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Abstract

The subword complexity of an infinite word ξ is a func-
tion f (ξ, n) returning the number of finite subwords (factors,
infixes) of length n of ξ. In the present paper we investigate in-
finite words for which the set of subwords occurring infinitely
often is a regular language. Among these infinite words we
characterise those which are eventually recurrent.

Furthermore, we derive some results comparing the asymp-
totics of f (ξ, n) to the information content of sets of finite or
infinite words related to ξ. Finally we give a simplified proof of
Theorem 6 of [Sta98].
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Following [Mar04] the subword complexity of an infinite word ξ

is a function f (ξ, n) returning the number of finite subwords (fac-
tors, infixes) of ξ having length n. It was mainly investigated for
infinite words of low complexity (see [BK03, Mar04] or the book
[AS03]). However [Mar04, Question 2] asked for the general com-
plexity of quasiperiodic infinite words. An answer on their max-
imally possible complexity was given in [PS10] showing that this
complexity satisfies f (ξ, n) ≤ae c · tn

P where tP is the smallest Pisot
number. Moreover, for quasiperiodic infinite words with maximal
subword complexity the set of factors form a regular language.

The aim of our paper is to investigate in more detail those infi-
nite words whose set of factors occurring infinitely often is a reg-
ular language. Therefore, in contrast to [BK03] and [AS03] we are
mainly interested in infinite words ξ whose subword complexity
f (ξ, n) is not bounded by a subexponential function.

In the case of exponentially growing subword complexity the
results of [Sta93] and [Sta98] show a close connection between
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the growth of f (ξ, n) and the Hausdorff dimension of regular ω-
languages containing the infinite word ξ. Using this connection we
prove that every infinite word having a regular subword language
satisfies the condition f (ξ, n) ≈ c · tn

ξ for a suitable real number tξ.

As a consequence we obtain a simplified proof of Theorem 6
of [Sta98]. This theorem states, roughly speaking, that finite au-
tomata cannot distinguish one-sided eventually recurrent infinite
words having the same set of infinitely often occurring factors pro-
vided this set of factors is a regular language. A more general re-
sult for two-sided infinite words had been obtained earlier [Sem84,
PS86].

After introducing some necessary notation in Section 2 we de-
rive some basic facts on infinite words having a regular language of
infinitely often occurring factors. Moreover, the concept of asymp-
totic subword complexity of infinite words is introduced. This con-
cept proves to be useful in the following.

The entropy of languages known from [CM58, Kui70, HPS92] is
closely related to asymptotic subword complexity. In Section 3 we
derive some elementary properties an also some results relating the
entropy of languages to the Hausdorff dimension of ω-languages
are presented (cf. also [Sta89, Sta93]). These facts are used to de-
rive our results in the last section. Here we give a characterisation
of eventually recurrent infinite words having a regular language
of infinitely often occurring subwords. From this characterisation
several conditions necessary or sufficient for an infinite word to be
eventually recurrent are obtained. Finally, we give a simple proof
of Theorem 6 of [Sta98].

The previous proof in [Sta98] uses considerations involving Haus-
dorff measure. In the present paper we circumvent these measure-
theoretic considerations confining to language-theoretic results only,
although we make implicitly use of the close connection between
the entropy of languages and Hausdorff dimension.
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1 Notation

In this section we introduce the notation used throughout the pa-
per. By N = {0, 1, 2, . . .} we denote the set of natural numbers. Let
X be an alphabet of cardinality |X| = r ≥ 2. By X∗ we denote the set
of finite words on X, including the empty word e, and Xω is the set
of infinite strings (ω-words) over X. Subsets of X∗ will be referred
to as languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation.
This concatenation product extends in an obvious way to subsets
W ⊆ X∗ and B ⊆ X∗ ∪ Xω. For a language W let W∗ :=

⋃
i∈N W i,

and let Wω := {w1 · · ·wi · · · : wi ∈ W \ {e}} the set of infinite strings
formed by concatenating words in W.

We denote by B/w := {η : w · η ∈ B} the left derivative of the set
B ⊆ X∗ ∪ Xω. As usual a language W ⊆ X∗ is regular provided it
is accepted by a finite automaton. An equivalent condition is that
its set of left derivatives {W/w : w ∈ X∗} is finite. In the sequel
we assume the reader to be familiar with basic facts of language
theory.

Furthermore |w| is the length1 of the word w ∈ X∗ and pref(B)
is the set of all finite prefixes of strings in B ⊆ X∗ ∪ Xω. We shall
abbreviate w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w v η.

T(B) :=
⋃

w∈X∗ pref(B/w) is set of infixes (factors) of words in
B ⊆ X∗ ∪ Xω, and for an infinite word ξ ∈ Xω its sets of factors
occurring infinitely often is T∞(ξ) :=

⋂
w@ξ T(ξ/w).

As usual a language V ⊆ X∗ is called a code provided w1 · · ·wl =

v1 · · · vk for w1, . . . , wl, v1, . . . , vk ∈ V implies l = k and wi = vi. A
code V is said to be a prefix code provided v v w implies v = w for
v, w ∈ V.

1Since there is no danger of confusion, the length |w| of a word w ∈ X∗ is
denoted in the same way as the cardinality |M| of a set M.



Asymptotic Subword Complexity 5

2 The Languages of Subwords

In this part, we consider, for an infinite word ξ ∈ Xω, the languages
of subwords T(ξ) and of subwords occurring infinitely often T∞(ξ),
respectively.

For the tails (suffixes) of ξ we have the following obvious inclu-
sion.

T(ξ/w) ⊇ T(ξ/v) whenever w v v (1)

Thus the family
(
T(ξ/w)

)
w@ξ is an infinite decreasing chain of lan-

guages, and the infinite intersection T∞(ξ) :=
⋂

w@ξ T(ξ/w) consists
of all subwords occurring infinitely often in ξ.

It depends on the ω-word ξ whether the chain in Eq. (1) is sta-
tionary or not. If the family

(
T(ξ/v)

)
v@ξ

is stationary, that is, there
is a prefix v @ ξ such that T(ξ/v) = T∞(ξ), we will refer to the
ω-word ξ ∈ Xω as eventually recurrent2 (see [Tho05]).

Next we consider the case when one of the languages T(ξ/w)

is a regular language. To this end we derive the following relation
between T(ξ)/v and T(ξ/v).

Lemma 1 Let v @ ξ. Then T(ξ)/v ⊆ T(ξ/v) = T(T(ξ)/v).

Proof. If u ∈ T(ξ)/v then vu ∈ T(ξ) and thus there is a w such
that wvu @ ξ. Since v @ ξ, we have also v v wv. Consequently,
wv = vw̄ for some w̄, and we obtain vw̄u @ ξ, that is, u ∈ T(ξ/v).

T(ξ)/v ⊆ T(ξ/v) implies T(T(ξ)/v) ⊆ T(ξ/v), so it suffices to
show T(ξ/v) ⊆ T(T(ξ)/v). Let u ∈ T(ξ/v). Then there is a w̄ ∈
X∗ such that vw̄u @ ξ. Consequently, w̄u ∈ T(ξ)/v, whence u ∈
T(T(ξ)/v). o

As in [Sta98] we refer to an ω-word ξ ∈ Xω as infix-regular provided
there is a prefix w @ ξ such that T(ξ/w) is a regular language. The
following lemma yields a connection between infix-regular ω-words
and eventually recurrent ω-words.

2An ω-word ξ is referred to as recurrent iff T∞(ξ) = T(ξ). This resembles the
notion of recurrence for Z-words as considered in [Sem84, PS86].
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Lemma 2 An ω-word ξ ∈ Xω is a infix-regular ω-word if and only if
ξ is eventually recurrent and T∞(ξ) is a regular language.

Proof. Let ξ ∈ Xω be infix-regular. Then in Lemma 5 of [Sta98]
it is shown that there is a w′ @ ξ such that T(ξ/w′) is a regular
language and T(ξ/w′) = T∞(ξ).

The other direction is follows from the definition and the fact
that T∞(ξ) is a regular language. o

Corollary 1 If T(ξ) is regular then T∞(ξ) is also regular.

It should be noted that not every ω-word ξ for which T∞(ξ) is
a regular language is eventually recurrent. The following exam-
ple shows that T∞(ξ) might be regular, although none of the sets
T(ξ/w), w @ ξ, is regular.

Example 1 Consider ξ0 := ∏∞
i=1 ai · b. Then T∞(ξ0) = a∗ ∪ a∗ · b · a∗,

but, for every w @ ξ0, the intersection T(ξ0/w) ∩ b · a∗ · b · a∗ · b is a
non-regular language of the form {b · ai · b · ai+1 · b : i ∈ N ∧ i ≥ cw},
hence T(ξ0/w) is also non-regular. o

2.1 Subword Complexity and Asymptotic Subword
Complexity of ω-words

The subword complexity of an infinite word ξ is the function f (ξ, n) :=
|T(ξ) ∩ Xn|. In this section we focus on the growth of the function
f (ξ, n), in particular, on the real number λξ for which lim

n→∞

( f (ξ,n)
λξ+ε

)n
=

0 and lim
n→∞

( f (ξ,n)
λξ−ε

)n
= ∞. 3.

First observe the following simple property for eventually recur-
rent ω-words.

Lemma 3 If ξ ∈ Xω and T(ξ/w0) = T∞(ξ) then f (ξ, n) ≤ |w0| +
|T∞(ξ) ∩ Xn|.

3We have to express this fact in the complicated manner because the growth
of f (ξ, n) need not behave like c · λn

ξ .
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Proof. This follows from the fact that every infix of length n of ξ

is an infix of ξ/w0 or an infix of the length |w0|+ n− 1 prefix of ξ. o

Along with the subword complexity we consider the asymptotic sub-
word complexity τ(ξ) of an ω-word ξ. This quantity is defined as
the logarithm of the real number λξ.

τ(ξ) := lim
n→∞

log|X| f (ξ, n)

n
Definition 1 (Asymptotic subword complexity)

Since f (ξ, n + m) ≤ f (ξ, n) · f (ξ, m), the limit in Definition 1 exists

and equals τ(ξ) = inf
{ log|X| f (ξ,n)

n : n ∈ N
}

. Moreover, we have

the following relation between f (ξ, n) and |T∞(ξ) ∩ Xn| (see [Sta93,
Eq. (5.2)]).

τ(ξ) = lim
n→∞

log|X| |T∞(ξ) ∩ Xn|
n

(2)

3 The Entropy of Languages

Closely related with the asymptotic subword complexity is the con-
cept of the entropy of languages introduced in [CM58]. Let W ⊆ X∗.
Then the quantity

HW := lim sup
n→∞

log|X|max{1, |W ∩ Xn|}
n

(3)

is referred to as the entropy of the language W. Eq. (3) strongly
resembles Eq. (2). Since the limit need not exist, we use the limit
superior instead, and the additional 1 in the numerator is added to
ensure that HW = 0 for finite languages W. For more details on the
entropy of languages see also [Kui70, HPS92, Sta05].

3.1 The entropy of regular languages

Next we derive some properties of the entropy of regular languages
(cf. also [Eil74, Sta93]).
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We start with some easily derived relations between the number
of words in a regular language and the number of its subwords.

Lemma 4 If W ⊆ X∗ is a regular language then there is a k ∈ N

such that

|W ∩ Xn| ≤ |T(W) ∩ Xn| ≤ k
2 ·∑

k
i=0 |W ∩ Xn+i| .

As a suitable k one may choose twice the number of states of an
automaton accepting the language W ⊆ X∗.

A first consequence of Lemma 4 is the following.

Corollary 2 Let W ⊆ X∗ be a non-empty regular language. Then
HT(W) = Hpref(W) = HW.

Corollary 4 of [Sta85] shows a more precise bound for the number
of words in regular star languages W∗ ⊆ X∗.

Lemma 5 For every regular language W ⊆ X∗ there are constants
c1, c2 > 0 and a λ, 0 ≤ λ ≤ |X|, such that

c1 · λn ≤ |pref(W∗) ∩ Xn| ≤ c2 · λn .

A consequence of Lemma 4 is that |T(W)∩Xn| ≤ k · |pref(W)∩Xn+k|.
Thus Lemma 5 holds also (with constant k · c2 · |X|k instead of c2) for
T(W∗).

In order to obtain a relation between HW and HW∗ we consider,
for a language W ⊆ X∗, the generating function SW(t) := ∑i∈N |W ∩
Xi| · ti. It is well-known (cf. [Kui70]) that HW = − log|X| sup{t : 0 ≤
t ≤ 1∧ SW(t) < ∞}. Moreover, for regular languages W, the function
SW(t) is a rational function [CM58, Eil74], that is, in particular, if
W 6= ∅ there is always a value t1 < |X|−HW such that SW(t1) = 1.

For codes V ⊆ X∗ we have SV∗(t) = (1 − SV(t))−1, and conse-
quently, HV∗ = − log|X| t1 whenever t1 < |X|−HV . Thus we have the
following.

Lemma 6 Let ∅ 6= V ⊆ X∗ be a regular language and simultane-
ously a code. Then HV∗ > HV.
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Proposition 1 If V is a regular code, v ∈ V and W = V \ {v} then
HW∗ < HV∗ .

Proof. Since V is regular, there is a value t1 such that SV(t1) = 1,
that is, HV∗ = − log|X| t1.

We use the inequality SW(t) < SV(t) which holds for 0 ≤ t <

|X|−HV and the fact that W is also a regular code. Then the value t′1
for which SW(t′1) = 1 satisfies t1 < t′1, and the assertion follows. o

We conclude this part with the following connection between the
asymptotic subword complexity τ(ξ) and the entropy of regular lan-
guages containing pref(ξ).

Theorem 1 τ(ξ) = inf
{
HW : W is regular ∧ pref(ξ) ⊆ pref(W)

}
Proof. The inequality τ(ξ) ≤ HW follows from τ(ξ) = HT(ξ), T(ξ) ⊆

T(W) and Corollary 2.

Since τ(ξ) = inf
{ log|X| f (ξ,n)

n : n ∈ N
}
, the relations pref(ξ) ⊆

pref((T(ξ) ∩ Xn)∗), for n > 0, and H(T(ξ)∩Xn)∗ =
log|X| f (ξ,n)

n show the
other inequality. o

3.2 Entropy of languages and Hausdorff dimension

In the next sections we will see that the asymptotic subword com-
plexity of an ω-word ξ is closely related to the Hausdorff dimension
of certain ω-languages containing ξ. To this end we derive here
some properties of the entropy of languages and the Hausdorff di-
mension of related ω-languages.

The usual definition of Hausdorff dimension (see e.g. [Fal90,
Sta93]) is based on measure theoretical notions. Here we avoid this
and refer instead to a characterisation via the entropy of languages
given in Eq. (3.11) of [Sta93].

Definition 2 Let F ⊆ Xω. Then

dimH F := inf
{
HW : W ⊆ X∗ ∧ F ⊆ {ξ : |pref(ξ) ∩W| = ∞}

}
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is referred to as the Hausdorff dimension of the set F.

We mention the following well-known stability property of the Haus-
dorff dimension.

dimH
⋃

i∈N Fi = sup{dimH Fi : i ∈N} (4)

In what follows we shall use Eq. (4) mainly to show that F′ ⊆ F
implies dimH F′ ≤ dimH F or that dimH W · F = dimH F when W 6= ∅.

Next we consider the limit (or adherence) ls W := {ξ : pref(ξ) ⊆
pref(W)} ⊆ Xω of a language W ⊆ X∗.

For languages of the form T(V) the language itself and its limit
ls T(V) satisfy pref(ls T(V)) = T(V), T(V) ⊇ T(V)/v and ls T(V) ⊇
(ls T(V))/v, for v ∈ X∗. Then one can apply Theorem 6 of [Sta89]
and obtains

dimH ls T(V) = HT(V) . (5)

In view of Corollary 2 our Eq. (5) implies dimH ls W ≤ HW for regular
languages W ⊆ X∗. Furthermore, the Hausdorff dimension of the
ω-power Vω equals the entropy of V∗ (see Eq. (6.2) of [Sta93]).

dimH Vω = HV∗ (6)

Now Corollary 2, Eqs. (5), (6) and Lemma 6 yield the following.

Corollary 3 Let V ⊆ X∗ be a regular language. Then dimH ls V ≤
dimH Vω, and if, moreover, V is a code then dimH ls V < dimH Vω.

4 Maximum Subword Complexity in Regu-
lar ω-languages

In this section we derive the announced above results on eventu-
ally recurrent ω-words having a regular language of infinitely often
occurring subwords. To this end we investigate the relations be-
tween the asymptotic subword complexity τ(ξ) of an ω-word ξ and
its containment in ω-languages of a special shape. Here we con-
sider the class of regular ω-languages (see [Sta97a, Tho90]), that
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is, the class of ω-languages accepted by finite automata. This class
of regular ω-languages is closely related to regular languages.

As usual an ω-language F ⊆ Xω is referred to as regular pro-
vided there are an n ∈ N and regular languages Wi, Vi ⊆ X∗ such
that

F =
⋃n

i=1 Wi ·Vω
i .

Here the languages Vi can be chosen to be prefix codes (see [Cho74]).
We mention still that the class of regular ω-languages is closed un-
der Boolean operations (see [Sta97a, Tho90]).

In the sequel we need the identity

ls V∗ = Vω ∪V∗ · ls V for V ⊆ X∗ (7)

which can be found in [Sta97b] and the fact that ls V is a regular
ω-language whenever V is a regular language (see [Sta93, Sta97a]).

Then the following relation between the asymptotic subword
complexity and the Hausdorff dimension of regular ω-languages
can be proved.

τ(ξ) = inf{dimH F : F ⊆ Xω ∧ F is regular ∧ ξ ∈ F} (8)

Proof. Since ξ ∈ ls W if and only if pref(ξ) ⊆ pref(W) and ls W
is regular provided W is regular, the inequality “≥” follows from
Theorem 1 and Eq. (5), and the reverse inequality is Proposition 5.4
of [Sta93]. o

We proceed with a relation between T∞(ξ) and an ω-power Vω

containing a tail of ξ.

Lemma 7 1. If ξ ∈ w · Vω for some w ∈ X∗ then T∞(ξ) ⊆ T(V∗) ⊆
T(V) ·V∗ · T(V).

2. If η is eventually recurrent then there is a w ∈ X∗ such that
η ∈ w · ls T∞(η).

Proof. The first assertion is immediate.
Since η is eventually recurrent, T∞(η) = T(η/w) for some w @ η.

Thus {η} = ls w · pref(η/w) ⊆ w · ls T∞(η). o
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This yields an obvious upper bound on τ(ξ) when ξ ∈ w ·Vω.

Corollary 4 If ξ ∈ w ·Vω then τ(ξ) ≤ HT(V∗).

For regular codes V ⊆ X∗ we have a stronger property.

Theorem 2 Let V ⊆ X∗ be a regular code, ξ ∈ w ·Vω for some w ∈ X∗

and τ(ξ) = HV∗ . Then V∗ ⊆ T∞(ξ) = T(V∗).

Proof. The inclusion T∞(ξ) ⊆ T(V∗) is Lemma 7.1, and together
with V∗ ⊆ T∞(ξ) it implies T∞(ξ) = T(V∗). Thus, it remains to show
V∗ ⊆ T∞(ξ).

Assume the contrary, that is, there is a v0 ∈ V∗ such that v0 /∈
T∞(ξ). Since, for n > 0, Vω = (Vn)ω and Vn is also a regular
code whenever V is a regular code, we may assume v0 ∈ V. Set
W := V \ {v0}.

Then ξ ∈ w ·Wω, and according to Corollary 4 and Proposition 1
we have τ(ξ) ≤ HW∗ < HV∗. This contradicts our assumption. o

4.1 Eventually recurrent ω-words with regular T∞(ξ)

Theorem 2 allows us to derive conditions necessary or sufficient
for an ω-word ξ with a regular language T∞(ξ) to be eventually
recurrent.

The first condition is a sufficient one.

Theorem 3 Let F ⊆ Xω be a regular ω-language. If ξ ∈ F and
τ(ξ) = dimH F then ξ is eventually recurrent and T∞(ξ) is a regu-
lar language.

Proof. Since F is regular and ξ ∈ F there are a word w ∈ X∗ and
a regular prefix code V ⊆ X∗ such that ξ ∈ w ·Vω ⊆ F. Corollaries 4
and 2 and Eq. (6) show that τ(ξ) ≤ HV∗ = dimH Vω ≤ dimH F.

Now the assertion follows with Theorem 2. o

The next two conditions are necessary ones.
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Lemma 8 If ξ is eventually recurrent and T∞(ξ) is a regular lan-
guage then there is a regular prefix code V ⊆ X∗ such that T∞(ξ) =

T(V∗).

Proof. Lemma 7.2 shows ξ ∈ w · ls T∞(ξ) for a suitable w @ ξ. By
assumption, the ω-language w · ls T∞(ξ) = ls (w · T∞(ξ)) is regular.
Thus there is a regular prefix code such that ξ ∈ w′ · Vω ⊆ ls (w ·
T∞(ξ)) and according to Theorem 2 we have T∞(ξ) = T(V∗). o

Together with Lemmata 5 and 3 we obtain the following.

Corollary 5 If ξ is eventually recurrent and T∞(ξ) is a regular lan-
guage then there are constants c1, c2 > 0 such that

c1 · |X|τ(ξ)·n ≤ |T∞(ξ) ∩ Xn| ≤ |T(ξ) ∩ Xn| ≤ c2 · |X|τ(ξ)·n.

The conditions in Lemma 8 and Corollary 5 are, however, not suf-
ficient as will be seen in the subsequent example. To this end we
derive a relation between T(ξ) and T∞(ξ).

Lemma 9 Let Mξ := Mininfix
(
T(ξ) \T∞(ξ)

)
the set of minima w.r.t. to

the infix relation of T(ξ) \ T∞(ξ). If every w ∈ Mξ occurs only once as
a factor in ξ then |T(ξ) ∩ Xn| ≤ |T∞(ξ) ∩ Xn|+ ∑w∈Mξ

max{0, n− |w|+
1}.

Proof. If v ∈ T(ξ) \ T∞(ξ) then some w ∈ Mξ is a subword of v.
Since w occurs only once as a factor in ξ, v is one of the |v| − |w|+ 1
factors of length |v| of ξ containing w. o

Example 2 Let V := (aa)∗ · ab. Then HV∗ = 1
2 . We use an enu-

meration {vi : i ∈ N} of V∗ \ {e} and set ξ1 := ∏i∈N via2ib. Then
T∞(ξ1) = T(V∗), Mξ1 = b(aa)∗b and every word of Mξ1 occurs only
once as a factor in ξ1.

Using Lemma 9 we calculate |T(ξ1) ∩ Xn| ≤ |T∞(ξ1) ∩ Xn| + n2,
and thus the inequality of Corollary 5 is satisfied although ev-
ery T(ξ1/w) \ T∞(ξ1), w @ ξ1, contains infinitely many words from
b(aa)∗b. o
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It should be mentioned that the ω-word ξ0 from Example 1 satis-
fies T∞(ξ0) = a∗ba∗ ∪ a∗, whence |T∞(ξ0) ∩ Xn| = n + 1 and τ(ξ0) = 0.
Thus Corollary 5 yields another proof that ξ0 is not eventually re-
current.

4.2 A new proof of Theorem 6 of [Sta98]

Theorem 2 and Lemma 7 allow us to simplify the proof of Theorem 6
in [Sta98]. We start with an auxiliary lemma.

Lemma 10 Let F ⊆ Xω be regular, ξ ∈ F and τ(ξ) = dimH F. If η

is eventually recurrent and T∞(ξ) = T∞(η) then there are u, u′ ∈ X∗

such that u′ · (η/u) ∈ F.

Proof. First Theorem 3 shows that ξ is eventually recurrent and
T∞(ξ) is a regular language. Thus, for a suitable w @ ξ, F ∩ w ·
ls T∞(ξ) is a regular language containing ξ. Consequently, there
are a u′ @ ξ and a regular prefix code V ⊆ X∗ such that ξ ∈ u′ ·Vω ⊆
F∩w · ls T∞(ξ). Now, it suffices to prove η ∈ X∗ ·Vω. Then η ∈ u ·Vω

and, consequently, u′ · (η/u) ∈ u′ ·Vω ⊆ F.
To this end observe that in view of HV∗ = dimH Vω ≥ τ(ξ) =

dimH F Theorem 2 and Lemma 7.2 imply T(V∗) = T∞(ξ) = T∞(η)

and η ∈ v · ls T(V∗) for a suitable v @ η. From T(V∗) ⊆ T(V) · V∗ ·
T(V) and Eq. (7) we obtain ls T(V∗) ⊆ T(V) ·V∗ · ls T(V)∪T(V) ·Vω.
Since V is a regular prefix code, in view of Corollary 3 we have
dimH ls T(V) < dimH Vω = τ(η). This shows η ∈ v · T(V) ·Vω. o

Now we can drop the assumption that ξ ∈ F but have to ensure
that ξ is eventually recurrent and T∞(ξ) is regular.

Theorem 4 Let F ⊆ Xω be regular, ξ, η be eventually recurrent and
T∞(ξ) = T∞(η) be a regular language.

If ξ ∈ F then there are u, u′ ∈ X∗ such that u′ @ ξ and u′ · (η/u) ∈ F.

Proof. Since ξ is eventually recurrent and T∞(ξ) is regular there
is a u′ @ ξ such that ξ ∈ u′ · ls T∞(ξ) and ls T∞(ξ) is a regular ω-
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language. Moreover, τ(ξ) = dimH ls T∞(ξ). Now apply Lemma 10 to
the ω-language F ∩ u′ · ls T∞(ξ). o

Our Example 2 shows that the assumption that η be eventually
recurrent cannot be dropped in Theorem 4 and Lemma 10. Take
e.g. F :=

(
(aa)∗ · ab

)ω, ξ := ∏i∈N vi and η := ξ1.
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words: a tutorial. Bulletin of the EATCS, 79:178–228,
2003.

[Cho74] Yaacov Choueka. Theories of automata on ω-tapes: a
simplified approach. J. Comput. System Sci., 8:117–141,
1974.

[CM58] Noam Chomsky and George A. Miller. Finite state lan-
guages. Information and Control, 1:91–112, 1958.

[Eil74] Samuel Eilenberg. Automata, languages, and machines.
Vol. A. Academic Press [A subsidiary of Harcourt Brace
Jovanovich, Publishers], New York, 1974. Pure and Ap-
plied Mathematics, Vol. 58.

[Fal90] Kenneth Falconer. Fractal geometry. John Wiley & Sons
Ltd., Chichester, 1990.

[HPS92] Georges Hansel, Dominique Perrin, and Imre Simon.
Compression and entropy. In A. Finkel and M. Jantzen,
editors, STACS 92 (Cachan, 1992), volume 577 of Lecture
Notes in Computer Science, pages 515–528, Berlin, 1992.
Springer-Verlag.



16 L. Staiger

[Kui70] Werner Kuich. On the entropy of context-free languages.
Information and Control, 16:173–200, 1970.

[Mar04] Solomon Marcus. Quasiperiodic infinite words (column:
Formal language theory). Bulletin of the EATCS, 82:170–
174, 2004.

[PS86] Dominique Perrin and Paul E. Schupp. Automata on the
integers, recurrence distinguishability, and the equiva-
lence and decidability of monadic theories. In Proceed-
ings, Symposium on Logic in Computer Science, pages
301–304, Cambridge, Massachusetts, June 16–18 1986.
IEEE Computer Society.

[PS10] Ronny Polley and Ludwig Staiger. The maximal subword
complexity of quasiperiodic infinite words. In Electronic
Proceedings in Theoretical Computer Science, volume 31,
pages 169–176, 2010.

[Sem84] Aleksei L. Semenov. Decidability of monadic theories. In
Michal P. Chytil, editor, Mathematical foundations of com-
puter science, 1984 (Prague, 1984), volume 176 of Lecture
Notes in Computer Science, pages 162–175, Berlin, 1984.
Springer-Verlag.

[Sta85] Ludwig Staiger. The entropy of finite-state ω-languages.
Problems Control Inform. Theory/Problemy Upravlen. Teor.
Inform., 14(5):383–392, 1985.

[Sta89] Ludwig Staiger. Combinatorial properties of the Haus-
dorff dimension. J. Statist. Plann. Inference, 23(1):95–100,
1989.

[Sta93] Ludwig Staiger. Kolmogorov complexity and Hausdorff di-
mension. Inform. and Comput., 103(2):159–194, 1993.

[Sta97a] Ludwig Staiger. ω-languages. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages,



Asymptotic Subword Complexity 17

volume 3, pages 339–387. Springer-Verlag, Berlin, 1997.
Beyond words.

[Sta97b] Ludwig Staiger. On ω-power languages. In Gheorghe
Păun and Arto Salomaa, editors, New trends in formal
languages, volume 1218 of Lecture Notes in Computer Sci-
ence, pages 377–394. Springer-Verlag, Berlin, 1997. Con-
trol, cooperation, and combinatorics.

[Sta98] Ludwig Staiger. Rich ω-words and monadic second-order
arithmetic. In Mogens Nielsen and Wolfgang Thomas,
editors, Computer science logic (Aarhus, 1997), volume
1414 of Lecture Notes in Computer Science, pages 478–
490. Springer-Verlag, Berlin, 1998. Selected papers from
the 11th International Workshop (CSL ’97) held at the 6th
Annual Conference of the European Association for Com-
puter Science Logic (EACSL) at the University of Aarhus,
Aarhus, August 23–29, 1997.

[Sta05] Ludwig Staiger. The entropy of Łukasiewicz-languages.
Theor. Inform. Appl., 39(4):621–639, 2005.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan
van Leeuwen, editor, Handbook of theoretical computer
science, Vol. B, pages 133–191. Elsevier Science Publish-
ers B.V., Amsterdam, 1990. Formal models and seman-
tics.

[Tho05] Klaus Thomsen. Languages of finite words occurring in-
finitely many times in an infinite word. Theor. Inform.
Appl., 39(4):641–650, 2005.


	Notation
	The Languages of Subwords
	Subword Complexity and Asymptotic Subword Complexity of -words

	The Entropy of Languages
	The entropy of regular languages
	Entropy of languages and Hausdorff dimension

	Maximum Subword Complexity in Regular -languages
	Eventually recurrent -words with regular T()
	A new proof of Theorem 6 of csl/St97


