ∈ S− for s ∈ S′ and arbitrary v ∈ X∗.

Theorem 11 Let A = (X ;S; s0;δ) be an initially connected finite automaton
and let T ⊆ {Inf(A;ξ) : ξ ∈ Xω} be a table such that the ω-language F = {ξ :
Inf(A;ξ) ∈T } is closed. Let T̂ ⊆T be the set of all strongly connected compo-
nents terminal in T and F ′ = {ξ : Inf(A;ξ) ∈ T̂ }.

Then F ′ ⊆⋃
S′∈T̂

⋃
s∈S′ W(s;S′) ·C (Vω

(s;S′))⊆ F =C (F ′).
Moreover, if s = δ(s0,w) ∈ S′, for some S′ ∈ T̂ , then w·Xω∩F = w·C (Vω

(s;S′)).

Proof. Obviously, F ′ ⊆ F. First we show that F ⊆C (F ′). Let ξ ∈ F. Then S′′ =
Inf(A;ξ) ∈ T . Choose some s′′ ∈ S′′. Since the automaton is finite, there are
a terminal strongly connected component S′ ∈ T̂ , a state s′ ∈ S′ and a v ∈ X∗

such that δ(s′′,v) = s′. Consider the set pref(ξ; s′′) := {u : u @ ξ∧δ(s0,u) = s′′}.
Then pref(pref(ξ; s′′))=pref(ξ).
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Let w ∈ X∗ \ {e} satisfy δ(s′,w) = s′ and {δ(s′,w′) : w′ v w} = S′. Then
Inf(A;uvwω)= S′ for every u ∈ pref(ξ; s′′), that is, pref(ξ)⊆pref(F ′).

Next observe that in view of Lemma 4 we have F ′ = ⋃
S′∈T̂

⋃
s∈S′ W(s;S′) ·

Vω
(s;S′). Then the inclusion relations follow from F ′ ⊆ F and the fact that F is

closed.
For the proof of second assertion it suffices to show w·Vω

(s;S′) ⊆ F∩w·Xω ⊆
w ·C (Vω

(s;S′)). If ξ ∈ w ·Vω
(s;S′) then Inf(A;ξ)= S′ whence ξ ∈ F ∩w · Xω.

Let ξ ∈ F ∩w · Xω. Since s = δ(s0,w) ∈ S′ and S′ is a terminal strongly
connected component, Inf(A;ξ)⊆ S+ implies {δ(s0,w ·u) : w ·u @ ξ}⊆ S′. As S′

is a strongly connected component, for every u,w · u @ ξ, there is a u′ such
that δ(s0,w ·u ·u′)= δ(s0,w)= s and {δ(s0,w ·u′′) : u′′ v u ·u′}= S′. This shows
pref(ξ) ∈pref(w ·Vω

(s;S′)), that is, ξ ∈C (w ·Vω
(s;S′))= w ·C (Vω

(s;S′)). o

4 Results on Hausdorff Measure

4.1 Sets of locally positive measure
Theorem 12 If F ⊆ Xω is a regular ω-language, α = dimF, F has locally
positive α-dimensional measure then ILα(C (F))= ILα(F).

If, moreover, α= dimF = dimC (F) then C (F) has locally positive α-dimen-
sional measure.

Proof. It suffices to show that ILα(C (F))> ILα(F) implies ILα(F)=∞.
From Theorem 9 we know that F contains a regular ω-language F ′ =⋃n

i=1 Wi ·Vω
i with ILα(F) = ILα(F ′) where the sets Wi,Vi are regular, the Vi

are prefix-free with ILα(Vi) > 0, and the sets w ·Vω
i ,w ∈ Wi, i ∈ {1, . . . ,n}, are

mutually disjoint.
Assume ∞≥ ILα(C (F))> ILα(F). Since F has locally positive α-dimensional

measure, by Proposition 2 pref(F ′)=pref(F) whence C (F ′)=C (F).
If pref(ξ) ⊆ pref(Wi · Vω

i ) then there is a w ∈ Wi such that pref(ξ) \
pref(w)⊆ w ·pref(Vω

i ) or pref(ξ)⊆pref(Wi). This shows

C (F ′)=
n⋃

i=1
Wi ·C (Vω

i )∪
n⋃

i=1
{ξ : pref(ξ)⊆pref(Wi)} .

Since ILα(w ·C (Vω
i ))= ILα(w ·Vω

i ) the assumption ILα(C (F))> ILα(F) implies
that ILα({ξ : pref(ξ) ⊆ pref(Wi)}) > 0 for some i ∈ {1, . . . ,n} which in view of
Proposition 1.2 yields

∑
w∈pref(Wi) r−α·|w| =∞.

Since Wi is regular, there is a k ∈ IN such that for every v ∈ pref(Wi)
there is a w ∈Wi with v v w and |w|− |v| ≤ k. Thus

∑
v∈pref(Wi) r−α·|v| =∞ im-

plies
∑

w∈Wi r−α·|w| =∞ and we obtain ILα(F) ≥ ILα(Wi ·Vω
i ) = (

∑
w∈Wi r−α·|w|) ·

ILα(Vω
i )=∞.
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The additional assertion follows from 0 < ILα(F ∩w · Xω) ≤ ILα(C (F)∩w ·
Xω) for w ∈pref(F). o

The following example shows that the additional assertion need not be true
for dimF < dimC (F).

Example 1 Let X = {0,1}, F1 = {0,1}∗ ·0ω and F2 := 0ω∪1 · {0,1}∗ ·0ω. Then
C (F1) = {0,1}ω and C (F2) = 0ω∪1 · {0,1}ω. Then 0 = dimFi < dimC (Fi) = 1
for i = 1,2, C (F1) has locally positive 1-dimensional measure whereas, since
IL1(F2 ∩0 · {0,1}∗)= 0, C (F2) has not.

As an immediate consequence we obtain the following.

Corollary 13 If F ⊆ Xω is a regular ω-language, α := dimF, F has locally
positive α-dimensional measure and ILα(C (F)\ F)> 0 then ILα(F)=∞.

In case ILα(F)=∞ the measure of the difference ILα(C (F)\ F) may be finite
or infinite.

Example 2 Let X = {0,1} and F1 := 0∗ ·1ω and F2 := 0∗ ·1∗ ·0ω. Both sets
are countable, thus dimF1 = dimF2 = 0. We have C (F1) = 0ω∪ 0∗ · 1ω and
C (F2) = 0∗ ·1ω∪0∗ ·1∗ ·0ω, and, consequently, IL0(C (F1) \ F1) = IL0(0ω) = 1
and IL0(C (F2)\ F2)= IL0(0∗ ·1ω)=∞. o

In Theorem 12 the hypothesis that F has locally positive α-dimensional mea-
sure is essential. We give an example.

Example 3 Let X = {0,1} and F := F1 ∪F2 where F1 = (0 · {0,1})ω is a closed
set and F2 = (1 · {0,1})∗ · (10)ω.

Then ILα(F ∩ 1 · {0,1}ω) = 0 for α > 0, since F2 is countable. Moreover,
C (F)= (0 ·{0,1})ω∪(1 ·{0,1})ω and one easily calculates dimF = dimC (F)= 1

2 ,
IL1/2(F)= 1p

2
> 0 and IL1/2(C (F))= 2 · IL1/2(F)=p

2. o

From Proposition 3 and Theorem 12 we obtain the following relationship for
the Hausdorff measure of regular ω-power languages.

Corollary 14 Let W ⊆ X∗. If Wω is a regular ω-language and α = dimWω

then
ILα(C (Wω))= ILα(Wω) .

Corollary 14 and, consequently, Theorem 12 are not valid for non-regular
ω-languages. In [Sta05, Section 3.3] examples of prefix-free non-regular lan-
guages W fulfilling various relationships between ILα(Wω) and ILα(C (Wω))
are given.
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As a further application of Theorem 12 we derive a result which is in
some sense a converse to Proposition 2. It shows that for special closed
regular ω-languages F we can find a subset of the form of Eq. (5) having
the same measure and the same closure as F. Here we use the approach of
Theorem 11.

Proposition 15 Let A = (X ;S; s0;δ) be an initially connected finite automa-
ton and let T ⊆ {Inf(A;ξ) : ξ ∈ Xω} be a table such that the ω-language F =
{ξ : Inf(A;ξ) ∈ T } is closed. Let T̂ ⊆ T be the set of all strongly connected
components terminal in T and F ′ = {ξ : Inf(A;ξ) ∈ T̂ }.

If dimF = α and F has locally positive α-dimensional measure then F =
C (F ′) and ILα(F)= ILα(F ′).

Proof. The first assertion was already proved in Theorem 11. Then, in view
of Theorem 12, it suffices to show that F ′ has locally positive α-dimensional
measure, that is, ILα(F ′∩w · Xω)> 0 for all w ∈pref(F)=pref(F ′).

Let v ∈ pref(F ′) and consider the identity F ′ = ⋃
S′∈T̂

⋃
s∈S′ W(s;S′) ·Vω

(s;S′)
derived in the proof of Theorem 11.

Then there are an S′ ∈ T̂ and an s ∈ S′ such that v ∈ pref(W(s;S′)) or
v ∈W(s;S′) ·pref(V∗

(s;S′)). In both cases v ·u ∈W(s;S′) ·V∗
(s;S′) for some u ∈ X∗, in

particular s = δ(s0,v ·u).
By Theorem 11 we have F∩v·u·Xω = v·u·C (Vω

(s;S′)) and, since v·u·Vω
(s;S′) ⊆

F ′, with Proposition 8 we obtain 0 < ILα(F ∩ v · u · Xω) = ILα(v · u ·Vω
(s;S′)) ≤

ILα(F ′∩v · Xω). o

4.2 The measure of sets residual in its closure

This last part shows that an ω-language having a regular closure and which
is topologically large in its closure and has the same measure as its closure.

Before we proceed to the presentation of the results we have to introduce
some necessary prerequisites concerning the topology of the Cantor space.

As usual, a countable intersection of open sets is referred to as a Gδ-set.
Moreover, we call a set F nowhere dense in E provided C (E \C (F)) =C (E),
that is, if C (F) does not contain a nonempty subset of the form E ∩w · Xω,
and a subset F is referred to as of first Baire category in E if F is a countable
union of sets nowhere dense in E. If E is closed and F is of first Baire
category in E then E \ F is referred to as residual in E. In particular, Gδ-
sets E in Cantor space are residual in C (E).

The following lemma shows a connection between Hausdorff dimension
and relative density of regular ω-language.

12



Lemma 16 ([Sta98b, Theorem 8]) Let E ⊆ Xω be a regular ω-language
which is closed in Cantor space, α = dimE and let E have finite and locally
positive α-dimensional measure.

Then every regular ω-language F ⊆ E is of first Baire category in E if and
only if ILα(F)= 0.

This much preparatory apparatus leads to the following result.

Theorem 17 Let E ⊆ Xω be an ω-language which is a countable intersec-
tion of regular ω-languages, residual in C (E) and let C (E) be regular. If
α = dimC (E), ILα(C (E)) <∞, and C (E) has locally positive α-dimensional
measure then ILα(C (E))= ILα(E).

Proof. Observe that C (E) is a regular ω-language. Since E is supposed to
be residual in C (E), C (E)\E is of first Baire category in C (E), and, since E is
a countable intersection of regular ω-languages, say E =⋂

i∈IN Fi, the differ-
ence C (E)\E =⋃

i∈IN(C (E)\Fi) is a countable union of regular ω-languages
C (E)\Fi, each of which is of first Baire category in C (E). Then according to
Lemma 16 ILα(C (E)\ Fi)= 0, and the assertion follows. o

Using Proposition 15 we can drop the requirement ILα(C (E)) <∞ in Theo-
rem 17.

Theorem 18 Let E ⊆ Xω be an ω-language which is a countable intersec-
tion of regular ω-languages, residual in C (E) and let C (E) be regular. If
α = dimC (E) and C (E) has locally positive α-dimensional measure then
ILα(C (E))= ILα(E).

Proof. The case ILα(C (E))<∞ is proved in Theorem 17. Let ILα(C (E))=∞.
Proposition 15 shows that ILα(E′)=∞ for the set E′ =⋃

S′∈T̂

⋃
s∈S′ W(s;S′) ·

Vω
(s;S′) derived via Theorem 11 from a finite automaton accepting C (E). Then,

similarly as in the proof of Theorem 12 one finds a set W(s;S′) such that∑
w∈W(s;S′) r−α·|w| =∞ and ILα(Vω

(s;S′))> 0.
Again, using Theorem 11 one has W(s;S′) ·C (Vω

(s;S′))⊆C (E), and, moreover,
w ·C (Vω

(s;S′))=C (E)∩w · Xω for w ∈W(s;S′).
Now, Propositions 3 and 7 show ILα(C (E)∩w · Xω) <∞ and we can ap-

ply Theorem 17. This yields ILα(C (E)∩w · Xω) = ILα(E ∩w · Xω) = r−α·|w| ·
ILα(Vω

(s;S′)). Summing over w ∈W(s;S′) and taking into account that ILα(Vω
(s;S′))>

0 we obtain ILα(E)≥∑
w∈W(s;S′) r−α·|w| · ILα(Vω

(s;S′))=∞. o

The Theorems 17 and 18 can be applied also to non-regular ω-languages. We
give a simple example.

Example 4 Let E :=⋂
w∈X∗ X∗ ·w·Xω be the set of all ω-words which contain

every word as an infix. Those ω-words are referred to as disjunctive [JST83]
or rich [Sta98b]. E is a Gδ-set in Cantor space, hence residual in C (E)= Xω.

13



We have dimC (E)= 1 and obtain IL1(C (E))= IL1(E)= 1. o

The condition that E be residual in C (E) is really essential as the following
example shows.

Example 5 Let X = {0,1} and E = {0,1}∗ ·0ω =⋂
n∈IN{0,1}∗ · {0n1,0}ω which is

an intersection of regular ω-languages {0,1}∗ · {0n1,0}ω.
Then C (E)= {0,1}ω and α= dimC (E)= 1, IL1(C (E)∩w · {0,1}ω)> 0 for all

w ∈ {0,1}∗ but, as E is countable, dimE = 0 and hence IL1(E)= 0. o
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