
CDMTCS
Research
Report
Series

A forward-parsing
randomness test based on
the expected codeword
length of T-codes

Ulrich Speidel
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-403
May 2011

Centre for Discrete Mathematics and
Theoretical Computer Science

A forward-parsing randomness test based
on the expected codeword length of T-codes

Ulrich Speidel
Department of Computer Science

The University of Auckland, Private Bag 92019
Auckland, New Zealand

ulrich@cs.auckland.ac.nz

Abstract

This paper proposes an algorithm for randomness testing. It is a variant of an
algorithm presented earlier by the author for the construction of random sequences.
The algorithm exploits two facts: Firstly, given a complete finite prefix code Ci over
an alphabet A, every semi-infinite sequence s of symbols x0, x1, x2, . . . from A starts
with a codeword wi ∈ Ci, and if one presumes that s is random, one can compute
the expected length hi of wi. Secondly, wi can be used to extend Ci to yield a larger
code Ci+1. In this case, the actual length |wi| of wi determines the growth in the
expected codeword length hi+1 for the codeword wi+1 ∈ Ci+1 that follows in s after
the end of wi. If |wi| > hi, then hi+1 grows less compared to hi than if |wi| ≤ hi. By
comparing expected codeword lengths and actual codeword lengths cumulatively,
one may assess the randomness of s: If the hypothesis that s is random holds, then
the cumulative values should closely mirror each other.

1 Introduction

Randomness testing for sequences and (pseudo-)random generators has been the subject
of considerable research interest over many decades, and numerous tests have been de-
veloped. A selection of these have been collated in the NIST randomness test suite [7],
for example. The topic continues to be of fundamental importance in areas of digital
communication such as, e.g., cryptography and sequences.

The randomness test presented here takes some of its underlying ideas from on another
presented by the author in [8] and [11], which uses a parsing algorithm that decodes a
sequence “left-to-right” but parses the sequence “right-to-left”, effectively restricting its
use to finite sequences which need to be fully loaded into computer memory. Hamano
and Yamamoto [12] subsequently proposed T-complexity-based randomness test that
employs a “forward parsing T-decomposition” algorithm, which both decodes and parses
in a “left-to-right” direction. The randomness test presented in this paper is an applies
Hamano and Yamamoto’s forward parsing algorithm to the author’s original randomness

1

test, which does not base itself on T-complexity but on Shannon entropy [1], and also
lends itself to use on semi-infinite sequences.

With a complete finite prefix code C (also frequently known as an “exhaustive prefix-
free code” in engineering literature) over some alphabet A, we can parse any semi-infinite
sequence s over A. E.g., the binary code

C = {00, 010, 011, 10, 110, 111}

lets us parse the semi-infinite string s = 10011101111010 . . . as 10.011.10.111.10.10
If we know the probabilities with which the codewords in C occur in s, we can compute
the average codeword length h (or Shannon entropy) for s and C. Let P (w) denote the
probability of occurrence of w in s and let #A be the cardinality (number of symbols)
of the alphabet. Then:

h = −
∑
w∈C

P (w)log#AP (w), (1)

where h carries the unit of symbols per codeword.
If s is “perfectly random”, we expect P (w) to depend on #A and the codeword length

|w| only, i.e., P (w) = #A−|w| and thus, with b = 1/#A:

h = −
∑
w∈C

P (w)log#AP (w)

=
∑
w∈C

b|w||w|. (2)

Moreover, if s is perfectly random and we view decoding as a process that starts at
the beginning of s (i.e., to the left) and progresses in time to the right, we can expect
the average length of the actually decoded codewords in s to converge to h. If we can
demonstrate that this is not the case for a particular s, then clearly that s is not random.
This is nothing new, of course – we are simply observing Shannon entropy here.

One problem with using C is that the reverse conclusion – that s is random if the
average length of codewords decoded converges to h – is not true. This is easily seen for
the trivial code C = {0, 1} and s = 010101 Here, both h and the average codeword
length are 1. The problem in this case is that C is small and not large enough to “detect”
that the pattern “01” repeats. If we choose C = {1, 00, 01}, the result is quite different:
h = 1.5, but the average codeword length is 2. This small example demonstrates that
the code we use has an influence on the answer we get.

This paper proposes a solution to this dilemma, by modifying the above proposal in
two ways:

1. use a code Ci that grows in size each time we decode a codeword in s and therefore
progressively “acquires” more patterns that it then “knows”, and

2. compute an hi for the Ci used at each such decoding step, and compare it against
the actual codeword length wi decoded over Ci in this step. As hi is an estimate
for |wi|, we can still claim that

∑
i hi converges to

∑
i |wi| for random s as i→∞.

2

The question that remains is how to obtain Ci. Note that Ci needs to be complete
and prefix-free. It seems also reasonable to demand that the extension of Ci to Ci+1

should in some way depend on wi to enable the code to recognise patterns that have
occurred in s.

This paper proposes the use of simple T-augmentation [3, 4, 6] for this purpose.
In [8] and [11], the author presented an algorithm for fixed-length s using generalised
T-augmentation and a right-to-left parsing algorithm. For semi-infinite s, however, the
right-to-left parsing does not work (there is no right end to s that one might start from),
but there is also no need to take recourse to generalised T-augmentation. While gener-
alised T-augmentation may be used as well in this case, there is no obvious advantage to
it.

2 The proposed algorithm

Like its right-to-left parsing cousin, the proposed algorithm successively constructs a
series of T-codes A

(k1,k2,...,ki)
(p1,p2,...,pi)

, such that Ci = A
(k1,k2,...,ki)
(p1,p2,...,pi)

. The algorithm also sources its
construction parameters pi from s as pi = wi. The simpler version of the algorithm,
which will mainly be discussed here, assumes ki = 1, such that we may use the simplified
notation Ci = A(p1,p2,...,pi). With C0 = A, we thus have the recurrence relationship of
simple T-augmentation,

Ci+1 = A(p1,p2,...,pi+1)

=
[
pi+1A(p1,p2,...,pi) ∪ A(p1,p2,...,pi)

]
\ {pi+1}

= [pi+1Ci ∪ Ci] \ {pi+1} (3)

where pi+1X denotes the set of words obtained by prefixing each codeword in a code X
with pi+1.

The string s is thus parsed as1: s = p1p2p3p4
The initial Shannon entropy h0 is computed simply under the hypothesis that s is

random, i.e. that all letters of the alphabet occur with equal probability. Hence h0 = 1.
Computing hi+1 from hi needs to consider that the code now consist of two parts:

the original codewords in A(p1,p2,...,pi) less pi, and those contributed by the augmentation
part pi+1A(p1,p2,...,pi). We may thus split hi+1 into two contributions h′i+1 and h′′i+1 from
these respective parts, such that hi+1 = h′i+1 + h′′i+1. We have, for b = 1/#A:

h′i+1 = hi − b|pi+1||pi+1|, (4)

h′′i+1 =
∑
w∈Ci

b|pi+1|+|w|(|pi+1|+ |w|)

= b|pi+1|
∑
w∈Ci

b|w|(|pi+1|+ |w|)

1Readers familiar with the parsing algorithm in LZ78 [2] may interpret Hamano and Yamamoto’s
algorithm as a modified LZ78 where the initial vocabulary consist of the full alphabet and the “innovation
symbol” in each step is replaced by a copy of the entire hitherto derived voculary tree.

3

= b|pi+1|

 ∑
w∈Ci

b|w||w|+ |pi+1|
∑
w∈Ci

b|w|


= b|pi+1|hi + b|pi+1||pi+1|, (5)

where we have used the identity
∑

w∈Ci
b|w| = 1. Hence,

hi+1 = (1 + b|pi+1|)hi. (6)

The derivation of this recurrence relation for hi mirrors that of the H1 entropy in [8,
11]: the underlying problem is the same, i.e., computation of the code entropy for a
T-code under the assumption that each codeword w in the code has a probability of
occurrence of b|w|. The difference to the previous algorithm, however, is how we find
pi+1: in the previous algorithm, pi+1 is sourced from the T-decomposition [5, 10] of a
finite s; in the algorithm presented here, it is simply the respective next codeword that
we decode in s using A(p1,p2,...,pi) as the code, after we have decoded p1p2 . . . pi.

Note that hi is the average codeword length in A(p1,p2,...,pi) and thus the expected
value for |pi+1| if s is random. The randomness test proposed here thus works on the
hypothesis that s is random, in which case we expect to find:

n∑
i=0

|pi+1| ≈
n∑

i=0

hi. (7)

Note that |pi+1| < hi results in a larger hi+1 than |pi+1| ≥ hi and vice versa. If s is indeed
random, this relationship acts like a “regulation mechanism”.

In the following,

∆n(s) = |
n∑

i=0

|pi+1| −
n∑

i=0

hi|

will be called the “deviation” of s after the n’th parsing step. The remaining question
to solve is now how large ∆n(s) may become before we need to abandon our hypothesis
that s is random.

3 Acceptable tolerances in randomness

The expected difference δi between hi and the actual length of pi+1 in a random string is
given by the absolute difference in length between each codeword w in Ci and hi, times
the probability b|w| that w will actually be encountered:

δi =
∑
w∈Ci

b|w|||w| − hi|. (8)

Knowing δi lets us derive an expected value for the difference between
∑n

i=0 |pi+1| and∑n
i=0 hi as

E[∆n(s)] =

√√√√ n∑
i=0

δ2
i . (9)

4

In order to derive a recurrence relation for δi, we must manage the absolute value in
Eq. (8). For this purpose, define the following subsets of Ci, keeping in mind that we
always have hi+1 > hi:

Ci,1 = {w|w ∈ Ci \ {pi+1}, |w| < hi},
Ci,2 = {w|w ∈ Ci \ {pi+1}, |w| ≥ hi, |w| < hi+1},
Ci,3 = {w|w ∈ Ci \ {pi+1}, |w| ≥ hi+1},
Ci,4 = {w|w ∈ Ci, |pi+1w| ≥ hi+1, |w| < hi},
Ci,5 = {w|w ∈ Ci, |pi+1w| ≥ hi+1, |w| < hi+1, |w| ≥ hi},
Ci,6 = {w|w ∈ Ci, |pi+1w| ≥ hi+1, |w| ≥ hi+1},
Ci,7 = {w|w ∈ Ci, |pi+1w| < hi+1, |w| < hi},
Ci,8 = {w|w ∈ Ci, |pi+1w| < hi+1, |w| ≥ hi}

Note that some of these subsets may be empty in some circumstances and that the
following relationships hold:

Ci,1 = (Ci,4 ∪ Ci,7) \ {pi+1} (10)

Ci,2 = (Ci,5 ∪ Ci,8) \ {pi+1} (11)

Ci,3 = Ci,6 \ {pi+1} (12)

Ci \ {pi+1} = Ci,1 ∪ Ci,2 ∪ Ci,3 (13)

Ci = Ci,4 ∪ Ci,5 ∪ Ci,6 ∪ Ci,7 ∪ Ci,8. (14)

Furthermore, the intersection of any two of Ci,1, Ci,2 and Ci,2 is empty, as is that of any
two of Ci,4, Ci,5, Ci,6, Ci,7 and Ci,8. Rewriting Eq. (8) for i+ 1, we get

δi+1 =
∑

w∈Ci+1

b|w|||w| − hi+1|

=
∑

w∈Ci\{pi+1}
b|w|||w| − hi+1|+ b|pi+1|

∑
w∈Ci

b|w|||pi+1w| − hi+1|, (15)

where we use Eq. (3) to split Ci+1 into words from Ci \ {pi+1} and words of the form
pi+1w with w ∈ C. We may thus re-write Eq. (15) as:

δi+1 =
∑

w∈Ci,1

b|w|(hi+1 − |w|)

+
∑

w∈Ci,2

b|w|(hi+1 − |w|)

+
∑

w∈Ci,3

b|w|(|w| − hi+1)

+ b|pi+1|
∑

w∈Ci,4

b|w|(|pi+1|+ |w| − hi+1)

+ b|pi+1|
∑

w∈Ci,5

b|w|(|pi+1|+ |w| − hi+1)

+ b|pi+1|
∑

w∈Ci,6

b|w|(|pi+1|+ |w| − hi+1)

5

+ b|pi+1|
∑

w∈Ci,7

b|w|(hi+1 − |pi+1| − |w|)

+ b|pi+1|
∑

w∈Ci,8

b|w|(hi+1 − |pi+1| − |w|). (16)

Note that this now resolves the absolute values, as the relationship between hi+1 and |w|
and |pi+1| respectively is known for all contributing subsets. Substituting (1 + b|pi+1|)hi
for hi+1 as per Eq. (6), we get:

δi+1 =
∑

w∈Ci,1

b|w|||w| − hi|+ b|pi+1|hi
∑

w∈Ci,1

b|w|

−
∑

w∈Ci,2

b|w|||w| − hi|+ b|pi+1|hi
∑

w∈Ci,2

b|w|

+
∑

w∈Ci,3

b|w|||w| − hi| − b|pi+1|hi
∑

w∈Ci,3

b|w|

+ b|pi+1|

− ∑
w∈Ci,4

b|w|||w| − hi|+ (|pi+1| − b|pi+1|hi)
∑

w∈Ci,4

b|w|

+
∑

w∈Ci,5

b|w|||w| − hi|+ (|pi+1| − b|pi+1|hi)
∑

w∈Ci,5

b|w|

+
∑

w∈Ci,6

b|w|||w| − hi|+ (|pi+1| − b|pi+1|hi)
∑

w∈Ci,6

b|w|

+
∑

w∈Ci,7

b|w|||w| − hi| − (|pi+1| − b|pi+1|hi)
∑

w∈Ci,7

b|w|

−
∑

w∈Ci,8

b|w|||w| − hi| − (|pi+1| − b|pi+1|hi)
∑

w∈Ci,8

b|w|

 (17)

Using the identity: ∑
w∈Ci

b|w| = 1 (18)

and its corrollary ∑
w∈Ci\{pi+1}

b|w| = 1− b|pi+1|, (19)

we can rewrite the 2nd, 4th, and 6th term after the second equal sign in Eq. (17) as:

b|pi+1|hi
∑

w∈Ci,1∪Ci,2

b|w| − b|pi+1|hi
∑

w∈Ci,3

b|w|

= b|pi+1|hi

1− b|pi+1| − 2
∑

w∈Ci,3

b|w|


= b|pi+1|hi

1 + b|pi+1| − 2
∑

w∈Ci,6

b|w|



6

and the 2nd, 4th, 6th, 8th, and 10th term in the square brackets as:

(|pi+1| − b|pi+1|hi)
∑

w∈Ci,4∪Ci,5∪Ci,6

b|w| − (|pi+1| − b|pi+1|hi)
∑

w∈Ci,7∪Ci,8

b|w|

= (|pi+1| − b|pi+1|hi)

1− 2
∑

w∈Ci,7

b|w| − 2
∑

w∈Ci,8

b|w|

 .
Noting here that

δi =
3∑

j=1

∑
w∈Ci,j

b|w|||w| − hi|+ b|pi+1|||pi+1| − hi|,

we get for the 1st, 3rd and 5th term:∑
w∈Ci,1∪Ci,3

b|w|||w| − hi| −
∑

w∈Ci,2

b|w|||w| − hi|

= δi − b|pi+1|||pi+1| − hi| − 2
∑

w∈Ci,2

b|w|||w| − hi|

= δi − b|pi+1|||pi+1| − hi| − 2
∑

w∈Ci,5∪Ci,8\{pi+1}
b|w|||w| − hi|.

Similarly, with:

δi =
8∑

j=4

∑
w∈Ci,j

b|w|||w| − hi| (20)

the odd-numbered terms in the square bracket of Eq. (17) sum up to

−
∑

w∈Ci,4∪Ci,8

b|w|||w| − hi|+
∑

w∈Ci,5∪Ci,6∪Ci,7

b|w|||w| − hi|

= δi − 2
∑

w∈Ci,4

b|w|||w| − hi| − 2
∑

w∈Ci,8

b|w|||w| − hi|.

Combining these results, we get:

δi+1

= (1 + b|pi+1|)δi − b|pi+1|||pi+1| − hi| − 2
∑

w∈Ci,5∪Ci,8\{pi+1}
b|w|||w| − hi|

+ b|pi+1|hi

1 + b|pi+1| − 2
∑

w∈Ci,6

b|w|


− b|pi+1|

2
∑

w∈Ci,4∪Ci,8

b|w|||w| − hi|+ (b|pi+1|hi − |pi+1|)

1− 2
∑

w∈Ci,7∪Ci,8

b|w|

 .(21)

The nonlinearity introduced by the absolute value in Eq. (8) means that we cannot elim-
inate the need to classify each codeword – Eqns. (11) and (12) imply that the remaining
terms still amount to an iteration over each codeword length in Ci if we wish to be precise.

7

As the number of codewords in a T-code grows exponentially in i and even the number
of different codeword lengths grows by |pi| or |pi| − 1 at each step, this precise approach
is not practical if we wish to analyse long s.

We can however consider what we may expect to find for large i. The number of T-
code codewords of any particular length ` is limited by the number of cyclic equivalence
classes for ` [9], meaning that (1+b|pi+1|) is almost always very close to 1 for large i. This
has a number of consequences in strings that exhibit generally accepted characteristics
of randomness – i.e., the type of strings that are of particular interest in a randomness
test.

For one, hi+1 will generally not be much larger than hi. For the difference to be
larger than one symbol, |pi+1| must be significantly smaller than its expectation value
hi+1, which is the exception rather than the rule. Consequently, the probability that the
interval [hi, hi+1) will contain an integer decreases progressively with growing i. Ci,5 and
Ci,8 will thus generally be empty, and Ci,4 generally contains all codewords shorter than
hi.

Similarly, we may drop terms that contain b2|pi+1| as they contribute only very in-
significantly in the limit. Observing further that the expected value for ||pi+1| − hi| is δi,
and that for |pi+1| is hi, we remain with the estimate:

δi+1 ≈ δi − 2bhi

hi ∑
w∈Ci,6

b|w| −
∑

w∈Ci,4

b|w|(|w| − hi) + hi
∑

w∈Ci,7

b|w|

 . (22)

If, as we assume, Ci,5 and Ci,8 are empty, the union in Eqn. (14) simplifies and we can
leverage the identity in Eq. (18) to obtain:

δi+1 ≈ δi + 2bhi
∑

w∈Ci,4

b|w||w| ≤ δi + 2bhihi. (23)

The estimated upper bound on the right can be justified by Eq. (2) and the fact that
Ci,4 ⊂ C. The bound may not necessarily be overly tight, however

4 Experimental results

Experimental verification of a randomness test is inherently problematic since there are no
sequences whose randomness is known for certain – verifiably non-random sequences, on
the other hand, are easier to supply. In a recent paper [13], Calude, Dinneen, Dumitrescu
and Svozil have investigated very long bit sequences from four different sources: the
digits of π, output from pseudo-random generators in the software packages Maple and
Mathematica, and from two quantum random generators (Quantis and a proprietary
generator). They concluded that the quantum randum generators showed a statistically
significant behaviour difference compared to the pseudo-random generators, but only in
a subset of the tests they conducted.

The experiments conducted for this paper used a subset of sequences from these
sources to supply the “random” base case. For each source2, 128 subsequences of 220

2the data from the proprietary generator was not available

8

Source E[∆n(s)] ∆n(s) avg. ∆n(s)
E[∆n(s)] R

Maple 1326 – 2425 16 – 4891 0.89 83
π 1352 – 2363 3 – 5352 0.90 79
Mathematica 1415 – 2394 2 – 6637 0.86 85
Quantis 1371 – 2373 6 – 5043 0.83 88

Table 1: E[∆n(s)] and ∆n(s) for 1 Mbit sequences from various sources

bits (1 megabit) each were investigated to see whether ∆n(s) ≤ E[∆n(s)] for the final
n. As shown in Table 4, the difference for around two thirds of the subsequences did
indeed fall within the respective tolerance band, i.e., under this test they would have to
be regarded as random (“R”). The largest final ∆n(s)/E[∆n(s)] observed for any of the
512 sequences investigated was 4.25.

For comparison, 100 sequences of the same length were analysed that had been gen-
erated by the pseudo-random generator from the standard C library. This generator is
known to produce weak random numbers. This analysis did not classify a single one of
these sequences as “random”.

Having established this base case sensitivity, the first 1 Mbit Qantis sequence that
had been classified as random was subjected to “k-bit stuffing”, i.e., the insertion of a
1 after each contiguous run of k 0’s in the sequence, with k = 1, . . . , 18. For k = 18,
this added only a single bit to the entire sequence; for k = 3, 74, 764 bits were added.
All sequences with k > 8 classified as random, all those for k ≤ 8 as non-random. For
k = 8, 2049 1-bits were inserted - i.e., approximately one for every 512 bits. Moreover,
the ∆n(s) for each k ≤ 8 clearly increased with decreasing k, while ∆n(s) values for k > 8
did not show a clear trend.

5 Conclusions

The randomness test proposed here makes no further assumptions about random strings
other than those already accepted widely in probability theory – it simply predicts what
we would expect from random input to the algorithm and then compares this to the
actual output. The discriminator tolerance given by E[∆n(s)] is generous due to the
upper bound on the contributing δi. The recurrence algorithm that computes hi and δi
also allows for a random string to exhibit a significant degree of local non-randomness.
One would thus rather expect false positives (non-random s classified as random) than
false negatives. The behaviour of the test under deliberate degradation of randomness by
bit stuffing also indicates that it sets reasonable criteria. It is thus a little surprising to see
sequences with a good “random reputation” such as the above “fail” the test so frequently,
especially when minor degradation of pattern variety seems to have little effect. The
number of sequences studied for this paper was too small to detect statistically significant
differences between the different “random” sources. Future work will investigate more of
the data by Calude et al. to see whether the test is able to do this.

9

6 Acknowledgments

The author would like to thank Cristian Calude and Michael Dinneen for providing the
data for the experiments, Kenji Hamano and Hirosuke Yamamoto for contributing such
an elegant parsing algorithm, and Hirosuke Yamamoto and the School of Frontier Sciences
at the University of Tokyo for hosting me in 2010 and thus providing the fertile ground
on which the idea for this paper grew.

References

[1] C. E. Shannon: A Mathematical Theory of Communications. Bell Systems Technical
Journal, 27:379, July 1948

[2] J. Ziv and A. Lempel: Compression of Individual Sequences via Variable-Rate Coding,
IEEE Trans. Inform. Theory, vol 24, no. 5, pp. 530-536, September 1978.

[3] M. R. Titchener, “Digital encoding by means of new T-codes to provide improved
data synchronisation and message integrity,” IEE Proc. – Computers and Digital
Tech., vol. 131, no. 4, pp. 151–153, July 1984.

[4] M. R. Titchener, “Generalized T-codes: extended construction algorithm for self-
synchronizing variable-length codes,” IEE Proc. – Commun., vol. 143, no. 3, pp.
122–128, June 1996.

[5] R. Nicolescu and M. R. Titchener, “Uniqueness theorems for T-codes,” Romanian J.
Inform. Sci. Tech., vol. 1, 1998.

[6] U. Guenther, Robust Source Coding with Generalized T-Codes, PhD thesis, The
University of Auckland, 1998, http://www.tcs.auckland.ac.nz/~ulrich/phd.pdf.

[7] National Institute of Standards and Technology, “A statistical test suite for random
and pseudorandom number generators for cryptographic applications”, NIST special
publication 800-22, 2001.

[8] U. Speidel: Constructing Finite Pseudo-Random Strings using a Codeset-Based En-
tropy, Fourth International Symposium on Communication Systems, Networks and
Digital Signal Processing, p.91, Newcastle, UK, 2004.

[9] T. A. Gulliver, I. Makwakwa, and U. Speidel, “On the generation of aperiodic and
periodic necklaces via T-augmentation,” Fundamenta Informaticae, vol. 83, pp. 91–
107, 2008.

[10] J. Yang and U. Speidel, “A T-decomposition algorithm with O(n log n) time and
space complexity,” Proc. IEEE Int. Symp. on Inform. Theory, Sept. 2005, pp. 23–27.

[11] U. Speidel, “Constructing finite pseudo-random strings using codeset-based entropy
measures”, IEE Proceedings - Circuits, Devices and Systems, 153(4), pp. 315–319,
2006.

10

[12] K. Hamano and H. Yamamoto, “A Randomness Test Based on T-codes”, pp. 1095–
1100, Proceedings of the International Symposium on Information Theory and its
Applications, Auckland, New Zealand, 2008

[13] C. Calude and M. Dinneen and M. Dumitrescu and K. Svozil, “Experimental evi-
dence of quantum randomness incomputability”, Physical Review A 82, 022102, 2010.

11

