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Abstract

This paper continues the research on determining a maximum cardinality set of
edge- and node-disjoint paths between a source cell and a target cell in P systems.
We review the previous solution [DKN10], based on depth-first search (DFS), and
we propose a faster solution, based on breadth-first search (BFS), which leverages
the parallel and distributed characteristics of P systems. The runtime complexity
shows that, our BFS-based solution performs better than the DFS-based solution,
in terms of P steps.

Keywords: P systems, edge-disjoint paths, node-disjoint paths, depth-first
search, breadth-first search, network flow

1 Introduction

P systems is a bio-inspired computational model, based on the way in which chemicals
interact and cross cell membranes, introduced by Păun [PCS98]. The essential specifi-
cation of a P system includes a membrane structure, objects and rules. All cells evolve
synchronously by applying rules in a non-deterministic and (potentially maximally) par-
allel manner. Thus, P systems is a strong candidate as a model for distributed and
parallel computing.

Given a digraph G and two nodes, s and t, the disjoint paths problem aims to find
the maximum number of s-to-t edge- or node-disjoint paths. There are many impor-
tant applications that need to find alternative paths between two nodes, in all domains.
Alternative paths are fundamental in biological remodelling, e.g., of nervous or vascu-
lar systems. Multipath routing can use all available bandwidth in computer networks.
Disjoint paths are sought in streaming multi-core applications that are bandwidth sen-
sitive to avoid sharing communication links between processors [ST09]. The maximum
matching problem in a bipartite graph can also be transformed to the disjoint paths
problem. In case of non-complete graphs, Byzantine Agreement requires at least 2k + 1
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node-disjoint paths, between each pair of nodes to ensure that a distributed consensus
can occur, with up to k failures [Lyn96].

It is interesting to design a native P system solution for the disjoint path problem. In
this case, the input graph is the P system structure itself, not as data to a program. Also,
the system is fully distributed, i.e. there is no central node and only local channels (be-
tween structural neighbours) are allowed. In 2010, Dinneen, Kim and Nicolescu [DKN10]
proposed the first P solution, as a distributed version of the Ford-Fulkerson algorithm,
based on depth-first search (DFS). This solution searches by visiting nodes sequentially,
which is not always efficient. To exploit the parallel potential of P systems, we propose a
faster P system solution—a distributed version of the Edmonds-Karp algorithm, which
concurrently searches as many paths as possible in breadth-first search (BFS).

This paper is organized as follows. Section 2 defines a simplified P system, general
enough to cover most basic families. Section 3 describes the disjoint paths problem and
the strategies for finding disjoint paths in digraphs. Section 4 discusses the specifics of the
disjoint paths problem in P systems. Section 5 reviews the previous DFS-based solution
[DKN10] and sets out our faster BFS-based solution. Section 6 presents the P system rules
for the disjoint paths algorithm using BFS. Section 7 compares the performance of the
BFS-based and DFS-based algorithms, in terms of P steps, and the relative performance
of the BFS-based solution simulation on sequential vs. parallel (multi-core) hardware.
Finally, Section 8 summarizes our work and highlights future work.

2 Preliminary

Essentially, a static P system is specified by the membrane structure, objects and rules.
The membrane structure can be modeled as: a rooted tree (cell-like P systems [PCS98]),
a directed acyclic graph (hyperdag P systems [NDK08], [NDK09], [NDK10]), or in a more
general case, an arbitrary digraph (neural P systems [MVPPRP03], [Pău02]). Usually,
the objects are symbols from a given alphabet, but one can also consider strings or other
more complex structures (such as tuples). P systems combine rewriting rules that change
objects in the region and communication rules that move objects across membranes. Here,
we define a simple P system, with priorities, promoters and duplex channels as a system,
Π = (O, σ1, σ2, . . . , σn, δ), where:

1. O is a finite non-empty alphabet of objects ;

2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, where:

• Qi is a finite set of states ;

• si,0 ∈ Qi is the initial state;

• wi,0 ∈ O∗ is the initial multiset of objects;

• Ri is a finite ordered set of rewriting/communication rules of the form:
s x →α s′ x′ (y)β|z, where: s, s′ ∈ Qi, x, x

′, y, z ∈ O∗, α ∈ {min,max},
β ∈ {↑, ↓, l}.
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Figure 1: Node- and edge- disjoint paths.

3. δ is a set of digraph arcs on {1, 2, . . . , n}, without symmetric arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send mes-
sages to children and children to parents, but the disjoint paths strictly follow the parent-
child direction. Rules are prioritized and are applied in weak priority order [Pău06].

The general form of a rule, which transforms state s to state s′, is s x→α s
′ x′ (y)βγ |z.

This rule consumes multiset x, and then (after all applicable rules have consumed their
left-hand objects) produces multiset x′, in the same cell (“here”). Also, it produces
multiset y and sends it, by replication, to all parents (“up”), to all children (“down”), or
to all parents and children (“up and down”), according to the value of target indicator
β ∈ {↑, ↓, l} (effectively, here we use the repl communication mode, exclusively). α ∈
{min,max} describes the rewriting mode. In the minimal mode, an applicable rule is
applied exactly once. In the maximal mode, an applicable rule is used as many times
as possible and all rules with the same states s and s′ can be applied in the maximally
parallel manner. Finally, the optional z indicates a multiset of promoters, which are not
consumed, but are required, when determining whether the rule can be applied.

3 Disjoint Paths

Given a digraph, G = (V,E), a source node, s ∈ V , and a target node, t ∈ V , the
edge- and node-disjoint paths problem looks for one of the largest sets of edge- and node-
disjoint s-to-t paths. A set of paths is edge-disjoint or node-disjoint if they have no
common arc or no common intermediate node. Note that node-disjoint paths are also
edge-disjoint paths, but the converse is not true. Cormen et al. [CSRL09] give a more
detailed presentation of the topics discussed in this section.

Figure 1 (a) shows two node-disjoint paths from 0 to 6, i.e. 0.3.6 and 0.1.4.6, which
are also edge-disjoint. In this scenario, this is the maximum number of node-disjoint
paths one can find. However, one could add to this set another path, 0.2.3.5.6, shown in
Figure 1 (b), to obtain a set of three edge-disjoint paths.

The maximum edge-disjoint paths problem can be transformed to a maximum flow
problem by assigning unit capacity to each edge [FJF56]. Given a set of already estab-
lished edge- or node-disjoint paths P , we recall the definition of the residual digraph
Gr = (Vr, Er):

• Vr = V and

• Er = (E \EP ) ∪E ′P , where EP is the set of arcs (u, v) that appear in the P paths
and E ′P = {(v, u) | (u, v) ∈ EP}.
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Figure 2: Finding an augmenting path in the residual digraph.

Briefly, the residual digraph is constructed by reversing the already established path
arcs. An augmenting path is an s-to-t path in the residual digraph, Gr. Augmenting
paths are used to extend the existing set of established disjoint paths. If an augmenting
arc reverses an existing path arc (also known as a push-back operation), then these two
arcs “cancel” each other, due to zero total flow, and are discarded. The remaining
path fragments are relinked to construct an extended set of disjoint paths. This round
is repeated, starting with the new and larger set of established paths, until no more
augmenting paths are found. A more detailed construction appears in Ford and Fulkerson
maximal flow algorithm [FJF56].

Example 1. Figure 2 illustrates a residual digraph and an augmenting path: (a) shows
a digraph, where two edge-disjoint paths, 0.1.4.7 and 0.2.5.7, are present; (b) shows
the residual digraph, formed by reversing path arcs; (c) shows an augmenting path,
0.3.5.2.6.7, which uses a reverse arc, (5, 2); (d) discards the cancelling arcs, (2, 5) and
(5, 2); (e) relinks the remaining path fragments, 0.1.4.7, 0.2, 5.7, 0.3.5 and 2.6.7, resulting
in now three edge-disjoint paths, 0.1.4.7, 0.2.6.7 and 0.3.5.7.

The search for augmenting paths uses a search algorithm such as DFS (e.g., the Ford-
Fulkerson algorithm) or BFS (e.g., the Edmonds-Karp algorithm). A search path in the
residual graph (also known as a tentative augmenting path) starts from the source node
and tries to reach the target node. A successful search path becomes a new augment-
ing path and is used (as previously explained) to increase the number of disjoint paths.
Conceptually, this solves the edge-disjoint paths problem (at a high level). However, the
node-disjoint paths require additional refinements—usually by node splitting [Koz91].
Each intermediate node, v, is split into an entry node, v1, and an exit node, v2, linked by
an arc (v1, v2). Arcs that in the original digraph, G, were directed into v are redirected
into v1 and arcs that were directed out of v are redirected out of v2. Figure 3 illus-
trates this node-splitting procedure: (a) shows the original digraph and (b) the modified
digraph, where all intermediate nodes are split—this is a bipartite digraph.

4 Disjoint Paths in P Systems

Classical algorithms use the digraph as data and keep global information. In contrast, our
solutions are fully distributed. There is no central cell to convey global information among
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Figure 3: Simulating node splitting [DKN10].

all cells, i.e. cells only communicate with their neighbors via local channels (between
structural neighbours).

Unlike traditional programs, which keep full path information globally, our P sys-
tems solution records paths predecessors and successors locally in each cell, similar to
distributed routing tables in computer networks. To construct such routing indicators,
we assume that each cell σi is “blessed” with a unique cell ID object, ιi, functioning as
a promoter.

Although many versions of P systems accept cell division, we feel that this feature
should not be used here and we intentionally discard it. Rather than actually splitting
the intermediate P cells, we simulate this by ad-hoc cell rules. This approach could be
in other distributed networks, where nodes cannot be split [DKN10]. Essentially, node
splitting prevents more than one unit flow to pass through an intermediate node [Koz91].

In our case, node splitting can be simulated by: (i) constraining in and out flow
capacities to one and (ii) having two visited markers for each cell, one for a virtual entry
node and another for a virtual exit node, extending the visiting idea of classical search
algorithms. Figure 3 illustrates a scenario when one cell, y, is visited twice, first on its
entry and then on its exit node [DKN10]. Assume that path π = s.x.y.z.t, is established.
Consider a search path, τ , starting from cell, s, and reaching cell, y, in fact, y’s entry
node. This is allowed and y’s entry node is marked as visited. However, to constrain
its in-flow to one, y can only push-back τ on its in-flow arc, (x, y). Cell x’s exit node
becomes visited, x’s out-flow becomes zero and τ continues on x’s outgoing arc, (x, z).
When τ reaches cell z, z’s entry node becomes visited and z pushes τ back on its in-
flow arc, (y, z). Cell y’s exit node becomes visited, y’s out-flow becomes zero and τ
continues on y’s outgoing arc, (y, t). When no other outgoing arc is present, the cell
needs to push-back from its exit node to its entry node, which is only possible if its
entry node is not visited. Finally, the search path, τ , reaches the target, t, and becomes
τ = s.y.x.z.t. After removing cancelling arcs and relinking the remaining ones, we have
two node-disjoint paths, s.x.z.t and s.y.t.

5 Distributed DFS-based and BFS-based Solutions

As mentioned in Section 3, augmenting paths can be searched using DFS or BFS. Con-
ceptually, DFS explores as far as possible along a single branch, before backtracking,
while BFS explores as many branches as possible concurrently—P systems can exploit
this parallelism.
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5.1 Distributed DFS-based Strategy

Dinneen et al’s DFS-based algorithms find disjoint paths in successive rounds [DKN10].
Each round starts with a set of already established disjoint paths, which is empty at the

start of the first round. The source cell, σs, starts to explore one of the untried branches.
If the search path reaches the target cell, σt, it confirms to σs that a new augmenting paths
was found; otherwise, it backtracks. While moving towards σs, the confirmation reshapes
the existing paths and the newly found augmenting path, i.e. discarding cancelling arcs
and relinking the rest, building a larger set of paths,

If σs receives the confirmation (one search path was successful, i.e. a new augmenting
path was found), it broadcasts a reset signal, to prepare the next round. Otherwise, if
the search fails, σs receives the backtrack. If there is an untried branch, the round is
repeated. Otherwise, σs broadcasts a finalize signal to all cells and the search terminates.

This search algorithm is similar to a classical distributed DFS. Other more efficient
distributed DFS algorithms [Tel00] can be considered, but we do not follow this issue
here.

5.2 Distributed BFS-based Strategy

Our BFS-based algorithms also work in successive rounds:
Each round starts with a set of already established disjoint paths, which is empty at

the start of the first round. The source cell, σs, broadcasts a “wave”, to find new aug-
menting paths. Current “frontier”cells send out connect signals. The cells which receive
and accept these connect signals become the new frontier, by appending themselves at
the end of current search paths. The advancing wave periodically sends progress indica-
tors back to the source: (a) connect acknowledgments (at least one search path is still
extending) and (b) path confirmations (at least one search path was successful, i.e. at
least a new augmenting path was found). While travelling towards the source, each path
confirmation reshapes the existing paths and the newly found augmenting path, creating
a larger set of paths.

If no progress indicator arrives in the expected time, σs assumes that the search
round ends. If at least one search path was successful (at least one augmenting path was
found), σs broadcasts a reset signal, which prepares the next round, by resetting all cells
(except the target). Otherwise, σs broadcasts a finalize signal to all cells and the search
terminates.

In each round, an intermediate cell, σi, can be visited only once. Several search paths
may try to visit the same intermediate cell simultaneously, but only one of them succeeds.
Figure 4 (a) shows such a scenario: cells 1, 2 and 3 try to connect cell 4, in the same
step; but only cell 1 succeeds, via arc (1, 4). This choice operation is further described
in Section 6.

The target cell, σt, faces a subtle decision problem. When several search paths arrive,
simultaneously or sequentially, σt must quickly decide which augmenting path can be
established and which one must be ignored (in the current round). We solve this problem
using a branch-cut strategy. Given a search path, τ , its branch ID is the cell ID of its first
intermediate cell after the source, taken by τ . Figure 4 (b) shows four potential paths
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Figure 4: BFS challenges. (a) A choice must be made between several search paths con-
necting the same cell (4), (b) Search paths sharing the same branch ID are incompatible.

arriving at cell 6: π = 0.1.6, τ1 = 0.1.3.6, τ2 = 0.1.5.6 and τ3 = 0.2.4.6; their branch IDs
are 1, 1, 1 and 2, respectively. Paths π, τ1 and τ2 share the same branch ID, 1, and are
incompatible. The following result is straightforward:

Proposition 1. In any search round, search paths which share the same branch ID are
incompatible; only one of them can be accepted.

Therefore, the target cell accept or reject decision is based on branch ID. These branch
ID operations are further described in Section 6.

6 P System Rules for Disjoint Paths Using BFS

The P system rules for edge- and node-disjoint paths are slightly different, due to the
simulated node-splitting approach, but the basic principle is the same. We first discuss
the edge-disjoint and then the changes required to cover the node-disjoint.

6.1 Rules for Edge-disjoint Paths

Algorithm 1 (P system algorithm for edge-disjoint paths).

Input: All cells start with the same set of rules and without any topological awareness
(they do not even know their local neighbours). All cells start in the same initial state.
Initially, each cell, σi, contains a cell ID object, ιi, which is immutable and used as a
promoter. Additionally, the source cell, σs, and the target cell, σt, are decorated with
objects, a and z, respectively.

Output: All cells end in the same final state. On completion, all cells are empty,
with the following exceptions: (1) The source cell, σs, and the target cell, σt, are still
decorated with objects, a and z, respectively; (2) The cells on edge-disjoint paths contain
path link objects, for predecessors, pj, and for successors, sk.

We use the following six states: S0, the initial state; S1, the quiescent state; S2, the
frontier state; S3, for previous frontier cells; S4, the final state; and S5, a special state
for the target cell.

Initially, all cells are in the initial state, S0. When each cell produces a catalyst-like
object, it enters the quiescent state, S1. When cells in S1 accept connect signals, they
enter the frontier state, S2, except the target which changes directly to S5. Cells on
the frontier send connect signals to neighbors and then change to S3, to receive and
relay progress indicators. Specifically, the target remains in S5, after accepting the first
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S1 S2 S3 S4 S5

receive connect signal send connect signal

receive finalize signal
receive connect signal

receive finalize signal

receive reset signal

receive reset signal

target receives 1st connect signal

S0

produce a catalyst

receive reset signal

receive finalize signal

receive finalize signal

receive & relay progress indicators

Figure 5: State-chart of BFS-based algorithm.

connect signal (because it is always waiting to be connected), until it receives the finalize
signal. When the search finishes, all cells transit to the final state, S4. Figure 5 shows
all state transitions.

We use these symbols to describe our edge-disjoint implementation:

• a indicates the source cell.

• z indicates the target cell.

• d indicates, in the source cell, that an augmenting path was found in the current
round (it appears in the source cell).

• ej records, in the target cell, the branch ID of a successful augmenting path (i.e. σj
is the first cell after the source, in this augmenting path).

• cs is the connect signal sent by the source cell, σs, to its children.

• cj.k is the connect signal sent by an intermediate cell, σk, to its children; j is the
branch ID.

• lj.k is the connect signal sent by an intermediate cell, σk, to its parents; j is the
branch ID.

• rj is the connect acknowledgment sent to cell, σj.

• fj.k is the path confirmation of a successful augmenting path, sent by cell σj to cell
σk.

• h is a catalyst object in each cell.

• o is a signal broadcast by the source cell, σs, to make each cell produce one catalyst
object.

• u indicates the first intermediate cell after the source, which is produced on receiving
the connect signal, cs.

• b is the reset signal which starts a new round.

• g is the finalize signal which terminates the search.
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• tj indicates that cell σj is a predecessor on a search path - recorded when a cell
accepts a connect signal).

• pj is a disjoint path predecessor (recorded when a successful augmenting path is
confirmed).

• sj is a disjoint path successor (recorded when a successful augmenting path is
confirmed).

• w, v implement a source cell timer to wait for the first response or confirmation.

• x, y implement another source cell timer to wait for the periodically relayed response
or confirmation.

We next present the rules and briefly explain them.

0. Rules in state S1:

1 S0 a→min S1 ah(o)↓

2 S0 o→min S1 h(o)↓

3 S0 o→max S1

1. Rules in state S1:

1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓

6 S1 v →max S1

7 S1 w →max S1

8 S1 x→max S1

9 S1 y →max S1

10 S1 fj.k →max S1

11 S1 tj →max S1

12 S1 rj →max S1

13 S1 a→min S2 a

14 S1 cjpj →min S1 upj

15 S1 cj.kpk →min S1 pk

16 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
17 S1 zhcj →min S5 zhupj(fi.j)l|ιi
18 S1 hlj.ksk →min S2 htkejsk (rk)l

19 S1 hcj →min S2 hutj (rj)l

20 S1 hcj.k →min S2 htkej (rk)l

2. Rules in state S2:

1 S2 b→min S1(b)↓

2 S2 g →min S4(g)↓

3 S2 ah→min S3 ahw(ci)↓|ιi

4 S2 hej →min S3 hej(lj.i)↑ (cj.i)↓|ιi
5 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi
6 S2 fj.k →max S2

7 S2 cj.k →max S2

8 S2 lj.k →max S2

3. Rules for state S3:

1 S3 b→min S1(b)↓

2 S3 g →min S4(g)↓

3 S3 axyyfj.i →min S3 adsjx|ιi
4 S3 axyyri →min S3 ax|ιi
5 S3 axyyyfj.i →min S3 adsjx|ιi
6 S3 axyyyri →min S3 ax|ιi
7 S3 adxyyy →min S1 a(b)↓

8 S3 axyyy →min S4 a(g)↓

9 S3 awvv →min S4 a(g)↓

10 S3 awvfj.i →min S3 adsjx|ιi
11 S3 awvri →min S3 ax|ιi
12 S3 x→min S3 y

13 S3 tjfk.i →min S3 pjsk(fi.j)l|ιi
14 S3 afj.i →min S3 asj |ιi
15 S3 pjsj →min S3

16 S3 ritj →min S3 tj(rj)l|ιi
17 S3 w →min S3 wv

18 S3 rj →max S3

19 S3 cj.k →max S3

20 S3 fj.k →max S3

21 S3 lj.k →max S3

4. Rules for state S4:

1 S4 g →max S4

2 S4 ej →max S4

3 S4 fj.k →max S4
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Figure 6: A particular case requiring a delayed connect acknowledgment.

4 S4 cj.k →max S4

5 S4 lj.k →max S4

6 S4 tj →max S4

7 S4 rj →max S4

8 S4 w →max S4

9 S4 v →max S4

10 S4 u→max S4

11 S4 h→max S4

12 S4 o→max S4

5. Rules for state S5:

1 S5 cjpj →min S5 pj

2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk

4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj →max S5

11 S5 rj →max S5

12 S5 u→max S5

The following paragraphs outline how these rules are used by each major cell group:
the source cell, frontier cells, other intermediate cells and the target cell.

Scripts for the source cell: In the initial state S0, the source cell, σs, indicated by
the special object a, starts by broadcasting an object, o, to all cells and enters S1 (rule
0.1); each receiving cell creates a local catalyst-like object, h, and enters S1 (rule 0.2).

Next, cell σs enters S2 (rule 1.13) and starts the search wave via connection requests,
cs (rule 2.3). Then, the source cell σs changes to state S3 and uses timers to wait (a) one
step for the the first progress indicators (rules 3.10, 3.11, 3.17), and (b) two steps for
further relayed progress indicators (rules 3.3, 3.4, 3.12). If no progress indicator arrives
when the timer overflows, cell σs waits one more step (rules 3.5, 3.6). If still no expected
progress indicator arrives, cell σs assumes the round has ended. If an augmenting path
was found in the current round, σs broadcasts a reset signal b to reset all cells (except the
target σt) to S1 (rule 3.7). Otherwise, σs broadcasts a finalize signal, g, which prompts
all cells to enter S4 (rules 3.8, 3.9).

It is interesting to note why the source cell needs to wait for one more step, even
when the timer overflows. An intermediate cell filters connect signals, using rules 1.14–
15, which have higher priority than the rules to accept a connect signal, i.e. rules 1.18–20.
The rules to accept a connect signal cannot apply in the same step because of the different
target states. For example, in Figure 6, path 0.2.4.6.7.9 is found in the first round. In the
second round, search paths 0.1.4 and 0.3.5 attempt to connect to cell 6. Cell 6 discards
cell 4’s connect signal, following the higher-priority rule 1.15 and then, in the next step,
accepts cell 5’s connect signal, using rule 1.20. In this case, the source cell needs an
extra one-step delay, to receive the relayed connect acknowledgment from cell 6. All
unacceptable signals are discarded in one step, so a one-step delay is enough.

Scripts for a frontier cell: An intermediate cell, σi, if it is unvisited in this round,
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accepts exactly one connect signal and discards the rest; otherwise, it discards all connect
signals. By accepting one connect signal, σi enters S2 and becomes a frontier cell to send
connect signals. When σi sends its connect signals, the frontier advances.

An intermediate cell, σi, may receive connect signals: (a) cs, connect signals sent by
the source cell, σs, to its children; (b) cj.k, connect signals sent by a frontier cell, σk, to
its children; (c) lj.k, connect signals sent by a frontier cell, σk, to its parents. Received
connect signals are checked for acceptability : (a) a cs or cj.k connect signal is acceptable
if it does not come from an established path predecessor, which corresponds to a forward
operation (rules 1.14, 1.15, 1.19, 1.20); (b) a lj.k connect signal is acceptable if it comes
from an established path successor, which corresponds to a push-back operation (rule
1.18).

Cell σi becomes a frontier cell by accepting either: (1) a connect signal, cs, from
σs (rules 1.14, 1.19), in this case, cell σi (a) generates an u, indicating that it is the
first intermediate cell on the current search path (the first after cell σs); (b) records its
predecessor on the search path, σs, as ts; and (c) sends a connect acknowledgment, rs,
back to cell σs; or (2) a connect signal, cj.k or lj.k from σk (rules 1.15, 1.18, 1.20), in this
case, cell σi (a) records the branch ID, j, as ej; (b) records its predecessor on the search
path, σk, as tk; and (c) sends a connect acknowledgment, rk, back to cell σk.

Then, as a frontier cell, σi sends connect signals to neighbors and changes to state S3:
(1) if cell σi is marked by an u object, it uses its own ID, i, as the branch ID to further
generate connect signals, ci.i or li.i (rule 2.5); (2) otherwise, σi uses the recorded ej as
the branch ID to further generate connect signals, cj.i or lj.i (rule 2.4).

Consider the scenario when several connect signals arrive simultaneously in an un-
visited cell, σi (see Figure 4 (a)). Cell σi makes a (conceptually random) choice and
selects exactly one of the acceptable connect signals, thus deciding which search path
can follow through. To solve this choice problem, we use an object, h, which functions
like a catalyst [Pău06]. Object h is immediately consumed by the rule which accepts the
connect signal, therefore no other connect signal is accepted (rules 1.16–20). Next, the
catalyst, h, is recreated, but the cell also changes its state, thus it cannot accept another
connect signal (not in the same search round).

Scripts for other intermediate cell: A previous frontier cell, σi, relays progress
indicators: connect acknowledgments, ri (rule 3.16) and path confirmations, fk.i (rule
3.13). On receiving path confirmations, σi transforms a temporary path predecessor,
tj, into an established path predecessor, pj, and records the path successors, sk. In the
next step, cell σi discards matching predecessor and successor objects (i.e. referring to
the same cell), e.g., σi may already contain (from a previous round) another predecessor-
successor pair, pj′ , sk′ . If j = k′, then pj and sk′ are deleted, as one end of the cancelling
arc pair, (j, i) and (i, j); similarly, if k = j′, then sk and pj′ are deleted (rule 3.15).

Scripts for the target cell: The target cell, σt, accepts either (1) a connect signal
from σs, cs, if it does not come from an established path predecessor (rules 1.17, 5.1,
5.5), or (2) a connect signal from a frontier cell σk, cj.k (rules 1.16, 5.2, 5.3, 5.4), which
indicates the different branch ID (rule 5.2) and does not come from an established path
predecessor (rule 5.3). In case (1), cell σt: (a) generates an u, indicating that it is the
second cell on a search path (the first after cell σs); (b) records its predecessor on the
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search path, σs, as ps; and (c) sends a path confirmation ft.s, back to cell σs. In case
(2), cell σt: (a) records the branch ID, j, as ej; (b) records its predecessor on the search
path, σk, as pk; and (c) sends a path confirmation, ft.k, back to cell σk.

This branch-cut strategy is illustrated in Figure 4 (b). It shows an established path,
π = 0.1.6, whose branch ID is recorded as e1. Consider the fate of other search paths,
τ1 = 0.1.3.6, τ2 = 0.1.5.6, and τ3 = 0.2.4.6, which attempt to reach the target 6, later in
the same round. τ1 sends the connect signal c1.3, which is rejected. τ2 sends the connect
signal c1.5, which is also rejected. τ3 sends the connect signal c2.4, which is accepted. To
summarize, in this example round, two augmenting paths are established, π and τ3; other
attempts are properly ignored.

It is important that recording objects ei are used as promoters, which enable rules,
without being consumed [IS04]. Otherwise, objects ei can be consumed before completing
their role; e.g., the rejection of τ1 would consume e1 and there would be nothing left to
reject τ2.

Example 2. Table 7 shows Algorithm 1 tracing fragments for stages (a), (c) and (e)
of Figure 2, illustrating how our P system solution works. In all stages, each cell, σi,
contains a promoter object, ιi, as the cell ID; the source cell, σ0, and the target cell, σ7,
are decorated by objects, a and z, respectively. The catalyst object, h, remains in each
cell after it is produced, until the cell enters the final state, S4.

Table 7: Algorithm 1 tracing fragments for stages (a), (c) and (e) of Figure 2.
Stage\Cell σ0 σ1 σ2 σ3
1(a) S3 ι0adhs1s2xy3 S3 ι1hp0s4u S3 ι2hp0s5u S3 ι3ht0u
1(c) S3 ι0ahs1s2xy S1 ι1hp0s4u2 S3 ι2e3hp0r3s5t5u2 S3 ι3hr3t0u2

1(e) S4 ι0as1s2s3 S4 ι1p0s4 S4 ι2p0s6 S4 ι3p0s5

Stage\Cell σ4 σ5 σ6 σ7
1(a) S3 ι4e1hp1s7 S3 ι5e2hp2s7 S3 ι6e2ht2 S5 ι7e1e2hp4p5z
1(c) S1 ι4f7.6hp1s7 S3 ι5e3f7.6hp2s7t3 S3 ι6e3f7.6ht2 S5 ι7e1e2e3hp4p5p6r3z
1(e) S4 ι4p1s7 S4 ι5p3s7 S4 ι6p2s7 S4 ι7p4p5p6z

In stage 1(a), the two established paths, 0.1.4.7 and 0.2.5.7, are recorded by the
following cell contents: σ0 : {s1, s2}, σ1 : {p0, s4}, σ2 : {p0, s5}, σ4 : {p1, s7}, σ5 : {p2, s7},
σ7 : {p4, p5}. In the source cell σ0, xy

3 is a timer to wait for the relayed progress
indicators, which currently overflows. The object d indicates that an augmenting path
was found in the current round, so in the next step, the source cell, σ0, broadcasts a reset
signal to all cells to start a new round. Cells σ1, σ2, and σ3 have objects, u, indicating
that they are the first intermediate cells after the source, while cells σ4, σ5, σ6 contain
objects, ej, which mean they should include j as the branch ID when sending connect
signals. The target cell, σ7, records the already used branch IDs, e1 and e2.

In stage 1(c), the successful search path 0.3.5.2.6.7 is recorded as: σ3 : {t0}, σ5 : {t3},
σ2 : {t5}, σ6 : {t2}, σ7 : {p6} (the target records p6 directly). The target cell σ7 also
records the branch ID of the newly successful path, e3, and sends back a path confirmation
f7.6 to all its neighbors. In cell σ3, the objects, r3 and t0, indicate that the connect
acknowledgment needs to be relayed to the source cell σ0. Thus, in the next step, cell σ0
receives a connect acknowledgment from cell σ3 and resets the timer.

In stage 1(e), all cells enter the final state S4 and there are three established paths,
0.1.4.7, 0.2.6.7 and 0.3.5.7, which are recorded as: σ0 : {s1, s2, s3}, σ1 : {p0, s4}, σ2 :
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{p0, s6}, σ3 : {p0, s5}, σ4 : {p1, s7}, σ5 : {p3, s7}, σ6 : {p2, s7}, σ7 : {p4, p5, p6}.
The preceding arguments indicate a bisimulation relation between our BFS-based

algorithm and the classical Edmonds and Karp BFS-based algorithm for edge-disjoint
paths [EK72]. The following theorem encapsulates all these arguments:

Theorem 2. When Algorithm 1 terminates, path predecessor and successor objects listed
in its output section indicate a maximal cardinality set of edge-disjoint paths.

6.2 Rules for Node-disjoint Paths

Algorithm 2 (P system algorithm for node-disjoint paths).

Input: As in the edge-disjoint paths algorithm of Algorithm 1.

Output: Similar to in the edge-disjoint paths algorithm. However, the predecessor
and successor objects indicate node-disjoint paths, instead of edge-disjoint paths.

To simulate node splitting, the node-disjoint version uses additional symbols (as be-
fore, rules assume that cell σi is the current cell):

• m indicates that the “entry node is visited”.

• n indicates that the “exit node is visited”.

• q indicates that this cell’s in-flow and out-flow is one (or, equivalently, that this cell
is in an already established or confirmed path).

• tj.k indicates cell σi’s predecessor, σj, on a search path, recorded after it receives
the connect acknowledgment from cell σi’s successor, σk (before receiving this ac-
knowledgment, σi’s predecessor is temporarily recorded as tj.)

• rj.k is a connect acknowledgment sent by cell σj to cell σk.

0. Rules in state S1:

1 S0 a→min S1 ah(o)↓

2 S0 o→min S1 h(o)↓

3 S0 o→max S1

1. Rules in state S1:

1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓

6 S1 v →max S1

7 S1 w →max S1

8 S1 u→max S1

9 S1 m→max S1

10 S1 n→max S1

11 S1 fj.k →max S1

12 S1 tj.k →max S1

13 S1 tj →max S1

14 S1 rj.k →max S1

15 S1 a→min S2 a

16 S1 cjpj →min S1 pj

17 S1 cj.kpk →min S1 pk

18 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
19 S1 zhcj →min S5 zhpj(fi.j)l|ιi
20 S1 hlj.ksk →min S2 htkejskn (ri.k)l|ιi
21 S1 hcj.kq →min S2 htkejmq (ri.k)l|ιi
22 S1 hcj →min S2 hutj (ri.j)l|ιi
23 S1 hcj.k →min S2 htkej (ri.k)l|ιi

2. Rules in state S2:

1 S2 b→min S1(b)↓

2 S2 g →min S4(g)↓
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3 S2 ah→min S3 ahw(ci)↓|ιi
4 S2 hejm→min S3 hejm (lj.i)↑|ιi
5 S2 hejn→min S3 hejn (lj.i)↑ (cj.i)↓|ιi
6 S2 hej →min S3 hej (lj.i)↑ (cj.i)↓|ιi
7 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi
8 S2 fj.k →max S2

9 S2 cj.k →max S2

10 S2 lj.k →max S2

3. Rules in state S3:

1 S3 b→min S1(b)↓

2 S3 g →min S4(g)↓

3 S3 hmlj.ksk →min S3 hmntkejsk (ri.k)l|ιi
4 S3 hejmn→min S3 hwej (lj.i)↑ (cj.i)↓|ιi
5 S3 axyyfj.i →min S3 adsjx|ιi
6 S3 axyyrj.i →min S3 ax|ιi
7 S3 axyyyfj.i →min S3 adsjx|ιi
8 S3 axyyyrj.i →min S3 ax|ιi
9 S3 adxyyy →min S1 a (b)↓|ιi

10 S3 axyyy →min S4 a (g)↓|ιi
11 S3 awvv →min S4 a(g)↓|ιi
12 S3 awvfj.i →min S3 adsjx|ιi
13 S3 awvrj.i →min S3 ax|ιi
14 S3 x→min S3 xy

15 S3 tj.kfk.i →min S3 pjskq (fi.j)l|ιi
16 S3 tjfk.i →min S3 pjskq (fi.j)l|ιi
17 S3 afj.i →min S3 asj |ιi
18 S3 pjsjq →min S3

19 S3 rk.itj.k →min S3 tj.k (ri.j)l|ιi
20 S3 tjrk.i →min S3 tj.k (ri.j)l|ιi
21 S3 tj.lrk.i →min S3 tj.ltj.k (ri.j)l|ιi
22 S3 w →min S3 wv

23 S3 arj.i →max S3 a|ιi
24 S3 cj.k →max S3

25 S3 fj.k →max S3

26 S3 lj.k →max S3

4. Rules in state S4:

1 S4 g →max S4

2 S4 ej →max S4

3 S4 q →max S4

4 S4 fj.k →max S4

5 S4 cj.k →max S4

6 S4 lj.k →max S4

7 S4 tj.k →max S4

8 S4 tj →max S4

9 S4 rj.k →max S4

10 S4 w →max S4

11 S4 v →max S4

12 S4 u→max S4

13 S4 m→max S4

14 S4 n→max S4

15 S4 h→max S4

16 S4 o→max S4

5. Rules in state S5:

1 S5 cjpj →min S5 pj

2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk

4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj.k →max S5

11 S5 tj →max S5

12 S5 rj.k →max S5

13 S5 u→max S5

When a cell, σi, is first reached by a search path, then both its “entry node” and
“exit node” become visited. If this search path is successful, then σi is marked by one
object q (rules 3.15, 3.16). In a subsequent round, new search paths can visit σi (1)
via an incoming arc (forward mode); (2) via an outgoing arc, in the reverse direction
(push-back mode) or (3) on both ways. When a search path visits σi via an incoming
arc, it marks σi with one object, m, indicating a visited entry node (rule 1.21); in this
case, the search path can only continue with a push-back (rule 2.4). When a search path
visits σi via an outgoing arc, it marks the cell with one object, n, indicating a visited
exit node (rule 1.20); in this case, the search path continues with all other possible arcs
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Figure 8: An example of node-disjoint paths.

(rule 2.5), i.e. all forward searches and also a push-back on its current in-flow arc. A cell
which has a visited entry node is in state S3, but it can be later revisited by its exit node.
Thus, in S3, we provide extra rules to accept and send connect signals (rules 3.3, 3.4).

Cell, σi, can be visited at most once on each of its entry or exit nodes; but, it
can be visited both on its entry and exit nodes, in which case it has two temporary
predecessors (which simulate the node-splitting technique). In Figure 8, the search path,
0.4.5.2.1.8.9.3.2.6.7.10, has visited cell 2 twice, once on its “entry” node and again on its
“exit” node. Cell 2 has two temporary predecessors, cells 5 and 3, and receives progress
indicators from two successors, cells 1 and 6. Progress indicators relayed by cell 6 must be
further relayed to cell 3 and progress indicators relayed by cell 1 must be further relayed
to cell 5. To make the right choice, each cell records matching predecessor-successor
pairs, e.g., cell 2 records the pairs t5.1 and t3.6. For example, when the progress indicator
r1.2 or f1.2 arrives, cell 2 knows to forward it to the correct predecessor, cell 5. When the
progress indicator r6.2 or f6.2 arrives, cell 2 knows to forward it to the correct predecessor,
cell 3.

The following theorem sums up all these arguments:

Theorem 3. When Algorithm 2 ends, path predecessors and successors objects mentioned
in its output section indicate a maximal cardinality set of node-disjoint paths.

7 Performance of BFS-based Solutions

Consider a simple P system with n cells, m = |δ| arcs, where fe = the maximum number
of edge-disjoint paths, fn = the maximum number of node-disjoint paths and d = the
outdegree of the source cell. Dinneen at al. show that the DFS-based algorithms for
edge- and node-disjoint paths run in O(mn) P steps [DKN10]. A closer inspection, not
detailed here, shows that this upper bound can be improved.

Theorem 4. The DFS-based algorithms run in O(md) P steps, in both the edge- and
node-disjoint cases.

We show that our algorithms run asymptotically faster (fe, fn ≤ d):

Theorem 5. Our BFS-based algorithms run in at most B(m, f) = (3m+ 5)f + 4m+ 6
P steps, i.e. O(mf), where f = fe, in the edge-disjoint case, and f = fn, in the node-
disjoint case.

Proof. 1. Initially, the source cell broadcasts a “catalyst” in one step.
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2. Then, the algorithm repeatedly searches augmenting paths. First, consider the
rounds where augmenting paths are found. In each round, each cell on the search
path takes two steps to proceed, i.e. one step to accept a signal and one more step
to send connect signals. Each search path spans at most m arcs, thus it takes at
most 2m steps to reach its end (with or without reaching the target). All search
paths in a round proceed in parallel. After the last augmenting path in a round was
found, it takes at most m steps to confirm to the source. After receiving the last
confirmation signal, the source cell waits four steps (to ensure that it is the last)
and then takes one step to broadcast a reset signal. Therefore, each round, where
augmenting paths are found, takes at most 3m + 5 steps. At least one augmenting
path is found in each round, so the total number of search rounds is at most f .

3. Next, consider the last search round, where no more augmenting paths are found.
This case is similar, but not identical, to the preceding case. Each cell on the search
path takes two steps to proceed, so it takes at most 2m steps to search augmenting
paths. The connect acknowledgment from the end cell of the search path takes at
most m steps to arrive at the source. The source waits for three or four steps for
the time-out: three steps, if it does not receive any progress indicators; and four
steps, otherwise. Then, the source cell broadcast a finalize signal, which takes at
most m steps to reach all cells.

4. Finally, all cells take one final step, to clear all irrelevant objects, and the algorithm
terminates.

To summarize, the algorithm runs in at most (3m + 5)f + 4m + 6 steps and its
asymptotic runtime complexity is O(mf).

Table 9 compares the asymptotic complexity of our BFS-based algorithms against
some well-known maximum flow BFS-based algorithms. Our BFS-based algorithms are
faster, because they leverage the potentially unbounded parallelism inherent in P systems.

Table 9: Asymptotic worst-case complexity: classical BFS-based algorithms (steps),
P system DFS-based algorithms [DKN10] (P steps) and our P system BFS-based al-
gorithms (P steps).

Edmonds-Karp [EK72] O(m2n) steps
Dinic [Din70] O(mn2) steps
Goldberg and Tarjan [GT88] O(nm log n2/m) steps
P System DFS-based [DKN10] O(md) P steps
P System BFS-based [here] O(mf) P steps

Theorem 5 indicatess the worst-case upper bound, not the typical case. A typical
search path does not use all m arcs. Also, the algorithm frequently finds more than
one augmenting paths in the same search round, thus the number of rounds is typically
much smaller than f . Therefore, the average runtime is probably much less than than
the upper bound indicated by Theorem 5. Empirical results, obtained with our in-house
simulator (still under development) support this observation.
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Figure 10: Empirical tests of BFS-based and DFS-based algorithms.

Table 11, empirically compares the performance of our BFS-based algorithms against
the DFS-based algorithms [DKN10], for the scenarios of Figure 10. The empirical results
show that BFS-based algorithms take fewer P steps than DFS-based algorithms. The
performance is, as expected, influenced by the number of nodes and the density of the
digraph. Typically, the ratio of BFS:DFS decreases even more, with the complexity of
the digraph. We conclude that, the empirical complexity is substantially smaller than
the asymptotic worst-case complexity indicated by Theorem 5.

Table 11: Empirical complexity of BFS-based and DFS-based algorithms (P steps).
Test BFS Empirical Complexity DFS Empirical Complexity
Case m f = fe, fn B(m, f) Edge-disjoint Node-disjoint Edge-disjoint Node-disjoint
(a) 10 3 151 44 45 63 62
(b) 9 2 106 24 24 61 59
(c) 24 4 410 66 75 241 194

8 Conclusions

We proposed the first BFS-based P system solutions for the edge- and node-disjoint
paths problems. As expected, because of potentially unlimited parallelism inherent in
P systems, our P system algorithms compare favourably with the traditional BFS-based
algorithms. Empirical results show that, in terms of P steps, our BFS-based algorithms
outperform the previously introduced DFS-based algorithms [DKN10].

Several interesting questions and directions remain open. Can we solve this problem
using a restricted P system without states, without sacrificing the current descriptive and
performance complexity? What is the average complexity of our BFS-based algorithms?
How much can we speedup the existing DFS-based algorithms, by use more efficient
distributed DFS algorithms? An interesting avenue is to investigate a limited BFS design,
in fact, a mixed BFS-DFS solution, which combines the advantages of both BFS and
DFS. Finally, another direction is to investigate disjoint paths solutions on P systems
with asynchronous semantics, where additional speedup is expected.
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