
CDMTCS
Research
Report
Series

To a Mathematical Theory of
Evolution and Biological
Creativity

Gregory Chaitin
IBM Watson Research Center, NY, USA

CDMTCS-391
September 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

To a mathematical theory of evolution
and biological creativity

Gregory Chaitin∗

Draft September 30, 2010

Abstract

We present an information-theoretic analysis of Darwin’s theory of

evolution, modeled as a hill-climbing algorithm on a fitness landscape.

Our space of possible organisms consists of computer programs, which

are subjected to random mutations. We study the random walk of in-

creasing fitness made by a single mutating organism. In two different

models we are able to show that evolution will occur and to characterize

the rate of evolutionary progress, i.e., the rate of biological creativity.

Key words and phrases: metabiology, evolution of mutating software,

random walks in software space, algorithmic information theory

1 Introduction

For many years we have been disturbed by the fact that there is no fundamental
mathematical theory inspired by Darwin’s theory of evolution [1, 2, 3, 4, 5, 6,
7, 8, 9]. This is the fourth paper in a series [10, 11, 12] attempting to create
such a theory.

In a previous paper [10] we did not yet have a workable mathematical frame-
work: We were able to prove two not very impressive theorems, and then the
way forward was blocked. Now we have what appears to be a good mathemat-
ical framework, and have been able to prove a number of theorems. Things
are starting to work, things are starting to get interesting, and there are many
technical questions, many open problems, to work on.

So this is a working paper, a progress report, intended to promote interest
in the field and get others to participate in the research. There is much to be
done.

In order to present the ideas as clearly as possible and not get bogged down
in technical details, the material is presented more like a physics paper than a
math paper. Estimates are at times rather sloppy. We are trying to get an idea
of what is going on. The arguments concerning the basic math framework are
however very precise; that part is done more or less like a math paper.

∗IBM T. J. Watson Research Center, Yorktown Heights, gjchaitin@gmail.com.

1

2 History of Metabiology

In the first paper in this series [10] we proposed modeling biological evolution by
studying the evolution of randomly mutating software—we call this metabiol-

ogy. In particular, we proposed considering a single mutating software organism
following a random walk in software space of increasing fitness. Besides that
the main contribution of [10] was to use the Busy Beaver problem to challenge
organisms into evolving. The larger the positive integer that a program names,
the fitter the program.

And we measured the rate of evolutionary progress using the Busy Beaver
function BB(N) = the largest integer that can be named by an N -bit program.
Our two results employing the framework in [10] are that

• with random mutations, random point mutations, we will get to fitness
BB(N) in time exponential in N (evolution by exhaustive search) [10, 11],

• whereas by choosing the mutations by hand and applying them in the
right order, we will get to fitness BB(N) in time linear in N (evolution by
intelligent design) [11, 12].

We were unable to show that cumulative evolution will occur at random; ex-
haustive search starts from scratch each time.1

This paper advances beyond the previous work on metabiology [10, 11, 12, 13]
by proposing a better concept of mutation. Instead of changing, deleting or
inserting one or more adjacent bits in a binary program, we now have high-level
mutations: we can use an arbitrary algorithm M to map the organism A into the
mutated organism A� = M(A). Furthermore, the probability of the mutation
M is now furnished by algorithmic information theory: it depends on the size
in bits of the self-delimiting program for M . It is very important that we now
have a natural, universal probability distribution on the space of all possible
mutations, and that this is such a rich space.

Using this new notion of mutation, these much more powerful mutations,
enables us to accomplish the following:

• We are now able to show that random evolution will become cumulative
and will reach fitness BB(N) in time that grows roughly as N2, so that
random evolution behaves much more like intelligent design than it does
like exhaustive search.2

• We also have a version of our model in which we can show that hierar-
chical structure will evolve, a conspicuous feature of biological organisms
that previously [10] was beyond our reach.

1The Busy Beaver function BB(N) grows faster than any computable function. That
evolution is able to “compute” the uncomputable function BB(N) is evidence of creativity
that cannot be achieved mechanically. This is possible only because our model of evolu-
tion/creativity utilizes an uncomputable Turing oracle. Our model utilizes the oracle in a
highly constrained manner; otherwise it would be easy to calculate BB(N).

2Most unfortunately, it is not yet demonstrated that random evolution cannot be as fast
as intelligent design.

2

This is encouraging progress, and suggests that we may now have the correct
version of these biology-inspired concepts. However there are many serious
lacunae in the theory as it currently stands. It does not yet deserve to be called
a mathematical theory of evolution and biological creativity ; at best, it is a sketch
of a possible direction in which such a theory might go.

On the other hand, the new results are encouraging, and we feel it would be
inappropriate to sit on these results until all the lacunae are filled. After all,
that would take an entire book, since metabiology is, or will hopefully become,
a rich and entirely new field.

That said, the reader will understand that this is a working paper, a progress
report, to show the direction in which the theory is developing, and to indicate
problems that need to be solved in order to advance, in order to take the next
step. We hope that this paper will encourage others to participate in developing
metabiology and exploring its potential.

3 Modeling Evolution

3.1 Software Organisms

In this paper we follow a metabiological [10, 11, 12, 13] approach: Instead of
studying the evolution of actual biological organisms we study the evolution
of software subjected to random mutations. In order to do this we use tools
from algorithmic information theory (AIT) [13, 14, 15, 16, 17, 18, 19]; to fully

understand this paper expert understanding of AIT is unfortunately

necessary (see the outline in the Appendix).
As our programming formalism we employ one of the optimal self-delimiting

binary universal Turing machines U of AIT [14], and also, but only in Section
7, a primitive FORTRAN-like language that is not universal.

So our organisms consist on the one hand of arbitrary self-delimiting binary
programs p for U , or on the other hand of certain FORTRAN-like computer
programs. These are the respective software spaces in which we shall be working,
and in which we will study hill-climbing random walks.

3.2 The Hill-Climbing Algorithm

In our models of evolution, we define a hill-climbing random walk as follows:
We start with a single software organism A and subject it to random mutations
until a fitter organism A� is obtained, then subject that organism to random
mutations until an even fitter organism A�� is obtained, etc. In one of our
models, organisms calculate natural numbers, and the bigger the number, the
fitter the organism. In the other, organisms calculate functions that map a
natural number into another natural number, and the faster the function grows,
the fitter the organism.

In this connection, here is a useful piece of terminology: A mutation M
succeeds if A� = M(A) is fitter than A; otherwise M is said to fail.

3

3.3 Fitness

In order to get our software organisms to evolve it is important to present them
with a challenge, to give them something difficult to do. Three well-known
problems requiring unlimited amounts of mathematical creativity are:

• Model A: Naming large natural numbers (non-negative integers) [20, 21,
22, 23],

• Model B: Defining extremely fast-growing functions [24, 25, 26],

• Model C: Naming large constructive Cantor ordinal numbers [26, 27].

So a software organism will be judged to be more fit if it calculates a larger
integer (our Model A, Sections 4, 5, 6), or if it calculates a faster-growing
function (our Model B, Section 7). Naming large Cantor ordinals (Model C) is
left for future work, but is briefly discussed in Section 8.

3.4 What is a Mutation?

Another central issue is the concept of a mutation. Biological systems are
subjected to point mutations, localized changes in DNA, as well as to high level
mutations such as copying an entire gene and then introducing changes in it.
Initially [10] we considered mutating programs by changing, deleting or adding
one or more adjacent bits in a binary program, and postponed working with
high-level source language mutations.

Here we employ an extremely general notion of mutation: A mutation is
an arbitrary algorithm that transforms, that maps the original organism into
the mutated organism. It takes as input the organism, and produces as output
the mutated organism. And if the mutation is an n-bit program, then it has
probability 2−n. In order to have the total probability of mutations be ≤ 1 we
use the self-delimiting programs of AIT [14].3

3.5 Mutation Distance

A second crucial concept is mutation distance, how difficult it is to get from
organism A to organism B. We measure this distance in bits and it is defined
to be − log2 of the probability that a random mutation will change A to B.
Using AIT [14, 15, 16], we see that this is nearly H(B|A), the size in bits of
the smallest self-delimiting program that takes A as input and produces B as

3The total probability of mutations is actually < 1, so that each time we pick a mutation
at random, there is a fixed probability that we will get the null mutation M(A) = A, which
always fails.

4

output.4 More precisely,

H(B|A) = − log2 P (B|A) + O(1) = − log2




�

U(p|A)=B

2−|p|



 + O(1). (1)

Here |p| denotes the size in bits of the program p, and U(p|A) denotes the output
produced by running p given input A on the computer U until p halts.

The definition of H(B|A) that we employ here is somewhat different from
the one that is used in AIT: a mutation is given A directly, it is not given a
minimum-size program for A. Nevertheless, (1) holds [14].

Interpreting (1) in words, it is nearly the same to consider the simplest mu-
tation from A to B, which is H(B|A) bits in size and has probability 2−H(B|A),
as to sum the probability over all the mutations that carry A into B.

Note that this distance measure is not symmetric. For example, it is easy
to change (X,Y) into Y , but not vice versa.

3.6 Hidden Use of Oracles

There are two hidden assumptions here. First of all, we need to use an oracle
to compare the fitness of an organism A with that of a mutated organism A�.
This is because a mutated program may not halt and thus never produces a
natural number. Once we know that the original organism A and the mutated
organism A� both halt, then we can run them to see what they calculate and
which is fitter.

In the case of fast-growing computable functions, an oracle is definitely
needed to see if one grows faster than another; this cannot be determined by
running the primitive recursive functions [29] calculated by the FORTRAN-like
programs that we will study later, in Section 7.

Just as oracles would be needed to actually find fitter organisms, they are also
necessary because a random mutation may never halt and produce a mutated
organism. So to actually apply our random mutations to organisms we would
need to use an oracle in order to avoid non-terminating mutations.

4 Model A (Naming Integers) Exhaustive Search

4.1 The Busy Beaver Function

The first step in this metabiological approach is to measure the rate of evolution.
To do that, we introduce this version of the Busy Beaver function:

BB(N) = the biggest natural number named by a ≤ N -bit program.
4Similarly, H(B) denotes the size in bits of the smallest self-delimiting program for B that

is not given A. H(B) is called the complexity of B, and H(B|A) is the relative complexity of
B given A.

5

More formally,
BB(N) = max

H(k)≤N
k.

Here the program-size complexity or the algorithmic information content H(k)
of k is the size in bits of the smallest self-delimiting program p without input
for calculating k:

H(k) = min
U(p)=k

|p|.

Here again |p| denotes the size in bits of p, and U(p) denotes the output produced
by running the program p on the computer U until p halts.

4.2 Proof of Theorem 1 (Exhaustive Search)

Now, for the sake of definiteness, let’s start with the trivial program that directly
outputs the positive integer 1, and apply mutations at random.5 Let’s define
the mutation time to be n if we have tried n mutations, and the organism time

to be n if there are n successive organisms of increasing fitness so far in our
infinite random walk.

From AIT [14] we know that there is an N +O(1)-bit mutation that ignores
its input and produces as output a ≤ N -bit program that calculates BB(N).
This mutation M has probability 2−N+O(1) and on the average, it will occur at
random every 2N+O(1) times a random mutation is tried. Therefore:

Theorem 1 The fitness of our organism will reach BB(N) by mutation time

2N . In other words, we will achieve N bits of biological/mathematical creativity

by time 2N . Each successive bit of creativity takes twice as long as the previous

bit did.6

More precisely, the probability that this should fail to happen, the probabil-
ity that M has not been tried by time 2N , is

�
1− 1

2N

�2N

→ e−1 ≈ 1
2.7

<
1
2
.

And the probability that it will fail to happen by mutation time K2N is < 1/2K .
This is the worst that evolution can do. It is the fitness that organisms

will achieve if we are employing exhaustive search on the space of all possible
organisms. Actual biological evolution is not at all like that. The human genome
has 3× 109 bases, but in the mere 4× 109 years of life on this planet only a tiny
fraction of the total enormous number 43×109

of sequences of 3× 109 bases can
have been tried. In other words, evolution is not ergodic.

5The choice of initial organism is actually unimportant.
6Instead of bits of creativity one could perhaps refer to bits of inspiration; said inspiration

of course is ultimately coming through/from our oracle, which keeps us from getting stuck on
non-terminating programs.

6

5 Model A (Naming Integers) Intelligent Design

5.1 Another Busy Beaver Function

If we could choose our mutations intelligently, evolution would be much more
rapid. Let’s use the halting probability Ω [19] to show just how rapid. First
we define a slightly different Busy Beaver function BB� based on Ω. Consider a
fixed recursive/computable enumeration {pi : i = 0, 1, 2 . . .} without repetitions
of all the programs without input that halt when run on U . Thus

0 < Ω = ΩU =
�

i

2−|pi| < 1 (2)

and we get the following sequence Ω0 = 0 < Ω1 < Ω2 . . . of lower bounds on Ω:

ΩN =
�

i<N

2−|pi|. (3)

In (2) and (3) |p| denotes the size in bits of p, as before.
We define BB�(K) to be the least N for which the first K bits of the base-

two numerical value of ΩN are correct, i.e., the same as the first K bits of the
numerical value of Ω. BB�(K) exists because we know from AIT [14] that Ω is
irrational, so Ω = .010000 is impossible and there is no danger that ΩN will be
of the form .0011111 with 1’s forever.

Note that BB and BB
�
are approximately equal. For we can calculate

BB�(N) if we are given N and the first N bits of Ω. Therefore

BB�(N) ≤ BB(N + H(N) + c) = BB(N + O(log N)).

Furthermore, if we knew N and any M ≥ BB�(N), we could calculate the
string ω of the first N bits of Ω, which according to AIT [14] has complexity
H(ω) > N − c�, so

N − c� < H(ω) ≤ H(N) + H(M) + c��.

Therefore BB�(N) and all greater than or equal numbers M have complexity
H(M) > N − H(N) − c� − c��, so BB�(N) must be greater than the biggest
number M0 with complexity H(M0) ≤ N −H(N)− c� − c��. Therefore

BB�(N) > BB(N −H(N)− c� − c��) = BB(N + O(log N)).

5.2 Improving Lower Bounds on Ω

Our model consists of arbitrary mutation computer programs operating on ar-
bitrary organism computer programs. To analyze the behavior of this system
(Model A), however, we shall focus on a select subset: Our organisms are lower
bounds on Ω, and our mutations increase these lower bounds.

We are going to use these same organisms and mutations to analyze both
intelligent design (Section 5.3) and cumulative evolution at random (Section 6).
Think of Section 5.3 versus Section 6 as counterpoint.

7

5.2.1 Organism Pρ — Lower Bound ρ on Ω

Now we use a bit string ρ to represent a dyadic rational number in [0, 2) =
{0 ≤ x < 2}; ρ consists of the base-two units “digit” followed by the base-two
expansion of the fractional part of this rational number.

There is a self-delimiting prefix πΩ that given a bit string ρ that is a lower
bound on Ω, calculates the first N such that Ω > ΩN ≥ ρ, where ΩN is defined as
in (3).7 If we concatenate the prefix πΩ with the string of bits ρ, and insert 0|ρ|1
in front of ρ in order to make everything self-delimiting, we obtain a program
Pρ for this N .

We will now analyze the behavior of Model A by using these organisms of
the form

Pρ = πΩ 0|ρ|1ρ. (4)

To repeat, the output of Pρ, and therefore its fitness φPρ , is determined as
follows:

U(Pρ) = the first N for which
�

i<N

2−|pi| = ΩN ≥ ρ. (5)

This fitness will be ≥ BB�(K) if ρ < Ω and the first K bits of ρ are the correct
base-two numerical value of Ω. Pρ will fail to halt if ρ > Ω.8

5.2.2 Mutation Mk — Lower Bound ρ on Ω Increased by 2−k

Consider the mutations Mk that do the following. First of all, Mk computes
the fitness φ of the current organism A by running A to determine the integer
φ = φA that A names. All that Mk takes from A is its fitness φA. Then
Mk computes the corresponding lower bound on Ω:

ρ =
�

i<φ

2−|pi| = Ωφ.

Here {pi} is the standard enumeration of all the programs that halt when run
on U that we employed in Section 5.1. Then Mk increments the lower bound ρ
on Ω by 2−k:

ρ� = ρ + 2−k.

In this way Mk obtains the mutated program

A� = Pρ� .

A� will fail to halt if ρ� > Ω. If A� does halt, then A� = Mk(A) = Pρ� will have
fitness N(see (5)) greater than φA = φ because ρ� > ρ = Ωφ, so more halting
programs are included in the sum (3) for ΩN , which therefore has been extended
farther:

[ΩN ≥ ρ� > ρ = Ωφ] =⇒ [N > φ].

Therefore if Ω > ρ� = ρ + 2−k
, then Mk increases the fitness of A.

If ρ� > Ω, then Pρ� = Mk(A) never halts and is totally unfit.

7That ρ �= Ω follows from the fact that Ω is irrational.
8That ρ �= Ω follows from the fact that Ω is irrational.

8

5.3 Proof of Theorem 2 (Intelligent Design)

Please note that in this toy world, the “intelligent designer” is the author of
this paper, who chooses the mutations optimally in order to get his creatures
to evolve.

Let’s now start with the computer program Pρ with ρ = 0. In other words,
we start with a lower bound on Ω of zero.

Then for k = 1, 2, 3 . . . we try applying Mk to Pρ. The mutated organism
Pρ� = Mk(Pρ) will either fail to halt, or it will have higher fitness than our
previous organism and will replace it. Note that in general ρ� �= ρ + 2−k,
although it could conceivably have that value. Mk will from Pρ take only its
fitness, which is the first N such that ΩN ≥ ρ.

ρ� = ΩN + 2−k ≥ ρ + 2−k.

So ρ� is actually equal to a lower bound on Ω, ΩN , plus 2−k. Thus Mk will
attempt to increase a lower bound on Ω, ΩN , by 2−k. Mk will succeed if Ω > ρ�.
Mk will fail if ρ� > Ω. This is the situation at the end of stage k. Then we
increment k and repeat. The lower bounds on Ω will get higher and higher.

More formally, let O0 = Pρ with ρ = 0. And for k ≥ 1 let

Ok =
�

Ok−1 if Mk fails,
Mk(Ok−1) if Mk succeeds.

Each Ok is a program of the form Pρ with Ω > ρ.
At the end of stage k in this process the first k bits of ρ will be exactly the

same as the first k bits of Ω, because at that point all together we have tried
summing 1/2+1/4+1/8 · · ·+1/2k to ρ. In essence, we are using an oracle

to determine the value of Ω by successive interval halving.
9

In other words, at the end of stage k the first k bits of ρ in Ok are correct.
Hence:

Theorem 2 By picking our mutations intelligently rather than at random, we

obtain a sequence ON of software organisms with non-decreasing fitness10 for

which the fitness of each organism is ≥ BB�(N). In other words, we will achieve

N bits of biological/mathematical creativity in mutation time linear in N . Each

successive bit of creativity takes about as long as the previous bit did.

However, successive mutations must be tried at random in our evolution
model; they cannot be chosen deliberately. We see in these two theorems two
extremes: Theorem 1, brainless exhaustive search, and Theorem 2, intelligent
design. What can real, random evolution actually achieve? We shall see that
the answer is closer to Theorem 2 than to Theorem 1. We will achieve fitness

9That this works is easy to see visually. Think of the unit interval drawn vertically, with
0 below and 1 above. The intervals are being pushed up after being halved, but it is still the
case that Ω remains inside each halved interval, even after it has been pushed up.

10Note that this is actually a legitimate fitness increasing (non-random) walk because the
fitness increases each time that ON changes, i.e., each time that ON+1 �= ON .

9

BB�(N) in time roughly order of N2. In other words, each successive bit of
creativity takes an amount of time which increases linearly in the number of
bits.

Open Problem 1 Is this the best that can be done by picking the mutations

intelligently rather than at random? Or can creativity be even faster than linear?

Does each use of the oracle yield only one bit of creativity? 11

Open Problem 2 In Theorem 2 how fast does the size in bits of the organism

ON grow? By using entirely different mutations intelligently, would it be possible

to have the size in bits of the organism ON grow linearly, or, alternatively, for

the mutation distance between ON and ON+1 to be bounded, and still achieve

the same rapid growth in fitness?

Open Problem 3 In Theorem 2 how many different organisms will there be

by mutation time N? I.e., on the average how fast does organism time grow as

a function of mutation time?

6 Model A (Naming Integers) Cumulative Evolution
at Random

Now we shall achieve what Theorem 2 achieved by intelligent design, by using
randomness instead. Since the order of our mutations will be random, not
intelligent, there will be some duplication of effort and creativity is

delayed, but not overmuch.
In other words, instead of using the mutations Mk in a predetermined order,

they shall be picked at random, and also mixed together with other mutations
that increase the fitness.

As you will recall (Section 5.2), a larger and larger positive integer is equiv-
alent to a better and better lower bound on Ω. That will be our clock, our
memory. We will again be evolving better and better lower bounds ρ on Ω and
we shall make use of the organisms Pρ as before ((4), Section 5.2.1). We will
also use again the mutations Mk of Section 5.2.2.

Let’s now study the behavior of the random walk in Model A if we start with
an arbitrary program A that has a fitness, for example, the program that is the
constant 0, and apply mutations to it at random, according to the probability
measure on mutations determined by AIT [14], namely that M has probability
2−H(M).12 So with probability one, every mutation will be tried infinitely

often; M will be tried roughly every 2H(M) mutation times.
At any given point in this random walk, we can measure our progress to Ω

by the fitness φ = φA of our current organism A and the corresponding lower
11Yes, only one bit of creativity, otherwise Ω would be compressible. In fact, the sequence

of oracle replies must be incompressible.
12This is a convenient lower bound on the probability of a mutation. A more precise value

for the probability of jumping from A to A� is 2−H(A�|A).

10

bound Ωφ = ΩφA on Ω. Since the fitness φ can only increase, the lower bound
Ωφ can only get better.

In our analysis of what will happen we focus on the mutations Mk; other
mutations will have no effect on the analysis. They are harmless and can be
mixed in together with the Mk. By increasing the fitness, they can only make
Ωφ converge to Ω more quickly.

We also need a new mutation M∗. M∗ doesn’t get us much closer to Ω,
it just makes sure that our random walk will contain infinitely many of the
programs Pρ. M∗ will be tried roughly periodically during our random walk.
M∗ takes the current lower bound Ωφ = ΩφA on Ω, and produces

A� = M∗(A) = PΩ1+φA
.

A� has fitness 1 greater than the fitness of A and thus mutation M∗ will always
succeed, and this keeps lots of organisms of the form Pρ in our random walk.

Let’s now return to the mutations Mk, each of which will also have to be
tried infinitely often in the course of our random walk.

The mutation Mk will either have no effect because Mk(A) fails to halt,
which means that we are less than 2−k away from Ω, that is, ΩφA is less than
2−k away from Ω, or Mk will have the effect of incrementing our lower bound
ΩφA on Ω by 2−k. As more and more of these mutations Mk are tried at
random, eventually, purely by chance, more and more of the beginning of ΩφA

will become correct (the same as the initial bits of Ω). Meanwhile, the fitness φA

will increase enormously, passing BB�(n) as soon as the first n bits of ΩφA are
correct. And soon afterwards, M∗ will package this in an organism A� = PΩ1+φA

.
How long will it take for all this to happen? I.e., how long will it take to try

the Mk for k = 1, 2, 3, . . . , n and then try M∗? We have

H(Mk) ≤ H(k) + c.

Therefore mutation Mk has probability

≥ 2−H(k)−c >
1

c�k(log k)1+�
(6)

since �

k

1
k(log k)1+�

converges.13 The mutation Mk will be tried in time proportional to 1 over the
probability of its being tried, which by (6) is approximately upper bounded by

ξ(k) = c��k(log k)1+�. (7)

On the average, from what point on will the first n bits of Ωφ = ΩφA be the
same as the first n bits of Ω? We can be sure this will happen if we first try
M1, then afterwards M2, then M3, etc. through Mn, in that order. Note that

13We are using here one of the basic theorems of AIT [14].

11

if these mutations are tried in the wrong order, they will not have the desired
effect. But they will do no harm either, and eventually will also be tried in
the correct order. Note that it is conceivable that none of these Mk actually
succeed, because of the other random mutations that were in the mix, in the
melee. These other mutations may already have pushed us within 2−k of Ω. So
these Mk don’t have to succeed, they just have to be tried. Then M∗ will make
sure that we get an organism of the form Pρ with at least n bits of ρ correct.

Hence:

Expected time to try M1 ≤ ξ(1)
Expected time to then afterwards try M2 ≤ ξ(2)
Expected time to then afterwards try M3 ≤ ξ(3)

. . .

Expected time to then afterwards try Mn ≤ ξ(n)
Expected time to then afterwards try M∗ ≤ c���

∴ Expected time to try M1, M2, M3 . . . Mn, M∗ in order ≤
�

k≤n ξ(k) + c���

Using (7), we see that this is our extremely rough “ball-park” estimate on a
mutation time sufficiently big for the first n bits of ρ in Pρ = M∗(A) to be the
correct bits of Ω:

�

k≤n

ξ(k) + c��� =
�

k≤n

c��k(log k)1+� + c��� = O(n2(log n)1+�). (8)

Hence we expect that in time O(n2(log n)1+�) our random walk will include an
organism Pρ in which the first n bits of ρ are correct, and so Pρ will compute
a positive integer ≥ BB�(n), and thus at this time the fitness will have to be at
least that big:

Theorem 3 In Model A with random mutations, the fitness of the organisms

Pρ = M∗(A) will reach BB�(N) by mutation time roughly N2.

Note that since the bits of ρ in the organisms Pρ = M∗(A) are becoming
better and better lower bounds on Ω, these organisms in effect contain their
evolutionary history. In Model A, evolution is cumulative, it does not

start over from scratch as in exhaustive search.

It should be emphasized that in the course of such a hill-climbing random
walk, with probability one every possible mutation will be tried infinitely often.
However the mutations Mk will immediately recover from perturbations and
set the evolution back on course. In a sense the system is self-organizing and
self-repairing. Similarly, the initial organism is irrelevant.

Also note that with probability one the time history or evolutionary pathway
(i.e., the random walk in Model A) will quickly grow better and better approx-
imations to all possible halting probabilities ΩU � (see (2)) determined by any

optimal universal self-delimiting binary computer U �, not just for our original
U . Furthermore, some mutations will periodically convert our organism into a

12

numerical constant for its fitness φ, and there will even be arbitrarily long chains
of successive numerical constant organisms φ, φ + 1, φ + 2 . . . The microstruc-
ture and fluctuations that will occur with probability one are quite varied and
should perhaps be studied in detail to unravel the full zoo of organisms and their
interconnections; this is in effect a kind of miniature mathematical ecology.

Open Problem 4 Study this mathematical ecology.

Open Problem 5 Improve the estimate (8) and get a better upper bound on

the expected time it will take to try M1, M2, M3 through Mn and M∗ in that

order. Besides the mean, what is the variance?

Open Problem 6 Separate random evolution and intelligent design: We have

shown that random evolution is fast, but can you prove that it cannot be as fast

as intelligent design? I.e., we have a lower bound on the speed of random evo-

lution, and now we also need an upper bound. This is probably easier to do if

we only consider random mutations Mk and keep other mutations from mixing

in.

Open Problem 7 In Theorem 3 how fast does the size in bits of the organism

Pρ grow? Is it possible to have the size in bits of the organism Pρ grow linearly

and still achieve the same rapid growth in fitness?

Open Problem 8 It is interesting to think of Model A as a conventional ran-

dom walk and to study the average mutation distance between an organism A
and its successor A�, its second successor A��, etc. In organism time ∆t how far

will we get from A on the average? What will the variance be?

7 Model B (Naming Functions)

Let’s now consider Model B. Why study Model B? Because hierarchical structure
is a conspicuous feature of actual biological organisms, but it is impossible to
prove that such structure must emerge by random evolution in Model A.

Why not? Because the programming language used by the organisms in
Model A is so powerful that all structure in the programs can be hidden. Con-
sider the programs Pρ defined in Section 5.2.1 and used to prove Theorems 2
and 3. As we saw in Theorem 3, these programs Pρ evolve without limit at
random. However, Pρ consists of a fixed prefix πΩ followed by a lower bound on
Ω, ρ, and what evolves is the lower bound ρ, data which has no visible hierarchi-
cal structure, not the prefix πΩ, code which has fixed, unevolving, hierarchical
structure.

So in Model A it is impossible to prove that hierarchical structure will emerge
and increase in depth. To be able to do this we must utilize a less powerful
programming language, one that is not universal and in which the hierarchical
structure cannot be hidden: the Meyer-Ritchie LOOP language [28].

13

We will show that the nesting depth of LOOP programs will increase without
limit, due to random mutations. This also provides a much more concrete
example of evolution than is furnished by our main model, Model A.

Now for the details.
We study the evolution of functions f(x) of a single integer argument x;

faster growing functions are taken to be fitter. More precisely, if f(x) and g(x)
are two such functions, f is fitter than g iff g/f → 0 as x→∞. We use an oracle
to decide if A� = M(A) is fitter than A; if not, A is not replaced by A�.14 The
programming language we are using has the advantage that program structure
cannot be hidden. It’s a programming language that is powerful enough to pro-
gram any primitive recursive function [29], but it’s not a universal programming
language.

To give a concrete example of hierarchical evolution, we use the extremely
simple Meyer-Ritchie LOOP programming language, containing only assign-
ment, addition by 1, do loops, and no conditional statements or subroutines.
All variables are natural numbers, non-negative integers. Here is an example of
a program written in this language:

// Exponential: 2 to the Nth power
// with only two nested do loops!
function(N) // Parameter must be called N.

M = 1
//
do N times

M2 = 0
// M2 = 2 * M
do M times

M2 = M2 + 1
M2 = M2 + 1

end do
M = M2

end do
// Return M = 2 to the Nth power.
return_value = M
// Last line of function must
// always set return_value.

end function

14An oracle is needed in order to decide whether g(x)/f(x) → 0 as x → ∞ and also to
avoid mutations M that never produce an A� = M(A). Furthermore, if a mutation produces
a syntactically invalid LOOP program A�, A� does not replace A.

14

More generally, let’s start with f0(x) = 2x:

function(N) // f_0(N)
M = 0
// M = 2 * N
do N times

M = M + 1
M = M + 1

end do
return_value = M

end function // end f_0(N)

Note that the nesting depth of f0 is 1.
And given a program for the function fk, here is how we program

fk+1(x) = fx
k (2) (9)

by increasing the nesting depth of the program for fk by 1:

function(N) // f_(k+1)(N)
M = 2
// do M = f_k(M) N times
do N times

N_ = M
// Insert program for f_k here
// with "function" and "end function"
// stripped and all variable names
// renamed to variable name_
M = return_value_

end do
return_value = M

end function // end f_(k+1)(N)

So following (9) we now have programs for

f0(x) = 2x, f1(x) = 2x, f2(x) = 222...

with x 2’s . . .

Note that a program in this language which has nesting depth 0 (no do loops)
can only calculate a function of the form (x + a constant), and that the depth
1 function f0(x) = 2x grows faster than all of these depth 0 functions. More
generally, it can be proven by induction [29] that a program in this language
with do loop nesting depth ≤ k defines functions that grow more slowly than
fk, which is defined by a depth k +1 LOOP program. This is the basic theorem
of Meyer and Ritchie [28] classifying the primitive recursive functions according
to their rates of growth.

Now consider the mutation M that examines a software organism A written
in this LOOP language to determine its nesting depth n, and then replaces A by
A� = fn(x), a function that grows faster than any LOOP function with depth
≤ n. Mutation M will be tried at random with probability ≥ 2−H(M). And so:

15

Theorem 4 In Model B, the nesting depth of a LOOP function will increase

by 1 roughly periodically, with an estimated mutation time of 2H(M) between

successive increments. Once mutation M increases the nesting depth, it will

remain greater than or equal to that increased depth, because no LOOP function

with smaller nesting depth can grow as fast.

Note that this theorem works because the nesting depth of a primitive re-
cursive function is used as a clock; it gives Model B memory that can be used
by intelligent mutations like M .

Open Problem 9 In the proof of Theorem 4, is the mutation M primitive

recursive, and if so, what is its LOOP nesting depth?

Open Problem 10 M can actually increase the nesting depth extremely fast.

Study this.

Open Problem 11 Formulate a version of Theorem 4 in terms of subroutine

nesting instead of do loop nesting. What is a good computer programming lan-

guage to use for this?

8 Remarks on Model C (Naming Ordinals)

Now let’s briefly turn to programs that compute constructive Cantor ordinal
numbers α [27]. From a biological point of view, the evolution of ordinals is
piquant, because they certainly exhibit a great deal of hierarchical structure.
Not, in effect, as we showed in Section 7 must occur in the genotype; here it is
automatically present in the phenotype.

Ordinals also seem like an excellent choice for an evolutionary model be-
cause of their fundamental role in mathematics15 and because of the mystique
associated with naming large ordinals, a problem which can utilize an unlimited
amount of mathematical creativity [26, 27]. Conventional ordinal notations can
only handle an initial segment of the constructive ordinals.

However there are two fundamentally different ways [27] to use algorithms
to name all such ordinals α:

• An ordinal is a program that given two positive integers, tells us which is
less than the other in a well-ordering of the positive integers with order
type α.

• An ordinal α is a program for obtaining that ordinal from below: If it
is a successor ordinal, as β + 1; if it is a limit ordinal, as the limit of a
fundamental sequence βk (k = 0, 1, 2 . . .).

This yields two different definitions of the algorithmic information content
or program-size complexity of a constructive ordinal:

15As an illustration of this, ordinals may be used to extend the function hierarchy fk of
Section 7 to transfinite k. For example, fω(x) = fx(x), fω+1(x) = fx

ω(2), fω+2(x) = fx

ω+1(2)
. . . fω×2(x) = fω+x(x), etc., an extension of (9).

16

H(α) = the size in bits of the smallest self-delimiting program
for calculating α.

We can now define this beautiful new version of the Busy Beaver function:

BBord(N) = max
H(α)≤N

α.

In order to make programs for ordinals α evolve, we now need to use a very
sophisticated oracle, one that can determine if a program computes an ordinal
and, given two such programs, can also determine if one of these ordinals is
less than the other. Assuming such an oracle, we get the following version of
Theorem 1, merely by using brainless exhaustive search:

Theorem 5 The fitness of our ordinal organism α will reach BBord(N) by mu-

tation time 2N .

Can we do better than this? The problem is to determine if there is some kind
of Ω number or other way to compress information about constructive ordinals
so that we can improve on Theorem 5 by proving that evolution will probably
reach BBord(N) in an amount of time which does not grow exponentially.

We suspect that Model C may be an example of a case in which cumula-

tive evolution at random does not occur. On the other hand, we are given an
extremely powerful oracle; maybe it is possible to take advantage of that. The
problem is open.

Open Problem 12 Improve on Theorem 5 or show that no improvement is

possible.

9 Conclusion

At this point we should look back and ask why this all worked. Mainly for
the following reason: We used an extremely rich space of possible mutations,
one that possess a natural probability distribution: the space of all possible
self-delimiting programs studied by AIT [14]. But the use of such powerful
mutational mechanisms raises a number of issues.

Presumably DNA is a universal programming language, but how sophisti-
cated can mutations be in actual biological organisms? In this connection, note
that evo-devo views DNA as software for constructing the embryo, and that
the change from single-celled to multicellular organisms is roughly like taking
a main program and making it into a subroutine, which is a fairly high-level
mutation. Could this be the reason that it took so long—on the order of 109

years—for this to happen?16

The issue of balance between the power of the organisms and the power
of the mutations is an important one. In the current version of the theory,
both have equal power, but as a matter of aesthetics it would be bad form for

16During most of the history of the earth, life was unicellular.

17

a proof to overemphasize the mutations at the expense of the organisms. In
future versions of the theory perhaps it will be desirable to limit the power of
mutations in some manner by fiat.

In this connection, note that there are two uses of oracles in this theory,
one to decide which of two organisms is fitter, and another to eliminate non-
terminating mutations. It is perfectly fine for a proof to be based on taking
advantage of the oracle for organisms, but taking advantage of the oracle for
mutations is questionable.

We have by no means presented in this paper a mathematical theory of
evolution and biological creativity comme il faut. But at this point in time we
believe that metabiology is still a possible contender for such a theory. The ulti-
mate goal must be to find in the Platonic world of mathematical ideas that ideal
model of evolution by natural selection which real, messy biological evolution
can but approach asymptotically in the limit from below.

We thank Prof. Cristian Calude of the University of Auckland for reading
a draft of this paper, for his helpful comments, and for providing the paper by
Meyer and Ritchie [28].

Appendix. AIT in a Nutshell

Programming languages are commonly universal, that is to say, capable of ex-
pressing essentially any algorithm.

In order to be able to combine subroutines, i.e., for algorithmic information
to be subadditive,

size of program to calculate x and y
≤ size of program to calculate x
+ size of program to calculate y,

it is important that programs be self-delimiting. This means that the universal
computer U reads a program bit by bit as required and there is no special
delimiter to mark the end of the program; the computer must decide by itself
where to stop reading.

More precisely, if programs are self-delimiting we have

H(x, y) ≤ H(x) + H(y) + c,

where H(. . .) denotes the size in bits of the smallest program for U to calculate
. . . , and c is the number of bits in the main program that reads and executes
the subroutine for x followed by the subroutine for y.

Besides giving us subadditivity, the fact that programs are self-delimiting
also enables us to talk about that probability P (x) that a program that is
generated at random will compute x when run on U .

Let’s now consider how expressive different programming languages can be.
Given a particular programming language U , two important things to consider

18

are the program-size complexity H(x) as a function of x, and the correspond-
ing algorithmic probability P (x) that a program whose bits are chosen using
independent tosses of a fair coin will compute x.

We are thus led to select a subset of the universal languages that minimize
H and maximize P ; one way to define such a language is to consider a universal
computer U that runs self-delimiting binary computer programs πC p defined as
follows:

U(πC p) = C(p).

In other words, the result of running on U the program consisting of the prefix
πC followed by the program p, is the same as the result of running p on the
computer C. The prefix πC tells U which computer C to simulate.

Any two such maximally expressive universal languages U and V will nec-
essarily have

|HU (x)−HV (x)| ≤ c

and
PU (x) ≥ PV (x)× 2−c, PV (x) ≥ PU (x)× 2−c.

It is in this precise sense that such a universal U minimizes H and maximizes
P .

For such languages U it will be the case that

H(x) = − log2 P (x) + O(1),

which means that most of the probability of calculating x is concentrated on
the minimum-size program for doing this, which is therefore essentially unique.
O(1) means that the difference between the two sides of the equation is order
of unity, i.e., bounded by a constant.

Furthermore, we have

H(x, y) = H(x) + H(y|x) + O(1).

Here H(y|x) is the size of the smallest program to calculate y from x.17 This tells
us that essentially the best way to calculate x and y is to calculate x and then
calculate y from x. In other words, the joint complexity of x and y is essentially
the same as the absolute complexity of x added to the relative complexity of y
given x.

This decomposition of the joint complexity as a sum of absolute and relative
complexities implies that the mutual information content

H(x : y) ≡ H(x) + H(y)−H(x, y),

which is the extent to which it is easier to compute x and y together rather than
separately, has the property that

H(x : y) = H(x)−H(x|y) + O(1) = H(y)−H(y|x) + O(1).
17It is crucial that we are not given x directly. Instead we are given a minimum-size program

for x.

19

In other words, H(x : y) is also the extent to which knowing y helps us to know
x and vice versa.

Last but not least, using such a maximally expressive U we can define the
halting probability Ω, for example as follows:

Ω =
�

2−|p|

summed over all programs p that halt when run on U , or alternatively

Ω� =
�

2−H(n)

summed over all positive integers n, which has a slightly different numerical
value but essentially the same paradoxical properties.

What are these properties? Ω is a form of concentrated mathematical cre-
ativity, or, alternatively, a particularly economical Turing oracle for the halting
problem, because knowing n bits of the dyadic expansion of Ω enables one to
solve the halting problem for all programs p which compute a positive integer
that are up to n bits in size. It follows that the bits of the dyadic expansion of
Ω are irreducible mathematical information; they cannot be compressed into a
theory smaller than they are.18

From a philosophical point of view, however, the most striking thing about
Ω is that it provides a perfect simulation in pure mathematics, where all truths
are necessary truths, of contingent, accidental truths—i.e., of truths such as
historical facts or biological frozen accidents.

Furthermore, Ω opens a door for us from mathematics to biology. The
halting probability Ω contains infinite irreducible complexity and in a sense
shows that pure mathematics is even more biological then biology itself, which
merely contains extremely large finite complexity. For each bit of the dyadic
expansion of Ω is one bit of independent, irreducible mathematical information,
while the human genome is merely 3× 109 bases = 6× 109 bits of information.

References

[1] D. Berlinski, The Devil’s Delusion, Crown Forum, 2008.

[2] S. J. Gould, Wonderful Life, Norton, 1990.

[3] N. Shubin, Your Inner Fish, Pantheon, 2008.

[4] M. Mitchell, Complexity, Oxford University Press, 2009.

[5] J. Fodor, M. Piattelli-Palmarini, What Darwin Got Wrong, Farrar, Straus
and Giroux, 2010.

[6] S. C. Meyer, Signature in the Cell, HarperOne, 2009.
18More precisely, it takes a formal axiomatic theory of complexity ≥ n− c (one requiring a

≥ n− c bit program to enumerate all its theorems) to enable us to determine n bits of Ω.

20

[7] J. Maynard Smith, Shaping Life, Yale University Press, 1999.

[8] J. Maynard Smith, E. Szathmáry, The Origins of Life, Oxford University
Press, 1999; The Major Transitions in Evolution, Oxford University Press,
1997.

[9] F. Hoyle, Mathematics of Evolution, Acorn, 1999.

[10] G. J. Chaitin, “Evolution of mutating software,” EATCS Bulletin 97

(February 2009), pp. 157–164.

[11] G. J. Chaitin, “Metaphysics, metamathematics and metabiology,” in H.
Zenil, Randomness Through Computation, World Scientific, in press. (Draft
at http://www.umcs.maine.edu/~chaitin/lafalda.pdf.)

[12] G. J. Chaitin, Mathematics, Complexity and Philosophy, Midas, in press.
(Draft at http://www.umcs.maine.edu/~chaitin/midas.html.) (See Chap-
ter 3, “Algorithmic Information as a Fundamental Concept in Physics,
Mathematics and Biology.”)

[13] G. J. Chaitin, Chapter “Complexity, Randomness” in Chaitin, Costa, Do-
ria, After Gödel, in preparation. (Draft at http://www.umcs.maine.edu/

~chaitin/bookgoedel_2.pdf.)

[14] G. J. Chaitin, “A theory of program size formally identical to information
theory,” J. ACM 22 (1975), pp. 329–340.

[15] G. J. Chaitin, Algorithmic Information Theory, Cambridge University
Press, 1987.

[16] G. J. Chaitin, Exploring Randomness, Springer, 2001.

[17] C. S. Calude, Information and Randomness, Springer-Verlag, 2002.

[18] M. Li, P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and

Its Applications, Springer, 2008.

[19] C. Calude, G. Chaitin, “What is a halting probability?,” AMS Notices 57

(2010), pp. 236–237.

[20] H. Steinhaus, Mathematical Snapshots, Oxford University Press, 1969, pp.
29–30.

[21] D. E. Knuth, “Mathematics and computer science: Coping with finiteness,”
Science 194 (1976), pp. 1235–1242.

[22] A. Hodges, One to Nine, Norton, 2008, pp. 246–249; M. Davis, The Uni-

versal Computer, Norton, 2000, pp. 169, 235.

[23] G. J. Chaitin, “Computing the Busy Beaver function,” in T. M. Cover, B.
Gopinath, Open Problems in Communication and Computation, Springer,
1987, pp. 108–112.

21

[24] G. H. Hardy, Orders of Infinity, Cambridge University Press, 1910. (See
Theorem of Paul du Bois-Reymond, p. 8.)

[25] D. Hilbert, “On the infinite,” in J. van Heijenoort, From Frege to Gödel,
Harvard University Press, 1967, pp. 367–392.

[26] J. Stillwell, Roads to Infinity, A. K. Peters, 2010.

[27] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability,
MIT Press, 1987. (See Chapter 11, especially Sections 11.7, 11.8 and the
exercises for these two sections.)

[28] A. R. Meyer, D. M. Ritchie, “The complexity of loop programs,” Proceed-

ings ACM National Meeting, 1967, pp. 465–469.

[29] C. Calude, Theories of Computational Complexity, North-Holland, 1988.
(See Chapters 1, 5.)

22

