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Abstract—The statistical mechanical interpretation of algo-

rithmic information theory (AIT, for short) was introduced and

developed in our former work [K. Tadaki, Local Proceedings of

CiE 2008, pp.425–434, 2008], where we introduced the notion

of thermodynamic quantities into AIT. These quantities are real

functions of temperature T > 0. The values of all the thermo-

dynamic quantities diverge when T exceeds 1. This phenomenon

corresponds to phase transition in statistical mechanics. In this

paper we introduce the notion of strong predictability for an

infinite binary sequence and then apply it to the partition function

Z(T ), which is one of the thermodynamic quantities in AIT. We

then reveal a new computational aspect of the phase transition in

AIT by showing the critical difference of the behavior of Z(T )
between T = 1 and T < 1 in terms of the strong predictability

for the base-two expansion of Z(T ).

I. INTRODUCTION

Algorithmic information theory (AIT, for short) is a frame-
work for applying information-theoretic and probabilistic ideas
to computability theory. One of the primary concepts of AIT is
the program-size complexity (or Kolmogorov complexity) H(x)
of a finite binary string x, which is defined as the length of
the shortest binary program for a universal decoding algorithm
U , called an optimal prefix-free machine, to output x. By
the definition, H(x) is thought to represent the amount of
randomness contained in a finite binary string x. In particular,
the notion of program-size complexity plays a crucial role in
characterizing the randomness of an infinite binary sequence,
or equivalently, a real. In [3] Chaitin introduced the ⌦ number
as a concrete example of random real. The first n bits of the
base-two expansion of ⌦ solve the halting problem of U for
inputs of length at most n. By this property, ⌦ is shown to be
a random real, and plays a central role in the development of
AIT.

In this paper, we study the statistical mechanical interpre-
tation of AIT. In a series of works [9], [10], [11], [12], [13],
[14], we introduced and developed this particular subject of
AIT. First, in [9] we introduced the thermodynamic quantities
at temperature T , such as partition function Z(T ), free energy
F (T ), energy E(T ), statistical mechanical entropy S(T ),
and specific heat C(T ), into AIT. These quantities are real
functions of a real argument T > 0, and are introduced in
the following manner: Let X be a complete set of energy
eigenstates of a quantum system and E

x

the energy of an
energy eigenstate x of the quantum system. In [9] we in-
troduced thermodynamic quantities into AIT by performing
Replacements 1 below for the corresponding thermodynamic
quantities in statistical mechanics.

Replacements 1.

(i) Replace the complete set X of energy eigenstates x

by the set domU of all programs p for U .
(ii) Replace the energy E

x

of an energy eigenstate x by
the length |p| of a program p.

(iii) Set the Boltzmann Constant k
B

to 1/ ln 2.

For example, in statistical mechanics, the partition function
Z
sm

(T ) at temperature T is given by

Z
sm

(T ) =
X

x2X

e
� E

x

kBT .

Thus, based on Replacements 1, the partition function Z(T )
in AIT is defined as

Z(T ) =
X

p2domU

2

� |p|
T . (1)

In general, the thermodynamic quantities in AIT are variants
of Chaitin ⌦ number. In fact, in the case of T = 1, Z(1) is
precisely Chaitin ⌦ number.1

In [9] we then proved that if the temperature T is a
computable real with 0 < T < 1 then, for each of the ther-
modynamic quantities Z(T ), F (T ), E(T ), S(T ), and C(T )
in AIT, the partial randomness of its value equals to T , where
the notion of partial randomness is a stronger representation
of the compression rate by means of program-size complexity.
Thus, the temperature T plays a role as the partial randomness
(and therefore the compression rate) of all the thermodynamic
quantities in the statistical mechanical interpretation of AIT. In
[9] we further showed that the temperature T plays a role as
the partial randomness of the temperature T itself, which is a
thermodynamic quantity of itself in thermodynamics or statis-
tical mechanics. Namely, we proved the fixed point theorem on
partial randomness,2 which states that, for every T 2 (0, 1),
if the value of partition function Z(T ) at temperature T is a
computable real, then the partial randomness of T equals to
T , and therefore the compression rate of T equals to T , i.e.,
lim

n!1 H(T�
n

)/n = T , where T�
n

is the first n bits of the
base-two expansion of the real T .

In our second work [10] on the statistical mechanical
interpretation of AIT, we showed that a fixed point theorem
of the same form as for Z(T ) holds also for each of F (T ),
E(T ), and S(T ). In the third work [11], we further unlocked
the properties of the fixed points on partial randomness by
introducing the notion of composition of prefix-free machines
into AIT, which corresponds to the notion of composition of
systems in normal statistical mechanics. In the work [12] we
developed a total statistical mechanical interpretation of AIT

1To be precise, the partition function is not a thermodynamic quantity but
a statistical mechanical quantity.

2The fixed point theorem on partial randomness is called a fixed point
theorem on compression rate in [9].



which attains a perfect correspondence to normal statistical
mechanics, by making an argument on the same level of math-
ematical strictness as normal statistical mechanics in physics.
We did this by identifying a microcanonical ensemble in AIT.
This identification clarifies the meaning of the thermodynamic
quantities of AIT.

Our first work [9] showed that the values of all the ther-
modynamic quantities in AIT diverge when the temperature
T exceeds 1. This phenomenon might be regarded as some
sort of phase transition in statistical mechanics. In the work
[14] we revealed a computational aspect of the phase transition
in AIT. The notion of weak truth-table reducibility plays an
important role in recursion theory [6], [5]. In the work [14]
we introduced an elaboration of this notion, called reducibility
in query size f . This elaboration enables us to deal with the
notion of asymptotic behavior of computation in a manner
like in computational complexity theory, while staying in
computability theory. We applied the elaboration to the relation
between Z(T ) and domU , where the latter is the set of all
halting inputs for the optimal prefix-free machine U , i.e., the
halting problem. We then revealed the critical difference of
the behavior of Z(T ) between T = 1 and T < 1 in relation
to domU . Namely, we revealed the phase transition between
the unidirectionality at T = 1 and the bidirectionality at
T < 1 in the reduction between Z(T ) and domU . This critical
phenomenon cannot be captured by the original notion of weak
truth-table reducibility.

In this paper, we reveal another computational aspect of
the phase transition in AIT between T = 1 and T < 1. We
introduce the notion of strong predictability for an infinite
binary sequence. Let X = b

1

b
2

b
3

. . . be an infinite binary
sequence with each b

i

2 {0, 1}. The strong predictability of
X is the existence of the computational procedure which, given
any prefix b

1

. . . b
n

of X , can predict the next bit b
n+1

in X
with unfailing accuracy, where the suspension of an individual
prediction for the next bit is allowed to make sure that the
whole predictions are error-free. We introduce three types
of strong predictability, finite-state strong predictability, total
strong predictability, and strong predictability, which differ
with respect to computational ability. We apply them to the
base-two expansion of Z(T ). On the one hand, we show that
the base-two expansion of Z(T ) is not strongly predictable
at T = 1 in the sense of any of these three types of strong
predictability. On the other hand, we show that it is strongly
predictable in the sense of all of the three types in the case
where T is computable real with T < 1. In this manner, we
reveal a new aspect of the phase transition in AIT between
T = 1 and T < 1.

II. PRELIMINARIES

We start with some notation and definitions which will be
used in this paper. For any set S we denote by #S the cardinal-
ity of S. N = {0, 1, 2, 3, . . . } is the set of natural numbers, and
N+ is the set of positive integers. Q is the set of rationals, and
R is the set of reals. {0, 1}⇤ = {�, 0, 1, 00, 01, 10, 11, 000, . . . }
is the set of finite binary strings, where � denotes the empty
string, and {0, 1}⇤ is ordered as indicated. We identify any
string in {0, 1}⇤ with a natural number in this order. For any
x 2 {0, 1}⇤, |x| is the length of x. A subset S of {0, 1}⇤ is
called prefix-free if no string in S is a prefix of another string
in S.

We denote by {0, 1}1 the set of infinite binary sequences,
where an infinite binary sequence is infinite to the right but
finite to the left. Let X 2 {0, 1}1. For any n 2 N+, we
denote the nth bit of X by X(n). For any n 2 N, we denote
the first n bits of X by X�

n

2 {0, 1}⇤. Namely, X�
0

= �, and
X�

n

= X(1)X(2) . . . X(n) for every n 2 N+.

For any real ↵, we denote by b↵c the greatest integer less
than or equal to ↵. When we mention a real ↵ as an infinite
binary sequence, we are considering the base-two expansion
of the fractional part ↵ � b↵c of the real ↵ with infinitely
many zeros. Thus, for any real ↵, ↵�

n

and ↵(n) denote X�
n

and X(n), respectively, where X is the unique infinite binary
sequence such that ↵ � b↵c = 0.X and X contains infinitely
many zeros.

A function f : N ! {0, 1}⇤ or f : N ! Q is called
computable if there exists a deterministic Turing machine
which on every input n 2 N halts and outputs f(n). A real
↵ is called computable if there exists a computable function
f : N ! Q such that |↵� f(n)| < 2

�n for all n 2 N. We say
that X 2 {0, 1}1 is computable if the mapping N 3 n 7! X�

n

is a computable function, which is equivalent to that the real
0.X in base-two notation is computable.

Let S and T be any sets. We say that f : S ! T
is a partial function if f is a function whose domain is
a subset of S and whose range is T . The domain of a
partial function f : S ! T is denoted by dom f . A partial
computable function f : {0, 1}⇤ ! {0, 1}⇤ is a partial function
f : {0, 1}⇤ ! {0, 1}⇤ for which there exists a deterministic
Turing machine M such that (i) on every input x 2 {0, 1}⇤,
M halts if and only of x 2 dom f , and (ii) on every input
x 2 dom f , M outputs f(x). We write “c.e.” instead of
“computably enumerable.”

A. Algorithmic Information Theory

In the following we concisely review some definitions
and results of AIT [3], [4], [6], [5]. A prefix-free machine
is a partial computable function M : {0, 1}⇤ ! {0, 1}⇤ such
that domM is prefix-free. For each prefix-free machine M
and each x 2 {0, 1}⇤, H

M

(x) is defined by H
M

(x) =

min

�
|p|

�� p 2 {0, 1}⇤ &M(p) = x
 

(may be 1). A prefix-
free machine U is called optimal if for each prefix-free
machine M there exists d 2 N with the following property; if
p 2 domM , then there is q 2 domU for which U(q) = M(p)
and |q|  |p| + d. It is then easy to see that there exists an
optimal prefix-free machine. We choose a particular optimal
prefix-free machine U as the standard one for use, and define
H(x) as H

U

(x), which is referred to as the program-size
complexity of x or the Kolmogorov complexity of x.

Chaitin [3] introduced ⌦ number by ⌦ =

P
p2domU

2

�|p|.
Since domU is prefix-free, ⌦ converges and 0 < ⌦  1. For
any X 2 {0, 1}1, we say that X is weakly Chaitin random if
there exists c 2 N such that n� c  H(X�

n

) for all n 2 N+

[3], [4]. Chaitin [3] showed that ⌦ is weakly Chaitin random.
Therefore 0 < ⌦ < 1.

B. Partial Randomness

In the work [8], we generalized the notion of the random-
ness of a real so that the partial randomness of a real can be
characterized by a real T with 0  T  1 as follows.



Definition 1 (Tadaki [8]). Let T 2 [0, 1] and let X 2 {0, 1}1.
We say that X is weakly Chaitin T -random if there exists c 2 N
such that, for all n 2 N+, Tn� c  H(X�

n

).

In the case of T = 1, the weak Chaitin T -randomness
results in the weak Chaitin randomness.

Definition 2 (Tadaki [14]). Let T 2 [0, 1] and let X 2
{0, 1}1. We say that X is strictly T -compressible if there
exists d 2 N such that, for all n 2 N+, H(X�

n

)  Tn + d.
We say that X is strictly Chaitin T -random if X is both weakly
Chaitin T -random and strictly T -compressible.

In the work [8], we generalized Chaitin ⌦ number to Z(T )
as follows. For each real T > 0, the partition function Z(T ) at
temperature T is defined by the equation (1). Thus, Z(1) = ⌦.
If 0 < T  1, then Z(T ) converges and 0 < Z(T ) < 1, since
Z(T )  ⌦ < 1. The following theorem holds for Z(T ).

Theorem 3 (Tadaki [8], [14]). Let T 2 R.
(i) If 0 < T < 1 and T is computable, then Z(T ) is

strictly Chaitin T -random.
(ii) If 1 < T , then Z(T ) diverges to 1.

This theorem shows some aspect of the phase transition of
the behavior of Z(T ) when the temperature T exceeds 1.

C. Martingales
In this subsection we review the notion of martingale.

Compared with the notion of strong predictability which is
introduced in this paper, the predictability based on martingale
is weak one. We refer the reader to Nies [6, Chapter 7] for the
notions and results of this subsection.

A martingale B is a betting strategy. Imagine a gambler
in a casino is presented with prefixes of an infinite binary
sequence X in ascending order. So far she has been seen a
prefix x of X , and her current capital is B(x) � 0. She bets
an amount ↵ with 0  ↵  B(x) on her prediction that the
next bit will be 0, say. Then the bit is revealed. If she was
right, she wins ↵, else she loses ↵. Thus, B(x0) = B(x) + ↵
and B(x1) = B(x)�↵, and hence B(x0)+B(x1) = 2B(x).
The same considerations apply if she bets that the next bit will
be 1. These considerations result in the following definition.

Definition 4 (Martingale). A martingale is a function
B : {0, 1}⇤ ! [0,1) such that B(x0) + B(x1) = 2B(x)
for every x 2 {0, 1}⇤. For any X 2 {0, 1}1, we say that the
martingale B succeeds on X if the capital it reaches along X
is unbounded, i.e., sup{B(X�

n

) | n 2 N} = 1.

For any subset S of {0, 1}⇤ ⇥ Q, we say that S is
computably enumerable (c.e., for short) if there exists a
deterministic Turing machine M such that, on every input
s 2 {0, 1}⇤ ⇥Q, M halts if and only if s 2 S.

Definition 5 (C.E. Martingale). A martingale B is called
computably enumerable if the set {(x, q) 2 {0, 1}⇤ ⇥Q | q <
B(x)} is c.e.

Theorem 6. For every X 2 {0, 1}1, no c.e. martingale
succeeds on X if and only if X is weakly Chaitin random.

For any subset S of {0, 1}⇤ ⇥ Q, we say that S is
computable if there exists a deterministic Turing machine M

such that, on every input s 2 {0, 1}⇤ ⇥Q, (i) M halts and (ii)
M outputs 1 if s 2 S and 0 otherwise.

Definition 7 (Computable Randomness). A martingale B is
called computable if the set {(x, q) 2 {0, 1}⇤ ⇥ Q | q <
B(x)} is computable. For any X 2 {0, 1}1, we say that X
is computably random if no computable martingale succeeds
on X .

Definition 8 (Partial Computable Martingale). A partial
computable martingale is a partial computable function
B : {0, 1}⇤ ! Q \ [0,1) such that domB is closed under
prefixes, and for each x 2 domB, B(x0) is defined iff B(x1)
is defined, in which case B(x0) +B(x1) = 2B(x) holds.

Definition 9 (Partial Computable Randomness). Let B be a
partial computable martingale and X 2 {0, 1}1. We say
that B succeeds on X if B(X �

n

) is defined for all n 2 N
and sup{B(X �

n

) | n 2 N} = 1. We say that X is
partial computably random if no partial computable martingale
succeeds on X .

Theorem 10. Let X 2 {0, 1}1.
(i) If X is weakly Chaitin random then X is partial

computably random.
(ii) If X is partial computably random then X is com-

putably random.

The converse direction of each of the implications (i) and
(ii) of Theorem 10 fails.

III. NON STRONG PREDICTABILITY AT T = 1

The main result in this section is Theorem 15, which
shows that partial computable randomness implies non strong
predictability. For intelligibility we first show an easier result,
Theorem 12, which says that computable randomness implies
non total strong predictability.

Definition 11 (Total Strong Predictability). For any X 2
{0, 1}1, we say that X is total strongly predictable if there
exists a computable function F : {0, 1}⇤ ! {0, 1, N} for
which the following two conditions hold:

(i) For every n 2 N, if F (X�
n

) 6= N then F (X�
n

) =

X(n+ 1).
(ii) The set {n 2 N | F (X�

n

) 6= N} is infinite.

In the above definition, the letter N outputted by F on the
input X�

n

means that the prediction of the next bit X(n+ 1)

is suspended.

Theorem 12. For every X 2 {0, 1}1, if X is computably
random then X is not total strongly predictable.

Proof: We show the contraposition of Theorem 12. For
that purpose, suppose that X is total strongly predictable. Then
there exists a computable function F : {0, 1}⇤ ! {0, 1, N}
which satisfies the conditions (i) and (ii) of Definition 11. We
define a function B : {0, 1}⇤ ! N recursively as follows: First
B(�) is defined as 1. Then, for any x 2 {0, 1}⇤, B(x0) is
defined by

B(x0) =

(
B(x) if F (x) = N,
2B(x) if F (x) = 0,
0 otherwise,

and then B(x1) is defined by B(x1) = 2B(x) � B(x0). It
follows that B : {0, 1}⇤ ! N is a computable function and

B(x0) +B(x1) = 2B(x)



for every x 2 {0, 1}⇤. Thus B is a computable martingale. On
the other hand, it is easy to see that

B(X�
n

) = 2

#{m2N |m<n & F (X�
m

) 6=N}

for every n 2 N. Since the set {n 2 N | F (X �
n

) 6= N} is
infinite, it follows that lim

n!1 B(X�
n

) = 1. Therefore, X
is not computably random, as desired.

Definition 13 (Strong Predictability). For any X 2 {0, 1}1,
we say that X is strongly predictable if there exists a partial
computable function F : {0, 1}⇤ ! {0, 1, N} for which the
following three conditions hold:

(i) For every n 2 N, F (X�
n

) is defined.
(ii) For every n 2 N, if F (X�

n

) 6= N then F (X�
n

) =

X(n+ 1).
(iii) The set {n 2 N | F (X�

n

) 6= N} is infinite.

Obviously, the following holds.

Proposition 14. For every X 2 {0, 1}1, if X is total strongly
predictable then X is strongly predictable.

Theorem 15. For every X 2 {0, 1}1, if X is partial
computably random then X is not strongly predictable.

Proof: We show the contraposition of Theorem 15. For
that purpose, suppose that X is strongly predictable. Then
there exists a partial computable function F : {0, 1}⇤ !
{0, 1, N} which satisfies the conditions (i), (ii), and (iii) of
Definition 13. We define a partial function B : {0, 1}⇤ ! N
recursively as follows: First B(�) is defined as 1. Then, for
any x 2 {0, 1}⇤, B(x0) is defined by

B(x0) =

8
><

>:

B(x) if F (x) = N,
2B(x) if F (x) = 0,
0 if F (x) = 1,
undefined if F (x) is undefined,

and then B(x1) is defined by

B(x1) =

⇢
2B(x)�B(x0) if B(x0) is defined,
undefined otherwise.

It follows that B : {0, 1}⇤ ! N is a partial computable function
such that

(i) domB is closed under prefixes,
(ii) for every x 2 domB, x0 2 domB if and only if

x1 2 domB, and
(iii) for every x 2 {0, 1}⇤, if x, x0, x1 2 domB then

B(x0) +B(x1) = 2B(x).
Thus B is a partial computable martingale. On the other hand,
it is easy to see that, for every n 2 N, B(X�

n

) is defined and
B(X �

n

) = 2

#{m2N |m<n & F (X�
m

) 6=N} Since the set {n 2
N | F (X�

n

) 6= N} is infinite, it follows that lim
n!1 B(X�

n

) = 1. Therefore, X is not partial computably random, as
desired.

Theorem 16. For every X 2 {0, 1}1, if X is weakly Chaitin
random then X is not strongly predictable.

Proof: The result follows immediately from (i) of Theo-
rem 10 and Theorem 15.

Thus, since Z(1), i.e., ⌦, is weakly Chaitin random, we
have the following.

Theorem 17. Z(1) is not strongly predictable.

IV. STRONG PREDICTABILITY ON T < 1

In this section, we introduce the notion of finite-state strong
predictability. For that purpose, we first introduce the notion
of finite automaton with outputs. This is just a deterministic
finite automaton whose output is determined, depending only
on its final state. The formal definitions are as follows.

Definition 18 (Finite Automaton with Outputs). A finite au-
tomaton with outputs is a 6-tuple (Q,⌃, �, q

0

,�, f), where

(i) Q is a finite set called the states,
(ii) ⌃ is a finite set called the input alphabet,

(iii) � : Q⇥ ⌃ ! Q is the transition function,
(iv) q

0

2 Q is the initial state,
(v) � is a finite set called the output alphabet, and

(vi) f : Q ! � is the output function from final states.

A finite automaton with outputs computes as follows.

Definition 19. Let M = (Q,⌃, �, q
0

,�, f) be a finite automa-
ton with outputs. For every x = x

1

x
2

. . . x
n

2 ⌃

⇤ with each
x
i

2 ⌃, the output of M on the input x, denoted M(x), is
y 2 � for which there exist q

1

, q
2

, . . . , q
n

2 Q such that

(i) q
i

= �(q
i�1

, x
i

) for every i 2 {1, 2, . . . , n}, and
(ii) y = f(q

n

).

In Definitions 18 and 19, if we set � = {0, 1}, the
definitions result in those of a normal deterministic finite
automaton and its computation, where M(x) = 1 means that
M accepts x and M(x) = 0 means that M rejects x.

Definition 20 (Finite-State Strong Predictability). For any
X 2 {0, 1}1, we say that X is finite-state strongly pre-
dictable if there exists a finite automaton with outputs M =

(Q, {0, 1}⇤, �, q
0

, {0, 1, N}, f) for which the following two
conditions hold:

(i) For every n 2 N, if M(X�
n

) 6= N then M(X�
n

) =

X(n+ 1).
(ii) The set {n 2 N | M(X�

n

) 6= N} is infinite.

Since the computation of every finite automaton can be
simulated by some deterministic Turing machine which always
halts, the following holds, obviously.

Proposition 21. For every X 2 {0, 1}1, if X is finite-state
strongly predictable then X is total strongly predictable.

Theorem 22. Let T be a real with 0 < T < 1. For every
X 2 {0, 1}1, if X is strictly Chaitin T -random, then X is
finite-state strongly predictable.

In order to prove Theorem 22 we need the following
theorem. For completeness, we include its proof.

Theorem 23 (Calude, Hay, and Stephan [1]). Let T be a real
with 0 < T < 1. For every X 2 {0, 1}1, if X is strictly
Chaitin T -random, then there exists L � 2 such that X does
not have a run of L consecutive zeros.

Proof: Based on the optimality of U used in the definition
of H(x), it is easy to show that there exists d 2 N such that,
for every x 2 {0, 1}⇤ and every n 2 N,

H(x0n)  H(x) +H(n) + d. (2)

Since T > 0, it follows also from the optimality of U that



there exists c 2 N+ such that H(c) + d  Tc� 1. Hence, by
(2) we see that, for every x 2 {0, 1}⇤,

H(x0c)  H(x) + Tc� 1. (3)

Now, suppose that X 2 {0, 1}1 is strictly Chaitin T -
random. Then there exists d

0

2 N such that, for every n 2 N,

|H(X�
n

)� Tn|  d
0

. (4)

We choose a particular k
0

2 N+ with k
0

> 2d
0

.

Assume that X has a run of ck
0

consecutive zeros. Then
X�

n0 0

ck0
= X�

n0+ck0 for some n
0

2 N. It follows from (3)
that H(X�

n0+ck0) � T (n
0

+ ck
0

) + k
0

 H(X�
n0) � Tn

0

.
Thus, using (4) we have �d

0

+ k
0

 d
0

, which contradicts
the fact that k

0

> 2d. Hence, X does not have a run of ck
0

consecutive zeros, as desired.

Proof of Theorem 22: Suppose that X 2 {0, 1}1
is strictly Chaitin T -random. Then, by Theorem 23, there
exists d � 2 such that X does not have a run of d
consecutive zeros. For each n 2 N+, let a(n) be the
length of the nth block of consecutive zeros in X from
the left. Namely, assume that X has the form X =

1

b(0)

0

a(1)

1

b(1)

0

a(2)

1

b(2)

0

a(3)

1

b(3) · · · · · · . for some natural
number b(0) and some infinite sequence b(1), b(2), b(3), . . .
of positive integers. Let L = lim sup

n!1 a(n). Since 1 
a(n) < d for all n 2 N+, we have L 2 N+. Moreover, since
{a(n)} is a sequence of positive integers, there exists n

0

2 N+

such that
a(n)  L (5)

for every n � n
0

, and
a(n) = L (6)

for infinitely many n � n
0

. Let m be the length of the prefix of
X which lies immediately to the left of the n

0

th block of con-
secutive zeros in X . Namely, m =

P
n0�1

k=0

b(k)+
P

n0�1

k=1

a(k).

Now, we define a finite automaton with outputs M =

(Q, {0, 1}⇤, �, q
0

, {0, 1, N}, f) as follows: First, Q is defined
as {q

0

, q
1

, . . . , q
m+L

}. The transition function � is then defined
by

�(q
i

, 0) = �(q
i

, 1) = q
i+1

if i = 0, . . . ,m� 1,

�(q
i

, 0) = q
i+1

if i = m, . . . ,m+ L� 1,

�(q
i

, 1) = q
m

if i = m, . . . ,m+ L,

where �(q
m+L

, 0) is arbitrary. Finally, the output function
f : Q ! {0, 1, N} is defined by f(q) = 1 if q = q

m+L

and
N otherwise.

Then, it is easy to see that, for every x 2 {0, 1}⇤,

(i) M(x) = 1 if and only if there exists y 2 {0, 1}⇤ such
that |y| � m and x = y0L, and

(ii) M(x) 6= 0.

Now, for an arbitrary n 2 N, assume that M(X�
n

) 6= N .
Then, by the condition (ii) above, we have M(X �

n

) = 1.
Therefore, by the condition (i) above, there exists y 2 {0, 1}⇤
such that |y| � m and X �

n

= y0L. It follows from (5) that
X(n + 1) = 1 and therefore M(X �

n

) = X(n + 1). Thus
the condition (i) of Definition 20 holds for M and X . On the
other hand, using (6) and the condition (i) above, it is easy to
see that the set {n 2 N | M(X�

n

) = 1} is infinite. Thus the
condition (ii) of Definition 20 holds for M and X . Hence, X
is finite-state strongly predictable.

Theorem 24. Let T be a computable real with 0 < T < 1.
Then Z(T ) is finite-state strongly predictable.

Proof: The result follows immediately from (i) of Theo-
rem 3 and Theorem 22.

In the case where T is a computable real with 0 < T < 1,
Z(T ) is not computable despite Theorem 24. This is because,
in such a case, Z(T ) is weakly Chaitin T -random by (i) of
Theorem 3, and therefore Z(T ) cannot be computable.

It is worthwhile to investigate the behavior of Z(T ) in the
case where T is not computable but 0 < T < 1. On the one
hand, note that Z(T ) is of class C1 as a function of T 2 (0, 1)
[8] and d

dT

Z(T ) > 0 for every T 2 (0, 1). On the other hand,
recall that a real is weakly Chaitin random almost everywhere.
Thus, by Theorem 16, we have L(S) = 1, where S is the set
of all T 2 (0, 1) such that T is not computable and Z(T ) is
not strongly predictable, and L is Lebesgue measure on R.
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