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Abstract

Exact constructive dimension as a generalisation of Lutz’s
[Lut00, Lut03] approach to constructive dimension was recently
introduced in [Sta11]. It was shown that it is in the same way
closely related to a priori complexity, a variant of Kolmogorov
complexity, of infinite sequences as their constructive dimen-
sion is related to asymptotic Kolmogorov complexity.

The aim of the present paper is to extend this to the results
of [Hit02, Hit05, Sta98] (see also [DH10, Section 13.6]) where it is
shown that the asymptotic Kolmogorov complexity of infinite
sequences in Σ0

2-definable sets is bounded by their Hausdorff
dimension.

Using Hausdorff’s original definition one obtains upper bounds
on the a priori complexity functions of infinite sequences in
Σ0

2-definable sets via the exact dimension of the sets.

∗The results of this paper are to be presented at the ”Computability in Europe
2012: How the World Computes ‘‘, June 18 – 23, 2012, Cambridge, United
Kingdom
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Lutz’s [Lut00, Lut03] effectivisation of classical Hausdorff dimen-
sion led to the definition of constructive and computable dimen-
sions of sets of infinite sequences. He put also the question of
whether there is a correspondence principle stating that the con-
structive (or computable) dimension of sufficiently simple sets coin-
cides with their Hausdorff dimension (cf. [Hit05]). A first positive an-
swer for classical dimensions and sets definable by finite automata
follows from the results of [Sta93, MS94], and for Σ0

2-definable sets
positive answers were given in [Hit02, Hit05] and [Sta98].

In a recent paper [Sta11] the above mentioned results by Lutz
and results by Ryabko were generalised from the case of ‘usual’
(classical) constructive and Hausdorff dimension to the case of ex-
act dimension [GMW88, Hau18]. This concerns Lutz’s martingale
characterisation of Hausdorff dimension and Ryabko’s [Rya84] (see
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also [CH94]) determining of the dimension of the level sets of the
constructive dimension (or asymptotic Kolmogorov complexity) of
sets of infinite sequences.

Usually, the Hausdorff dimension (here also called classical
Hausdorff dimension) of a set of reals is a real number α char-
acterising a certain density or measure property of this set (see
the textbooks [Edg08, Fal90] or [MS94]). If one looks to Hausdorff’s
original paper [Hau18], however, one finds that he defined the Haus-
dorff dimension to be a non-decreasing, right continuous function
h : (0, ∞)→ (0, ∞), nowadays called a gauge function [GMW88].

The paper [Sta11] provided a generalisation of the martingale
characterisation of Hausdorff dimension and the determining of
the dimension of the level sets to the case of exact dimension and
to Kolmogorov complexity functions of infinite sequences.

In the papers [Hit02, Hit05] and [Sta98] (see also [DH10, Section 13.6])
a tight bound on the maximum asymptotic Kolmogorov complexity
of sequences in Σ0

2-sets by its ‘usual’ Hausdorff dimension was pre-
sented and computable martingales successful on Σ0

2-sets with an
exponent close to the Hausdorff dimension were constructed.

The purpose of the present paper is to generalise these results to
a correspondence principle for the case of exact dimensions. This
results also in a more precise bound on the maximum Kolmogorov
complexity of sequences in Σ0

2-sets than the mere asymptotics given
in the above mentioned papers.

The paper is organised as follows. After introducing some no-
tation and some preliminaries on gauge functions and Hausdorff’s
original approach we present in Section 2 necessary results, mainly
from [Sta11] on exact Hausdorff dimension, martingales and their
effectivisation. Then Sections 3.1 and 3.2 show that the correspon-
dence principles for constructive and computable dimensions hold
for Σ0

2-definable sets of sequences and gauge functions satisfying
some computability constraints. The proofs follow mainly the line
of the proofs given in [Sta98] and are given in the appendix.
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1 Notation and Preliminaries

In this section we introduce the notation used throughout the pa-
per. By N = {0, 1, 2, . . .} we denote the set of natural numbers and
by Q the set of rational numbers. Let X = {0, 1, . . . , r − 1} be an
alphabet of cardinality |X| = r ≥ 2. By X∗ we denote the set of
finite words on X, including the empty word e, and Xω is the set of
infinite strings (ω-words) over X. Subsets of X∗ will be referred to
as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation.
This concatenation product extends in an obvious way to subsets
W ⊆ X∗ and B ⊆ X∗ ∪ Xω.

We denote by |w| the length of the word w ∈ X∗ and pref(B) is
the set of all finite prefixes of strings in B ⊆ X∗ ∪ Xω. We shall
abbreviate w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w v η, and η � n is the
n-length prefix of η provided |η| ≥ n. The δ-limit of a language
V ⊆ X∗ is the ω-language Vδ := {ξ : ξ ∈ Xω ∧ |pref(ξ) ∩ V| = ∞}. A
language W ⊆ X∗ is referred to as prefix-free if w v v and w, v ∈ W
imply w = v.

For a computable domain D, such as N, Q or X∗, we refer to a
function f : D → R as left computable (or approximable from below)
provided the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q < f (d)} is computably
enumerable. Accordingly, a function f : D → R is called right com-
putable (or approximable from above) if the set {(d, q) : d ∈ D ∧ q ∈
Q ∧ q > f (d)} is computably enumerable, and f is computable if f
is right and left computable. In contrast to this we refer to a func-
tion f : D → Q as computable provided f returns the exact value
f (d) ∈ Q. Accordingly, a real number α ∈ R is left computable, right
computable or computable provided the constant function cα(t) = α

is left computable, right computable or computable, respectively.

A super-martingale is a function V : X∗ → [0, ∞) which satisfies
V(e) ≤ 1 and the super-martingale inequality

r · V(w) ≥ ∑x∈X V(wx) for all w ∈ X∗ . (1)
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If Eq. (1) is satisfied with equality V is called a martingale.
Closely related with (super-)martingales are continuous (or cylin-
drical) (semi-)measures µ : X∗ → [0, 1] where µ(e) ≤ 1 and µ(w) ≥
∑x∈X µ(wx) for all w ∈ X∗.

1.1 Gauge functions and Hausdorff’s original ap-
proach

A function h : (0, ∞) → (0, ∞) is referred to as a gauge function
provided h is right continuous and non-decreasing.1 If not stated
otherwise, we will always assume that limt→0 h(t) = 0.

The h-dimensional outer measure of F on the space Xω is given
by

Hh(F) := lim
n→∞

inf
{

∑
v∈V

h(r−|v|) : V ⊆ X∗ ∧ F ⊆ V · Xω ∧min
v∈V
|v| ≥ n

}
.

(2)
If limt→0 h(t) > 0 then Hh(F) < ∞ if and only if F is finite.

The usual α-dimensional Hausdorff measure Hα is defined by
gauge functions hα(t) = tα, α ∈ [0, 1], that is, Hα = Hhα.

In this case the (usual or classical) Hausdorff dimension of a set
F ⊆ Xω is defined as

dimH F := sup{α : α = 0∨Hα(F) = ∞} = inf{α : α ≥ 0∧Hα(F) = 0} .
(3)

As we see from Eq. (2) for our purposes the behaviour of gauge
function is of interest only in a small vicinity of 0. Moreover, in
many cases we are not interested in the exact value of Hh(F) when
0 < Hh(F) < ∞. Thus we can often make use of scaling a gauge
function and altering it in a range (ε, ∞) apart from 0.

The following properties of gauge functions h and the related
measure Hh are proved in the standard way.

Property 1 Let h, h′ be gauge functions.

1In fact, since we are only interested in the values h(r−n), n ∈N, the require-
ment of right continuity is just to conform with the usual meaning (cf. [GMW88]).
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1. If c · h(r−n) ≤ h′(r−n) for some c > 0, then c · Hh(F) ≤ Hh′(F).

2. If lim
n→∞

h(r−n)
h′(r−n)

= 0 then Hh′(F) < ∞ implies Hh(F) = 0, and

Hh(F) > 0 implies Hh′(F) = ∞.

Here the first property implies a certain equivalence of gauge func-
tions. In fact, if c · h ≤ h′ and c · h′ ≤ h in the sense of Property 1.1
then for all F ⊆ Xω the measures Hh(F) and Hh′(F) are both zero,
finite or infinite.

In the same way the second property gives a partial pre-order
of gauge functions (see [GKP94, Section 9.1]). By analogy to the
change-over-point dimH F for Hα(F) this partial pre-order yields a
suitable notion of Hausdorff dimension in the range of arbitrary
gauge functions.

Definition 1 We refer to a gauge function h as an exact Hausdorff
dimension function for F ⊆ Xω provided

Hh′(F) =

 ∞ , if lim
n→∞

h(r−n)
h′(r−n)

= 0 , and

0 , if lim
n→∞

h′(r−n)
h(r−n)

= 0 .

In fact, Hausdorff [Hau18] defined the dimension of a set F as an
equivalence class of gauge functions [ h ] such that 0 < Hh(F) < ∞.
Property 1 shows that our definition covers this case.

Definition 1 is not as simple as the one of the classical Hausdorff
dimension in Eq. (3), and it seems to be much more difficult to
find the exact borderline, if it exists, between gauge functions with
Hh(F) = 0 and such with Hh(F) = ∞.

2 Previous Results

2.1 Exact Hausdorff dimension and martingales

In this section we show a generalisation of Lutz’s martingale char-
acterisation of Hausdorff dimension to exact dimension.
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Let Sc,h[V ] :=
{

ξ : ξ ∈ Xω ∧ lim supn→∞
V(ξ[0..n])
rn·h(r−n)

≥ c
}
, for a super-

martingale V : X∗ → [0, ∞), a gauge function h and a value c ∈ (0, ∞].
In particular, S∞,h[V ] is the set of all ω-words on which the super-
martingale V is successful w.r.t. the order function f (n) = rn · h(r−n)

in the sense of Schnorr [Sch71]. S∞,h[V ] is also referred to as the
success set of the super-martingale V w.r.t. the order function
f (n) = rn · h(r−n).

Observe that Sc,h[V ] ⊆ Sc′,h′ [V ] whenever c, c′ ∈ (0, ∞] and

lim
n→∞

h′(r−n)
h(r−n)

= 0.
Now we can generalise Lutz’s result.

Theorem 1 ([Sta11, Theorem 1]) Let F ⊆ Xω. Then a gauge func-
tion h is an exact Hausdorff dimension function for F if and only if

1. for all gauge functions h′ with lim
n→∞

h′(r−n)
h(r−n)

= 0 there is a super-

martingale V such that F ⊆ S∞,h′ [V ], and

2. for all gauge functions h′′ with lim
n→∞

h(r−n)
h′′(r−n)

= 0 and all super-

martingales V it holds F 6⊆ S∞,h′′ [V ].

2.2 Effectivisation of exact Hausdorff dimension

The constructive dimension is a variant of dimension defined anal-
ogously to Theorem 1 using only left computable super-martingales.
For the usual family of gauge functions hα(t) = tα it was intro-
duced by Lutz [Lut00, Lut03] and resulted, similarly to dimH in a
real number assigned to a subset F ⊆ Xω. In the case of left com-
putable super-martingales the situation turned out to be even sim-
pler than in the case of arbitrary super-martingales because the
results of Levin [ZL70] and Schnorr [Sch71] show that there is an
optimal left computable super-martingale U , that is, every other
left computable super-martingale V satisfies V(w) ≤ cV · U (w) for
all w ∈ X∗ and some constant cV > 0 not depending on w. Thus we
may define (cf. [Sta11])
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Definition 2 Let F ⊆ Xω. We refer to h : R → R as an exact
constructive dimension function for F provided F ⊆ S∞,h′ [U ] for all
h′, lim

t→0

h(t)
h′(t) = 0, and F 6⊆ S∞,h′′ [U ] for all h′′, lim

t→0

h′′(t)
h(t) = 0.

Originally, Levin [ZL70] showed that there is an optimal left com-
putable continuous semi-measure M on X∗. As usual, we call a
function µ : X∗ → [0, ∞) a continuous (or cylindrical) semi-measure
on X∗ provided µ(e) ≤ 1 and µ(w) ≥ ∑x∈X µ(wx) for all w ∈ X∗. One
easily verifies that µ is a continuous semi-measure if and only if
V(w) := r|w| · µ(w) is a super-martingale. Thus we might use UM

with UM(w) := r|w| ·M(w) as our optimal left computable super-
martingale.

Closely related to Levin’s optimal left computable semi-measure
is the a priori entropy (or complexity) KA : X∗ →N defined by2

KA(w) := b−logrM(w)c (4)

The requirement KA(w) ≥ 0 is one reason why we assumed M(e) ≤
1.

The following theorem derives a bound for the set of sequences
whose KA-complexity function is bounded.

Theorem 2 ([Sta11, Theorem 4]) Let −∞ < c < ∞ and let h be a
gauge function. Then there is a c′ > 0 such that

{ξ : KA(ξ[0..n]) ≤i.o. −logrh(r−n) + c} ⊆ Sc′,h[U ].

Conversely, if ξ ∈ Sc,h[U ], c < ∞, then from Eq. (4) one easily cal-
culates KA(ξ[0..n]) ≤i.o. −logrh(r−n) + c′′ for some c′′ ∈ (0, ∞). Thus
we obtain a complexity characterisation of the success sets of the
universal super-martingale U .⋃

c>0
{ξ : KA(ξ[0..n]) ≤i.o. −logrh(r−n) + c} =

⋃
c>0

Sc,h[U ] (5)

For gauge functions h′ tending faster to 0 than h the following rela-
tions follow from Sc,h[U ] ⊆ S∞,h′ [U ].

2Here we follow the notation of [US96], in [DH10] a priori complexity was denoted
by KM.
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Corollary 1 Let h, h′ be gauge functions such that limt→0
h′(t)
h(t) = 0.

Then

1. {ξ : ∃c(KA(ξ[0..n]) ≤i.o. −logrh(r−n) + c)} ⊆ S∞,h′ [U ], and

2. Hh′( {ξ : ∃c(KA(ξ[0..n]) ≤i.o.−logrh(r−n) + c)}
)
= 0.

3 The Results

In [Hit02, Hit05, Sta98] the correspondence principle could be stated
for arbitrary (real) values of classical dimension. In the case of
gauge functions the situation is more complicated. On the one
hand because of the involved Definition 1, and, on the other hand,
for the following reason (cf. also [Sta11, Remark 2]). Unlike the
classical case where the computable (even the rational) numbers
are dense in the reals, for gauge functions it holds that, if α ∈ (0, 1)
is not a computable real, there is no computable function between
hα(t) = tα and hα(t) = tα + logr

1
t .

First we mention the following general lower bound to the com-
plexity function KA from [Mie08] together with Eq. (5) yields a tight
estimate for gauge functions satisfying F 6⊆ Sc,h′′ [U ] for arbitrary
F ⊆ Xω (cf. Definition 2).

Theorem 3 ([Mie08]) Let F ⊆ Xω, h be a gauge function and Hh(F) >
0.

Then for every c > 0 with Hh(F) > c · U (e) there is a ξ ∈ F such
that KA(ξ[0..n]) ≥a.e. −logrh(r−n)− logr c.

In order to obtain the announced upper bound, in view of Eq. (5)
in the following two parts we show that for Σ0

2-definable subsets
F ⊆ Xω and gauge functions h satisfying some computability con-
straints there are left-computable super-martingales or computable
martingales V , respectively, such that F ⊆ S∞,h′ [V ] wheneverHh(F) =
0 and lim

t→0

h′(t)
h(t) = 0.
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3.1 Constructive Dimension

As in [Sta98] we ask now for an estimate of the condition F ⊆ Sc,h′ [U ]
of Definition 2. The results use the following construction.

We start with an auxiliary lemma characterising subsets F ⊆ Xω

having null measure.

Lemma 1 ([Rei04]) Let F ⊆ Xω and h be a gauge function. Then
Hh(F) = 0 if and only if there is a language V ⊆ X∗ such that F ⊆ Vδ

and ∑v∈V h(r−|v|) < ∞.

The following theorem gives a constructive version of Lemma 1.

Theorem 4 If F ⊆ Xω is a Σ2-definable ω-language and h is a right
computable gauge function such that Hh(F) = 0 then there are a
computable non-decreasing function h̄ : {r−i : i ∈ N} → Q and a
computable language V ⊆ X∗ satisfying

1. h̄(r−n) ≥ h(r−n) for all n ∈N,

2. F ⊆ Vδ and ∑v∈V h̄(r−n) < ∞.

Interpolating the computable function h̄ we obtain the following
consequence.

Corollary 2 If F ⊆ Xω is a Σ2-definable ω-language and h is a right
computable gauge function such that Hh(F) = 0 then there is a com-
putable non-decreasing function h̄ : Q→ Q satisfying Hh̄(F) = 0 and
h̄(t) ≥ h(t) for t ∈ Q∩ (0, 1).

Our Theorem 4 yields the required upper bound for the prefix com-
plexity KP, and hence also of the a priori complexity KA of an ω-
word in F.

To this end we use the characterisation of KP via discrete semi-
measures (cf. [DH10, US96]).3

3Here we follow also the notation of [US96], in [DH10] prefix complexity was
denoted by K.
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A mapping ν : X∗ → R is referred to as a discrete semi-measure
provided ∑w∈X∗ ν(w) < ∞. It is known that there is an optimal left
computable discrete semi-measure, that is, a left computable dis-
crete semi-measure m such that for every left computable discrete
semi-measure ν there is a constant cν such that ∀w(w ∈ X∗ →
ν(w) ≤ cν · m(w)). This measure m defines the prefix complex-
ity (similarly as M defines the a priory complexity KA) KP(w) :=
b−logrm(w)c.

If V ⊆ X∗ is computably enumerable and h̄ : {r−n > n ∈ N} → R

is a left computable function such that ∑v∈V h̄(r−|v|) < ∞ then

ν(w) :=

{
h̄(r−|w|), if w ∈ V , and
0, otherwise

(6)

defines a left computable discrete semi-measure. Thus Theorem 4
implies the following upper bound on the complexity functions of
ω-words.

Lemma 2 If F ⊆ Xω is a Σ2-definable ω-language and h is a right
computable gauge function such that Hh(F) = 0 then

KP(ξ[0..n]) ≤i.o. −logrh(r−n) + O(1) for all ξ ∈ F, and

KA(ξ[0..n]) ≤i.o. −logrh(r−n) + O(1) for all ξ ∈ F.

The latter inequality follows from the former and KA(w) ≤ KP(w) +

O(1) (see e.g. [DH10, US96]).
Finally, Lemma 2, Eq. (5) and Corollary 1 prove the following.

Theorem 5 If F ⊆ Xω is a union of Σ2-definable sets and h is a right
computable gauge function such that Hh(F) = 0 then F ⊆ S∞,h′ [U ] for
every gauge function h′ such that limt→0

h′(t)
h(t) = 0.

3.2 Computable Dimension

Computable dimension is based on computable super-martingales
as constructive dimension was based on left computable super-
martingales. In contrast to the latter, for the former there is no
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universal computable super-martingale (cf. [DH10, Sch71]). Thus
we define analogously to Theorem 1

Definition 3 We refer to a gauge function h as an exact computable
dimension function for F ⊆ Xω provided

1. for all gauge functions h′ with lim
n→∞

h′(r−n)
h(r−n)

= 0 there is a com-

putable super-martingale V such that F ⊆ S∞,h′ [V ], and

2. for all gauge functions h′′ with lim
n→∞

h(r−n)
h′′(r−n)

= 0 and all com-

putable super-martingales V it holds F 6⊆ S∞,h′′ [V ].

As for the constructive case the second item is fulfilled provided
Hh(F) > 0. For Item 1 we prove that for computable gauge func-
tions h and Σ0

2-definable sets F ⊆ Xω with Hh(F) = 0 there is a
computable martingale V such that F ⊆ ⋃c>0 Sc,h[V ].

In order to achieve our goal we introduce families of covering
codes as in [Sta98]. For a prefix code C ⊆ X∗ we define its minimal
complementary code as

Ĉ := (X ∪ pref(C) · X) \ pref(C) .

If C = ∅ we have Ĉ = X, and if C 6= ∅ the set Ĉ consists of all words
w · x 6∈ pref(C) where w ∈ pref(C) and x ∈ X. It is readily seen
that C ∪ Ĉ is a maximal prefix code, C ∩ Ĉ = ∅, and pref(C ∪ Ĉ) =

{e} ∪ pref(C) ∪ Ĉ.

We call C := (Cw)w∈X∗ a family of covering codes provided each
Cw is a finite prefix code. Since then the set Cw ∪ Ĉw is a finite
maximal prefix code, every word u ∈ X∗ has a uniquely specified
C-factorisation u = u1 · · · un · u′ where ui+1 ∈ Cu1···ui ∪ Ĉu1···ui for i =
0, . . . , n − 1 (u1 · · · ui = e, if i = 0) and u′ ∈ pref(Cu1···un ∪ Ĉu1···un).
Analogously, every ξ ∈ Xω has a uniquely specified C-factorisation
ξ = u1 · · · ui · · · where ui+1 ∈ Cu1···ui ∪ Ĉu1···ui for i = 1, . . . .

In what follows we use martingales derived from prefix codes in
the following manner.
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Lemma 3 Let h : R → R a gauge function and ∅ 6= C ⊆ X∗ be a
prefix code satisfying ∑v∈C h(r−|v|) < ∞. Then there is a martingale
V (h)C : X∗ → [0, ∞) such that

V (h)C (w) =


r|w| · h(r(−|w|)

∑v∈C h(r(−|v|) + ∑u∈Ĉ r−|u|
, for w ∈ C , and

1

∑v∈C h(r(−|v|) + ∑u∈Ĉ r−|u|
, for w ∈ Ĉ .

(7)

Remark 1 If C is a finite prefix code and h : Q → Q is computable
then V (h)C is a computable martingale.

For a gauge function h : R → R let hw(t) := h(r−|w|·t)
h(t) and let C :=

(Cw)w∈X∗ be a family of covering codes.
Using the martingales V (hw)

Cw
we define a new martingale VC as

follows:
For u ∈ X∗ consider the C-factorisation u1 · · · un · u′, and put

V (h)C (u) :=

(
n−1

∏
i=0
V (hu1···ui )

Cu1···ui
(ui+1)

)
· V (hu1···un )

Cu1···un
(u′) ,

that is, V (h)C is in some sense the concatenation of the martingales

V (hw)
Cw

. Observe that V (h)C is computable if only h : R → R is a com-
putable function, the codes Cw are finite and the function which
assigns to every w the corresponding code Cw is computable.

We have the following.

Lemma 4 Let h : N → Q be a gauge function and let C = (Cw)w∈X∗

be a family of covering codes such that ∑v∈Cw
h(r−|wv|)
h(r−|v|)

≤ r−|w| for all
w ∈ X∗.

If the ω-word ξ ∈ Xω has a C-factorisation ξ = u1 · · · ui · · · such
that for some nξ ∈ N and all i ≥ nξ the factors ui+1 belong to Cu1···ui .
Then there is a constant cξ > 0 not depending on i for which

VC(u1 · · · ui) ≥ cξ · r|u1···ui| · h(r−|u1···ui|) .

Now we derive the announced result.
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Theorem 6 For every Σ2-definable ω-language F ⊆ Xω and every
computable gauge function h : Q→ R such that Hh(F) = 0 there is a
computable martingale V such that F ⊆ ⋃c>0 Sc,h[V ].
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A Proofs

A.1 Proof of Theorem 4

Proof. Let hn : Q → Q , n ∈ N be computable approximations of
h such that hn(t) ≥ hn+1(t) ≥ h(t) and limn→∞ hn(t) = h(t) for t ∈
(0, 1) ∩Q. As it was explained above we may assume that h(r−n) ≥
rn. Moreover, the functions hn are assumed to be non-decreasing
on the set {r−n : n ∈N}.

Furthermore, let (Uj)j∈N be an effective enumeration of all finite
prefix codes over X such that sup{|v| : v ∈ Uj} ≤ sup{|v| : v ∈ Uj+1},
and let F ∈ Σ2 be given by F =

⋃
k∈N Xω \ Lk · Xω where MF :=

{(w, k) : w ∈ Lk} is a computable set and the family of languages
(Lk)k∈N satisfies Lk :=

⋂k
i=0 Li · X∗ (cf. [Sta98]).

Define the predicate

test(k, j, n) :⇔
((

Uj ∪ (Lk ∩ Xn)
)
· Xω = Xω ∧ ∑

v∈Uj

hn(r−|v|) < r−k
)

.

Observe that test(k, j, n) is computable and if test(k, j, n) is true then
the conditions F ⊆ Uj · Xω and ∀v(v ∈ Uj → k < |v|) are satisfied.

The first condition follows from Lk · Xω ∩ F = ∅ and the second
one from hn(r−|v|) > r−2|v|.

Now the following algorithm, when given MF, computes a finite
prefix code Ck and a value mk satisfying the conditions F ⊆ Ck · Xω

and ∑v∈Ck
hmk(r

−|v|) < r−k:

Algorithm Ck

0 input k
1 n = 0
2 repeat j = −1
3 repeat j = j + 1
4 until test(k, j, n) ∨

(
sup{|v| : v ∈ Uj} > n

)
5 n = n + 1
6 until test(k, j, n)
7 output Ck := Uj, mk := n
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By construction we have k < |v| ≤ mk for v ∈ Ck.

Informally, for every n ≥ 0 our algorithm successively searches
for a Uj satisfying the condition test(k, j, n), more precisely, it searches
until such a Uj is found or else all Uj having sup{|v| : v ∈ Uj} ≤ n
fail to satisfy test(k, j, n).

In the latter case the value of n is increased ( thus allowing
for a larger maximum codeword length, a larger complementary
ω-language (Lk ∩ Xn) · Xω and a closer approximation hn+1 of the
gauge function h ) and the search starts anew. Consequently, the
algorithm terminates if and only if there is a finite prefix code U
such that ∑v∈U hn(r−|v|) < r−k and U · Xω ∪ (Lk ∩ Xn) · Xω = Xω for
some n ∈N.

First we show that our algorithm always terminates. Observe
that for every ε > 0 there is a W ⊆ X∗ such that F ⊆ W · Xω and

∑w∈W h(r−|w|) < ε
2 .

Since Xω \ Lk · Xω is a closed subset of F, for ε ≤ r−k we find
a finite subset W ′ ⊆ W such that Xω \ Lk · Xω ⊆ W ′ · Xω. Then

∑w∈W h(r−|w|) < ε
2 implies that ∑w∈W ′ hn(r−|w|) < ε for n ≥ nε,k , say.

Consequently, there is a finite prefix code Uj ⊆ W ′ satisfying
(Uj ∪ Lk) · Xω = Xω and thus (Uj ∪ (Lk ∩ Xn)) · Xω = Xω for n ≥ n′j,k.
This shows that the predicate test(k, j, n) is satisfied whenever n ≥
max{nr−k,k, n′j,k}.

Now we define V :=
⋃

i∈N Ci and show that V meets the require-
ments of the theorem. We have w ∈ V if and only if ∃i(i < |w| ∧ w ∈
Ci). This predicate is computable, since i < |w| bounds the quanti-
fier ∃i from above. Thus the language V is computable.

Next we show that F ⊆ Vδ. If ξ ∈ F there is an iξ such that
ξ ∈ Xω \ Li ·Xω for all i ≥ iξ. Hence, for every i ≥ iξ the ω-word ξ has
a prefix wi ∈ Ci. As it was observed above, |wi| > i. Consequently, ξ

has infinitely many prefixes in V =
⋃

i∈N Ci.

Finally, in order to define the function h̄ we let `i := max{mk : k <

i}. Clearly, the value `i can be computed from i. Define h̄(r−i) :=
h`i(r

−i). Then hmk(t) ≥ h(t) implies h̄(r−i) ≥ h(r−i) and `i ≤ `i+1

shows that h̄(r−i) ≥ h̄(r−(i+1)).
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It remains to show that ∑v∈V h̄(r−|v|) < ∞. Taking into account
that k < |v| ≤ mk, for v ∈ Ck, we have h̄(r−|v|) = h`|v|(r

−|v|) ≤ hmk(r
−|v|)

for v ∈ Ck and thus

∑v∈V h̄(r−|v|) ≤ ∑k∈N ∑v∈Ck
hmk(r

−|v|)

≤ ∑k∈N r−k < ∞ .

A.2 Proof of Lemma 2

Proof. We use the computable subset V ⊆ X∗ and the computable
function h̄ defined in the proof of Theorem 4 and define the discrete
semi-measure ν via Eq. (6). Then ν(w) ≤ c ·m(w), for all w ∈ X∗ and,
consequently KP(w) ≤ −logr h̄(r−|w|) ≤ −logrh(r−|w|), for w ∈ V. The
assertion follows from F ⊆ Vδ.

A.3 Proof of Lemma 3

Proof. Set Γ := ∑v∈C h(r−|v|) + ∑u∈Ĉ r−|u|, and define for u ∈ pref(C∪
Ĉ) \ (C ∪ Ĉ) and w ∈ C ∪ Ĉ , v ∈ X∗

V (h)C (u) :=
r|u|

Γ
·
(

∑
u·w∈C

h(r−|u·w|) + ∑
u·w∈Ĉ

r−|u·w|
)

V (h)C (w · v) := V (h)C (w) .

Then V (h)C fulfils Eq. (7). We still have to show the property V (h)C (u) =
1
r ∑x∈X V

(h)
C (ux). This identity is obvious if u ∈ (C ∪ Ĉ) · X∗.

Now, let u /∈ (C ∪ Ĉ) · X∗, that is, u ∈ pref(C ∪ Ĉ) \ (C ∪ Ĉ). Then

∑
x∈X

V (h)C (ux)
r

= ∑
x∈X

r|ux|

r · Γ ·
(

∑
uxw∈C

h(r−|uxw|) + ∑
uxw∈Ĉ

r−|uxw|
)

=
r|u|

Γ
· ∑

x∈X

(
∑

uxw∈C
h(r−|uxw|) + ∑

uxw∈Ĉ

r−|uxw|
)

,

because for u ∈ pref(C ∪ Ĉ) \ (C ∪ Ĉ) the set {w : w ∈ C ∪ Ĉ ∧ u v w}
partitions into the sets {w : w ∈ C ∪ Ĉ ∧ ux v w} (x ∈ X), and the
required equation follows.
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A.4 Proof of Lemma 4

Proof. Since Ĉw is a code, we have ∑v∈Ĉw
r−|v| ≤ 1, and from the

assumption we obtain

∑v∈Cw hw(r−|v|) + ∑v∈Ĉw
r−|v| ≤ r−|w| + 1 .

Now |ui| ≥ 1 implies |u1 · · · ui| ≥ i, and the above Eq. (7) yields

V (α)Cu1···ui
(ui+1) ≥


1

r−i + 1
=

ri

1 + ri , if i ≤ nξ , and

r|ui+1| · hw(r−|ui+1|)

r−i + 1
, if i > nξ .

(8)

Put

cξ :=
∞

∏
i=0

ri

1 + ri ·
nξ

∏
i=0

r|ui+1| · hw(r−|ui+1|) = r|u1···unξ
| · h(r−|u1···unξ

|
) ·

∞

∏
i=0

ri

1 + ri .

Clearly, cξ > 0, and using Eq. (8) by induction on i the assertion is
easily verified.

A.5 Proof of Theorem 6

Proof. We use computable approximations hn : Q → Q of h such
that hn(t) ≤ hn+1(t) and hn(t) ≤ h(t) ≤ (1 + r−n) · hn(t) for t ∈ (0, 1) ∩
Q.

In virtue of Lemma 4 it suffices to construct a computable fam-
ily of covering codes C = (Cw)w∈X∗ such that the function which
assigns to every w the corresponding finite prefix code Cw is com-
putable.

To this end we modify the predicate test introduced in the proof
of Theorem 4 as follows:

test′(w, j, n) :⇔
(

n ≥ |w| ∧
(
w ·Uj ∪ (L|w| ∩ X|w|+n)

)
· Xω ⊇ w · Xω

∧ ∑
v∈Uj

(1 + r−n) · hn(r−|wv|)

hn(r−|w|)
< r−|w|

)
.

In the same way we modify the algorithm presented there.
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Algorithm Cw

0 input w
1 n = 0
2 repeat j = −1
3 repeat j = j + 1
4 until test′(w, j, n) ∨

(
sup{|v| : v ∈ Uj} > n

)
5 n = n + 1
6 until test′(w, j, n)
7 output Cw := Uj

Similar to the proof of Theorem 4 this algorithm computes a

prefix code Cw with ∑v∈Cw
h(r−|wv|)
h(r−|w|)

< r−|w| and w · Cw · Xω ⊇ w · Xω \
L|w| · Xω.

Next we show that under the hypotheses of the theorem the
algorithm always terminates. We have Hh(F ∩ w · Xω) = 0 for all
w ∈ X∗. Thus for w ∈ X∗ and every ε > 0 there is a prefix-free
language W ⊆ X∗ such that F ∩ w · Xω ⊆ W · Xω and ∑v∈W h(r−|v|) <

ε · h0(r−|w|)
1+r−|w|

. As in the proof of Theorem 4, in view of F ⊇ Xω \ L|w| ·Xω,
there is a finite subset W ′ ⊆W such that w ·Xω \ L|w| ·Xω ⊆W ′ ·Xω.
Consequently, for n large enough the condition test′(w, j, n) will be
satisfied for suitable j.

It remains to show that every ξ ∈ F has a C-factorisation ξ =

u1 · · · ui · · · such that almost all factors ui+1 belong to the corre-
sponding codes Cu1···ui.

Let ξ ∈ F. Then there is a k ∈ N such that ξ ∈ Xω \ Li · Xω

for all i ≥ k. Consequently, w ∈ pref(ξ) implies w /∈ Lk = Lk · X∗,
and according to the definition of C there is a u ∈ Cw such that
w · u ∈ pref(ξ) whenever |w| ≥ k.
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