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Abstract

The present paper generalises results by Lutz and Ryabko.
We prove a martingale characterisation of exact Hausdorff di-
mension. On this base we introduce the notion of exact con-
structive dimension of (sets of) infinite strings.

Furthermore, we generalise Ryabko’s result on the Haus-
dorff dimension of the set of strings having asymptotic Kol-
mogorov complexity < « to the case of exact dimension.
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The paper addresses a problem from Algorithmic Information
Theory. In his papers | , | Lutz came up with an effec-
tivisation of Hausdorff dimension, called constructive dimension.
Constructive dimension characterises the algorithmic complexity
of (sets of) infinite strings as real numbers. It turned out to be
equivalent to asymptotic Kolmogorov complexity (cf. [ ]) and
is related to the concept of partial randomness of infinite strings
[ , ]. However, the results of Reimann and Stephan
[ ] show, unlike the case of random infinite strings, different
notions of Kolmogorov complexity (cf. [ , 1) yield differ-
ent notions of partial randomness.

To distinguish these types of partial randomness requires a re-
finement of the complexity scale of (sets of) infinite strings. The
present paper shows that an effectivisation of Hausdorff’s original
concept of dimension | ], referred to as exact Hausdorff di-
mension in [ , , ], is possible and leads, simi-
larly to the case of “usual” dimensions (cf. [ , , ,

, , 1), to close connections between exact Haus-



Exact constructive dimension 3

dorff dimension and exact constructive dimension. In contrast to
the “usual” constructive or Hausdorff dimension an exact dimen-
sion of a string or a set of strings is a real function, referred to
as gauge function | , , ]. This makes it more
difficult to specify uniquely ‘the’ exact Hausdorff dimension of set
of strings.

After introducing some notation, in Section 2, we present Haus-
dorff’s original approach | ], give a definition of what is an
exact Hausdorff dimension of a set and generalise the martingale
characterisation of Hausdorff dimension | , ].

In Section 3, using Levin’s and Schnorr’s (cf. [ , 1)
optimal left computable super-martingale, we obtain in a natural
way a definition of exact constructive dimension. Here we also
derive the particularly interesting fact that the exact dimension of
an infinite string ¢ can be identified with Levin’s [ ] universal
left computable continuous semi-measure M restricted to the set
of finite prefixes of ¢.

It is well-known (cf. | , ]) that Levin’s semi-measure
M yields the a priori complexity KA, a particular kind of Kolmogorov
complexity. In the fourth section we generalise Ryabko’s result that
the set of infinite strings having asymptotic Kolmogorov complexity
< « has Hausdorff dimension « and obtain, for the special case of
the a priori complexity KA and for a large class of gauge functions,
a similar coincidence in the case of exact dimensions.

Finally, in Section 5, we apply our results to the family of func-
tions of the logarithmic scale, which was also considered by Haus-
dorff [ |. Here we give evidence that, unlike the case of asymp-
totic Kolmogorov complexity, the results involving exact dimen-
sions depend on the kind of complexity (cf. [ , ) we use.
We show, in particular, that an analogous coincidence as proved in
Section 4 does not hold for plain Kolmogorov complexity.
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1 Notation and Preliminaries

In this section we introduce the notation used throughout the pa-
per. By N = {0,1,2,...} we denote the set of natural numbers and
by Q the set of rational numbers. Let X be an alphabet of cardi-
nality |X| = r > 2. By X* we denote the set of finite words on X,
including the empty word e, and X% is the set of infinite strings
(w-words) over X.

For w € X* and € X*UX“ let w -7 be their concatenation.
This concatenation product extends in an obvious way to subsets
W C X*and B C X* U X%,

We denote by |w| the length of the word w € X* and pref(B) is
the set of all finite prefixes of strings in B C X* U X“. We shall
abbreviate w € pref(y) (7 € X*UX%¥) by w C 5, and 7[0..n] is the
n-length prefix of # provided |5| > n. A language W C X* is referred
to as prefix-free if w C v and w,v € W imply w = v. If W C X* then
MincW :={w:w € WAVYv(v € W — v [ w)} is the (prefix-free) set
of minimal w.r.t. C elements of W.

A super-martingale is a function V : X* — [0, ) which satisfies
V(e) <1 and the super-martingale inequality

r-V(w) > Y ex V(wx) for all w € X*. (1)

If Eq. (1) is satisfied with equality V is called a martingale. Closely
related with (super-)martingales are continuous (or cylindrical) (semi-
Jmeasures y : X* — [0,1] where pu(e) <1 and u(w) > ¥ ,cx p(wx) for
all w e X*.

Indeed, if V is a super-martingale then u(w) := r~1*l. V(w) is a
continuous (semi-)measure, and vice versa. It should be mentioned
that for any continuous semi-measure y and every prefix-free sub-
set W C X* the inequality } ,cw #¢(w) < 1 holds. This proves also
the corresponding super-martingale inequality for prefix-free sets
W C X*:

V(e) > Lwew r - V(w) 2)

For a computable domain D, such as IN, Q or X*, we refer to a
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function f : D — R as left computable (or approximable from below)
provided the set {(d,q) : d € DAg € QAq < f(d)} is computably
enumerable. Accordingly, a function f : D — R is called right
computable (or approximable from above) if the set {(d,q) : d € D A
g€ QAqg> f(d)} is computably enumerable, and f is computable if
f is right and left computable.

If we refer to a function f : D — Q as computable we usually
mean that it maps the domain D to the domain Q, that is, it returns
the exact value f(d) € Q.

2 Hausdorff’s approach

A function h : (0,00) — (0,00) is referred to as a gauge function
provided h is positive, right continuous and non-decreasing. The
h-dimensional outer measure of a set F C X“ on the space X% is
given by

H(F) := lim inf{ ¥ h(+~1")): VC X* AF C V- X¥ Amin|ov| > n}.
n—»00 vev veV
(3)
If lim; .o h(t) > 0 then H"(F) < oo if and only if F is finite.

The usual a-dimensional Hausdorff measure H* is defined by
the family of gauge functions h,(t) = t%, that is, H* = H". Here
ho(t) = t° defines the counting measure on X%.

In this case it is possible to define the (usual) Hausdorff dimen-
sion of a set F C X% as

dimyg F:=sup{a:a =0V H*(F) = oo} =inf{a:a > 0AH*(F) =0}.
(4)
As we see from Eq. (3) for our purposes the behaviour of gauge
function is of interest only in a small vicinity of 0. Moreover, in
many cases we are not interested in the exact value of H"(F) when
0 < H"(F) < . Thus we can often make use of scaling a gauge
function and altering it in a range (¢, 1] apart from 0.
The following properties of gauge functions & and the related
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measure " are proved in the standard way (see e.g. [ ,

D).
Property 1 Let h, I/ be gauge functions.

1. Ifci-h(r™") < W (r ") < cp-h(r=") for some c1,¢2, 0 < ¢1 < ¢,
then c; - H"(F) < H" (F) < ¢ - H"(F).
2. If lim WSk = 0 then HY(F) < oo implies H'(F) = 0, and

H"(F) > 0 implies H" (F) = co.

Here the first property could be called equivalence of gauge func-
tions. In fact, if h and I’ are equivalent in the sense of Property 1
then for all F C X¢ the measures H"(F) and H" (F) are both zero,
finite or infinite. In the same way the second property gives an
pre-order of gauge functions. The pre-order is denoted by < where
h' < h is an abbreviation for nlglc}o % = 0, that is, h(r ") tends
faster to 0 than h/(r~") as n tends to infinity.

By analogy to the change-over-point dimy F (see Eq. (4)) for
H*(F) the partial pre-order < yields a suitable notion of Hausdorff
dimension in the range of arbitrary gauge functions.

Definition 1 We refer to a gauge function h as exact Hausdorff di-
mension function for F C X% provided

/ o, ifh <h,and
0, ifh=<Hn.

Remark that, since < is not a total ordering, nothing is said about
the measure #" (F) for functions 4’ which are equivalent or not
comparable to . Hausdorff called a function i dimension of F pro-
vided 0 < H"(F) < co. This case is covered by our definition and
Property 1.
One easily observes that k() := t yields #(F) < 1, thus #" (F) =

0 for all /', hy < I'. Therefore, we can always assume that a gauge
function satisfies h(t) > >, t € (0,1).
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2.1 Exact Hausdorff dimension and martingales

In this section we show a generalisation of Lutz’s theorem to arbi-
trary gauge functions. To obtain a transparent notation we do not
use Lutz’s s-gale notation but instead we follow Schnorr’s approach
of combining martingales with order functions. For a discussion of
both approaches see Section 13.2 of | ].

Let, for a super-martingale V : X* — [0,00), a gauge function h
and a value ¢ € (0,00] be S.,[V] := {¢: & € X“ Alimsup,,_, 1},1(_%[8'_7;])) >
c}. In particular, S ;[V] is the set of all w-words on which the

super-martingale V is successful w.r.t. the order function f(n) =
r" - h(r~") in the sense of Schnorr [ 1.

Now we can prove the analogue to Lutz’'s theorem. In view of
Property 1 we split the assertion into two parts.

Lemma 1 Let F C X% and h,h' be gauge functions such that h < I’
and H"(F) < co. Then F C S, y[V] for some martingale V.

Proof. First we follow the lines of the proof of Theorem 13.2.3
in [ ] and show the assertion for #"(F) = 0. Thus there
are prefix-free subsets U; C X* such that F C ;e U; - X¥ and

ZMEUZ‘ h(r*|1/l|) S 271"

rlwl - Luell h(r~leul, if w e pref(U;) \ U; , and

Define V; =
efine V;(w) { sup{r‘”' _h(r—lv\) o CwAv e U}, otherwise!.

In order to prove that V; is a martingale we consider three cases:

w € pref(U;) \ U;: Since then U;Nw - X* = J,ex U; Nwx - X*, we have
Vi(w) = rlwl Ywuell h(r—|wu|) — 1 .erxﬂwxl Y wvucll h(r_|wx”|) _
1 Yex Vi(wx).

welU;-X*: Let w € v-X* where v € U;. Then V;(w) = V;(wx) =
rl°l h(r=°l) whence Vi(w) = r=1- Yoy Vi(wx).

w & pref(U;) UU,; - X*: Here V;(w) = V;(wx) = 0.

I'This yields V;(w) = 0 for w ¢ pref(U;) UU; - X*.
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Now, set V(w) := Y ;cn Vi(w).

Then, for ¢ € N;en U; - X¢ there are n; € IN such that ¢[0..n;] € Uj;
VEO.n]) ~ Vi(@0.m]) _ k(")
rien (r ) = MR (rM) R (r~"i)
as i tends to infinity.

Now let H"(F) < co. Then h < Vh-W < I'. Thus HV*"(F) =0
and we can apply the first part of the proof to the functions v'h - I’
and K. a

and we obtain

which tends to infinity

The next lemma is in some sense a converse to Lemma 1.

Lemma 2 Let h be a gauge function, ¢ € (0,0] and V be a super-
martingale. Then H"(S.,[V]) < i)

- c

Proof. It suffices to prove the assertion for ¢ < oo.
Define Vy := {w:w € X* A |w| > k/\% > ¢ —27%} and set
Uy := Mingvk. Then Sc,h [V] - ﬂkeIN Uy - X,

Now © h(r~) <y h(rlvl). 22 o

weuk wellk
= 1o Y9 < YO (ef. Bq. (2).
wellk
Thus H"(Nken Us - X¥) < X, 2

Lemmata 1 and 2 yield the following martingale characterisation of
exact Hausdorff dimension functions.

Theorem 1 Let F C X“. Then a gauge function h is an exact Haus-
dorff dimension function for F if and only if

1. for all gauge functions I’ with h < h' there is a super-martingale
V such that F C S, j[V], and

2. for all gauge functions h"" with h" < h and all super-martingales
V it holds F g Soo,h/’ [V]

Proof. Assume h to be exact for Fand h < /. Then h < Vh -l <
I'. Thus ’HW(P ) = 0 and applying Lemma 1 to v/ - i and I’ yields
a super-martingale V such that F C S, ;s [V].

If i < h then H"'(F) = co and according to Lemma 2 F S, ;1 [V]
for all super-martingales V.
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Conversely, let Conditions 1 and 2 be satisfied. Let h < I/, and
let V be a super-martingale such that F C S, ;/[V]. Now Lemma 2
shows H" (F) < H" (Seo[V]) = 0.

Finally, suppose h” < h and H"(F) < co. Then HV*"(F) = 0
and Lemma 1 shows that there is a super-martingale )V such that
FC S, mw!V]- This contradicts Condition 2. Q

Lemmata 1 and 2 also show that we can likewise formulate Theo-
rem 1 for martingales instead of super-martingales.

3 Constructive dimension: the exact case

The constructive dimension is a variant of dimension defined anal-
ogously to Theorem 1 using only left computable super-martingales.
For the usual family of gauge functions h,(t) = t* it was introduced
by Lutz [ ] and resulted, similarly to dimy in a real number
assigned to a subset F C X“. In the case of left computable super-
martingales the situation turned out to be simpler because the re-
sults of Levin | ] and Schnorr | | show that there is an
optimal left computable super-martingale ¥/, that is, every other
left computable super-martingale V satisfies V(w) < ¢y - U(w) for
all w € X* and some constant cy > 0 not depending on w. Thus we
may define

Definition 2 Let F C X“. We refer to h : R — R as an exact
constructive dimension function for F provided F C S, ;/[U] for all
W,h <N and F € So, n[U] for all b”,h" < h.

Originally, Levin showed that there is an optimal left computable
continuous semi-measure M on X*.

Thus we might use Uy with Uy (w) := 1%l . M(w) as our optimal
left computable super-martingale. The proof of the next theorem
makes use of this fact and of the inequality M(w) > M(w - v).

Theorem 2 The function hs defined by hg(r~") := M(¢[0..n]) is an
exact constructive dimension function for the set {}.
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Closely related to Levin’s optimal left computable semi-measure is
the a priori entropy (or complexity) KA : X* — IN defined by

KA(w) := | —log, M(w) | (5)
First we mention the following bound from | ].

Theorem 3 Let F C X, h be a gauge function and H"(F) > 0.
Then for every ¢ > 0 with H"(F) > c¢-M(e) there is a & € F such
that KA(&[0..n]) >ae —log, h(r~") —log, c.

This lower bound on the maximum complexity of an infinite string
in F yields a set-theoretic lower bound on the success sets S (U]
of .

Theorem 4 Let — < ¢ < o and let h be a gauge function. Then
there is a ¢’ > 0 such that
{¢ : I®n(KA(g[0..n]) <log, h(r™")4c)} C S plU].

Proof. 1If ¢ has infinitely many prefixes such that KA(Z[0..n]) <
—log, h(r~") + c then, since U(w) > ¢” - " - M(w) for a suitable ¢’ >
0, we obtain in view of Eq. (5)

limsup, .., %(.i[(or'fﬁ)) > limsup,, % > (e, O

Corollary 1 Let h,h' be gauge functions such thath < I’ and c € R.
Then

1. {¢ : KA(Z[0.n]) <jolog, h(r™") +c} C Seo (U], and
2. HY ({& : KA(¢[0..n]) <jo —log, h(r~") +c}) = 0.

4 Complexity

In this section we are going to show that, analogously to Ryabko’s
and Lutz’s results for the “usual” dimension the bound given in
Corollary 1 is tight for a large class of (computable) gauge func-
tions. To this end we prove that certain sets of infinite strings
diluted according to a gauge function h have positive Hausdorff
measure H".
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4.1 A generalised dilution principle

We are going to show that for a large family of gauge functions, a set
of finite positive measures can be constructed. Our construction is
a generalisation of Hausdorff's 1918 construction. Instead of his
method of cutting out middle thirds in the unit interval we use the
idea of dilution functions as presented in | ]. In fact dilution
appears much earlier (see e.g. [ , , 1)

We consider prefix-monotone mappings, that is, mappings ¢ :
X* — X* satisfying ¢(w) C ¢(v) whenever w C v. We call a function
¢ :IN — N a modulus function for ¢ provided |¢(w)| = g¢(|w|) for all
w € X*. This, in particular, implies that |¢(w)| = |¢(v)] for |w| = |7
when ¢ has a modulus function.

Every prefix-monotone mapping ¢ : X* — X* defines as a limit a
partial mapping ¢ :C X“ — X% in the following way: pref(¢({)) =
pref(p(pref(¢))) whenever ¢(pref(¢)) is an infinite set, and ¢(¢) is
undefined when ¢(pref(¢)) is finite.

If, for some strictly increasing function ¢ : N — IN, the map-
ping ¢ satisfies the conditions |¢(w)| = g(Jw|) and for every v €
pref(¢(X*)) there are w, € X* and x, € X such that

P(wy) T @(wy-x0) AVY(y € XAy # x0 = 0 Z 9(wy - y)) (6)

then we call ¢ a dilution function with modulus g. If ¢ is a dilution
function then ¢ is a one-to-one mapping.

For the image ¢(X“) we obtain the following bounds on its Haus-
dorff measure.

Theorem 5 Let ¢ : N — IN be a strictly increasing function, ¢ a
corresponding dilution function and h : (0,00) — (0,c0) be a gauge
function. Then

1. HH(@(X<)) < liminf 25"

n—o0

2. Ifc- 17" <ae h(r=3M) then ¢ < H"(@(X)).
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Proof. The first assertion follows from ¢(X“) C Ujy|—y ¢(w) - X¢
and |p(w)] = g([w).

The second assertion is obvious for H"(g(X“)) = co. Let the
measure H"(¢(X“)) be finite, e > 0, and V - X¥ D 9(X“) such that
Yoev h(r~ P < HM(@(X@)) +e. The set Wy := {wy-x, : v € VA
o(wy) C v C @(wy - xy)} (see Eq. (6)) is prefix-free and it holds Wy -
X@ 2 X“. Thus Wy is finite and ) ¢y, rlwl =1,

Assume now min{|v| : v € V} large enough such that c-rI?l <,
h(r—I°l) for allv € V.

Then Y,cyh(r ) > Yorew, h(r 9@ = ¥ o h(r=8UwxD)
> waGWV ¢ rf\wx| =c.
As ¢ > 0 is arbitrary, the assertion follows. J

Corollary 2 Ifc 1" <, h(r—8M) <’ -r " thenc < H"((X¥)) < .

In connection with Theorem 5 and Corollary 2 it is of interest which
gauge functions allow for a construction of a set of positive finite
measure via dilution. Hausdorff's cutting out was demonstrated
for upwardly convex? gauge functions. We consider the slightly
more general case of functions fulfilling the following.

Lemma 3 If a gauge function h is upwardly convex on some interval
(0,¢) and lim;_,oh(t) = 0 then there is an ny € N such that for all
n > ng there is an m € N satisfying

< h(r) <L (7)

In particular, Eq. (7) implies that the gauge function / does not
tend faster to 0 than the identity function id : R — RR.

Proof. If h is monotone, upwardly convex on (0,¢) and #(0) = 0
then, in particular, h(y) > - h(v')/7' whenever 0 < v <9’ <e. Let
n € N and let m € N be the largest number such that r=" < h(r—™).
Then h(r="=1) <r " < h(r=™) < r-h(r~""1) <y ntl, a

2A function f : R — R is called upwardly convex if f(a+t(b —a)) > f(a) +
t(f(b) — f(a)) for all t € [0,1].



Exact constructive dimension 13

Remark 1 Using the scaling factor ¢ = ", that is, considering
c - h instead of h and taking /'(t) = min{c- h(t),r} one can always
assume that ny = 0 and h’(1) > 1. Defining then g(n) := max{m :
m € NAr—™ < h(r~™)} we obtain via Property 1 and Corollary 2
that for every gauge function & fulfilling Eq. (7) there is a subset F,
of X“ having finite and positive H"-measure.

4.2 Computable gauge functions

The aim of this section is to show that the modulus function g and
thus the dilution function ¢ can be chosen computable if the gauge
function h fulfilling Eq. (7) is computable.

Lemma 4 Leth : Q — R be a computable gauge function satisfying
the conditions that 1 < h(1) < r and for every n € N there is an
m € N such that r~" < h(r~™) < r~"*1. Then there is a computable

strictly increasing function g : N — IN such that r < h(r8 (”)) <
pntL

Proof. We define g inductively. To this end we compute for every
n > 1 a closed interval I, such that h(r—$(") € I, € (¥ ", minI,_;)

We start with ¢(0) := 0 and I_; = [r,7 + 1] and estimate [ as an
sufficiently small approximating interval of h(r—8(?)) > 1 satisfying
Ip € (1,r).

Assume now that for n the value g(n) and the interval I,, satisfy-
ing h(r~8") € I, C (r™", minI,_;) are computed.

We search for an m and an approximating interval I(m), h(r~™) €
I(m), such that I(m) C (r~""1,minI,). Since I%igfh(r‘m) = 0 and
Im(r—"-! < h(r ™) < r™") < minI, this search will eventually be
successful. Define g¢(n + 1) as the first such m found by our proce-
dure and set I, := I(m).

Finally, the monotonicity of / implies ¢(n+1) > g¢(n). a

With Corollary 2 we obtain the following.
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Corollary 3 Under the hypotheses of Lemma 4 there is a computable
dilution function ¢ : X* — X* such that ' < H"(¢(X¥)) < r.

4.3 Complexity of diluted infinite strings

In the final part of this section we show that, for a large class of
computable gauge functions, the set {¢ : KA(¢[0..n]) <j, —log, h(r ")+
c} (see Corollary 1) has the function / as an exact dimension func-
tion, that is, a converse to Corollary 1.2.

We use the following estimate on the a priori complexity of a
diluted string from [ l.

Theorem 6 Let ¢ : X* — X* be a one-to-one prefix-monotone recur-
sive function satisfying Eq (6) with strictly increasing modulus func-
tion g. Then

KA (9(2)[0..g(n)]) —KA(g[0.n])| <O(1) forall & € X .

This auxiliary result yields that certain sets of non-complex strings
have non-null i-dimensional Hausdorff measure.

Theorem 7 Ifh : Q — R is a computable gauge function satisfying
Eq. (7) then there is a ¢ € N such that
HM({Z : KA(Z[0.£]) <ae —log, h(r~t) +c}) > 0.

Proof. From the gauge function i we construct a computable
dilution function ¢ with modulus function g such that r~(+k+1) <
g(r30) < y~(+k=1) for a suitable constant k (cf. Lemma 4 and
Remark 1). Then, according to Corollary 3, H"(¢(X%)) > 0.

Using Theorem 6 we obtain KA (¢(Z)[0..g(1)]) < KA(Z[0.1]) 4+ ¢
I + ¢, for suitable constants c1,¢; € IN. Let n € IN satisfy g¢(I) < n
g(n+1). Then KA((£)[0.1]) < KA(()[0-g(I + D)) <1 +1+cx.

Now from [ +k —1 < —log, h(r=8!)) < —log, h(r~") we obtain the
assertion KA (¢(Z)[0..n]) < —log, h(r™") +k + co. a

<
<

Now Corollary 1.2 and Theorem 7 the following analogue to Ryabko’s
[ | result.
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Lemma 5 If/h : Q — R is a computable gauge function satisfying
Eq. (7) then there is a ¢ € IN such that h is an exact Hausdorff
dimension for the sets {¢ : KA(¢[0.n]) <, —log, h(r™") +c} and
{Z : KA(Z[0..£]) <ae —log, h(r~") +c}.

5 Functions of the logarithmic scale

The final part of this paper is devoted to a generalisation of the
“usual” dimensions using Hausdorff's family of functions of the
logarithmic scale. This family is, similarly to the family h,(t) = %,
also linearly ordered and, thus, allows for more specific versions of
Corollary 1.2 and Theorem 7.

A function of the form where the first non-zero exponent satis-
fies p; > 0

h(p01~~-/Pk)(t) = tbo .H;c:l (IOgi %)Pi 8

is referred to as a function of the logarithmic scale (see | 1).
Here we have the convention that log' t = max{log,...log, t,1}.
———
i times
One observes that the lexicographic order on the tuples (py, ..., px)
o..,p) 10 the sense that (po, - .., Pr) >lex

(qo,. ey qk) if and only if h(%r---,ﬂik) (i’) < h(Po/-n,Pk) (t)
This gives rise to a generalisation of the “usual” Hausdorff di-

yields an order of the functions

mension as follows.

diml(? F = sup{(po,---,px): " vo-r0) (F) = oo}

: I 9)
= inf{(po,..., px) : H o+ (F) =0}

When taking supremum or infimum we admit also values —co and
o although we did not define the corresponding functions of the
logarithmic scale. E.g. dimg) F = (0,00) means that Hh(OrW(F ) = o0
but H"« (F) = 0 for all ¢ € (0,00) and all a > 0.

The following theorems generalise Ryabko’s | ] result on
the “usual” Hausdorff dimension (case k = 0) of the set of strings
having asymptotic Kolmogorov complexity < py.
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be a function of the logarithmic scale. We define
_ 0pie1): OP-
serve that B,(r™") = po-n+ Zf:_ll pi-log'n and —logh(, . (") =
Br(r~") + pi - log* n, for sufficiently large n € N.

Then from Corollary 1.2 we obtain the following result.

Let hp,..py)
its first logarithmic truncation as B (t) := —log, h(,

Theorem 8 (| ) Letk > 0, (po,...,px) be a (k+1)-tuple and
h(p,,..n,) Pe afunction of the logarithmic scale. Then
dim{}{¢: & € X Aliminf, o KA@[O;ZQJ* B0 < b < (poe i)

Proof. From liminf, e KA(g[O'izgk;ﬁ w27 px follows KA(¢[0..n]) <

Br(27") + pp - logkn + O(1) for some p, < pi. Thus h(po,---,P,Q) < h(POr-ka)
and the assertion follows from Corollary 1.2. a

Using Theorem 7 we obtain a partial converse to Theorem 8 slightly
refining Satz 4.11 of [ ].

Theorem 9 Letk > 0, (po,...,px) be a (k+1)-tuple where py > 0 and
po,---,Px—1 are computable numbers. Then for the function h(po,...
it holds

Px)

KA([0.n]) — pu(27™") _ P} = (pos i)

dimg){é : ¢ € XY Alimsup .

n—co log n

Proof. Let p, < px be a computable number. Then h(po,...,p’k)

is a computable gauge function, h(po,-..,p,’c) < hp,,..p) and HM{E
KA(¢[0.n]) < —log h(r™") +cz}) > 0 for h = h,

) and some
constant c,. Moreover the relation KA([0..n]) < —log h(r ") + ¢y
KA(G[0.n])=pn(27") Dr.

logk n

7

implies lim sup
n—r00

Thus dimg){é : & € XY Alimsup KAG[0n)—Bu2") < Pk} > (po,---, 1))

1—00 logkn
As p, can be made arbitrarily close to p; the assertion follows. O
Ryabko’s | ] theorem is independent of the kind of complexity
we use. The following example shows that, already in case k = 1,
Theorem 8 does not hold for plain Kolmogorov complexity KS (cf.

[ ’ i ])0
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Example 1 It is known that KS(£[0..n]) < n —log,n+ O(1) for all

¢ e XY (cf [ , Corollary 3.11.3]). Thus every ¢ € X% satisfies
lim: g}f%ﬁp—” < —1. Consequently,
. .. KS([0.n])—
dim{y {¢: & € X¥ /\h}gg}f% <=3} =1(L0) >px (1, -3).

It would be desirable to prove Theorem 7 for arbitrary gauge func-
tions or Theorem 9 for arbitrary (k+ 1)-tuples. One obstacle is that,
in contrast to the case of real number dimension where the com-
putable numbers are dense in the reals, already the computable
pairs (po, p1) are not dense in the above mentioned lexicographical
order of pairs. This can be verified by the following fact.

Remark 2 Let pg € (0,1). If rP0" < h(r ") < n-r Po" for a com-
putable function & : Q — R and sufficiently large n € IN then py
is a computable real. Thus, if pg is not a computable number, the
interval between #

) and h does not contain a computable

pOrO p()/l)

gauge function.
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