
CDMTCS
Research
Report
Series

P Systems and the
Byzantine Agreement

Michael J. Dinneen
Yun-Bum Kim
Radu Nicolescu

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-375
January 2010 (slightly revised April 2010)

Centre for Discrete Mathematics and
Theoretical Computer Science

P Systems and the Byzantine Agreement

Michael J. Dinneen, Yun-Bum Kim and Radu Nicolescu
Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand

Abstract

We first propose a modular framework for recursive composition of P systems.
This modular approach provides encapsulation and information hiding, facilitat-
ing the design of P programs for complex algorithms. Using this framework, we
developed a P program that solves the classical version of the Byzantine agree-
ment problem, for N participants connected in a complete graph, according to
the well known Byzantine agreement algorithm based on EIG trees. We prove the
correctness of this modular composition and conclude with a list of open problems.

1 Introduction

This paper continues our study [15, 14, 9] of P systems [17, 18] as modelling tools for dis-
tributed applications and networking, initially motivated by the investigations of Ciobanu
et al. [8, 7]. We earlier proposed a new model for P systems, called hyperdag P systems
[13, 15], in short hP systems, which allows more flexible communications than tree-based
models, while preserving a strong hierarchical structure. To achieve our goals, this model
has subsequently evolved [16, 14, 9] and it offers the following distinct facilities: (a) it
extends the tree structure of classical P systems to directed acyclic graphs (dags); (b)
it augments the operational rules of neural P systems (nP systems) [17] with broadcast
facilities; (c) it refines the rewriting and transfer modes, associating these modes inde-
pendently to each rule, instead of state; and (d) it allows the creation of mobile channels,
which dynamically extend the structure of a considered P system model (analogous to
nerves which extend in a regenerating tissue or threads extended by spiders). We have no-
ticed that these adjustments, which enhance the model versatility, can also be retrofitted
to other P system models.

Using this model, we developed basic building blocks in [14] that are relevant for
network discovery (see also [11]): broadcast, convergecast, flooding, determine shortest
paths and other basic metrics (such as, the number of nodes, descendants, paths).

We studied the well known Firing Squad Synchronization Problem (FSSP), in the
framework of P systems [9]. We provided efficient solutions for the FSSP problem that
have wider applicability than previous solutions [4, 2].

Here, we continue this study to address the possible existence of cells that are arbi-
trarily faulty. A well-studied problem in this area is known as the Byzantine agreement

1

problem, first proposed in 1980 [20]: reliable computer systems (or networks) must be able
to handle malfunctioning components (or processes) that give conflicting information to
different parts of the system. Lamport et al.’s description [10] is very readable and this
problem has become one of the most studied problems in distributed computing—some
even consider it the “crown jewel” of distributed computing. Lynch covers many ver-
sions of this problem and their solutions, including a complete description of the classical
algorithm based on Exponential Information Gathering (EIG) trees [11].

Recent years have seen revived interest in this problem and its solutions, in a wide
variety of contexts [6, 1, 5, 12], including, for example, solutions for quantum computers
[3, 22]. To the best of our knowledge, no solution for P systems has been published. In
the context of P systems, this problem was briefly mentioned, without solutions [8, 7].
We believe that we provide the first P systems solution for this problem. Our solution is
based on the classical algorithm, using EIG trees.

In the course of this work, we realized that our framework was not versatile enough
for a reasonable design. Following Paun et al.’s proposal [19], we propose a new modular
framework, which supports encapsulation, information hiding and recursive composition.
Our proposal is compatible with any data structure based on directed arcs, i.e. it covers
cell-like P systems (based on trees), hP systems (based on dags) and nP systems (based
on digraphs).

The rest of the paper is organized as follows. Section 2 covers a few basic prelimi-
naries, then introduces our new modular framework, called P modules, and the recursive
composition of P modules. We describe the Byzantine agreement problem in detail in
Section 3, which also includes a small case study with four processes. Section 4 intro-
duces the classical Byzantine agreement algorithm based on EIG trees. In Section 5,
using our new modular framework, we model and develop the structure of a P systems
implementation of the Byzantine agreement problem. The rules used in our design are
described in Section 6. In Section 7, we prove the correctness of our modular design.
Finally, in Section 8, we summarize our results and discuss related open problems.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations: rela-
tions, graphs, nodes (vertices), arcs, directed graphs, dags, trees, alphabets, strings and
multisets [13].

We first recall a few basic concepts from combinatorial enumerations. The integer
range from m to n is denoted by [m,n], i.e. [m,n] = {m,m + 1, . . . , n}, if m ≤ n, and
[m,n] = ∅, if m > n. The set of permutations of n of length m is denoted by P (n,m),
i.e. P (n,m) = {π : [1,m] → [1, n] | π is injective}. A permutation π is represented by
the sequence of its values, i.e. π = (π1, π2, . . . , πm), and we will often abbreviate this
further as the sequence π = π1.π2 . . . πm. The sole element of P (n, 0) is denoted by ().
Given a subrange [p, q] of [1,m], we define a subpermutation π(p : q) ∈ P (n, q − p + 1)
by π(p : q) = (πp, πp+1, . . . , πq). The image of a permutation π, denoted by Im(π), is the
set of its values, i.e. Im(π) = {π1, π2, . . . , πm}. The concatenation of two permutations
is denoted by ⊕, i.e. given π ∈ P (n,m) and τ ∈ P (n, k), such that Im(π) ∩ Im(τ) = ∅,

2

π ⊕ τ = (π1, π2, . . . , πm, τ1, τ2, . . . , τk) ∈ P (n,m+ k).
The Byzantine agreement algorithm used later in this paper uses Exponential Infor-

mation Gathering (EIG) trees as a data structure. An EIG tree TN,L, N ≥ L ≥ 1, is
a labelled (ordered) rooted tree of height L that is defined recursively as follows. The
tree TN,1 is a rooted tree with 1 + N nodes, with root labelled by λ and its N leaves
labelled 1, 2, . . . , N , left to right. For L > 1, TN,L is a rooted tree with 1 + N |TN−1,L−1|
nodes (where |T | is the size of tree T), root λ, having N subtrees, where each subtree is
isomorphic with TN−1,L−1 and each subtree node is labelled by the least element of [1, N]
that is different from any ancestor node or any left sibling node. Thus, there is a bijective
correspondence between the permutations of P (N,L) and the sequences (concatenations)
of labels on all root-to-leaf paths of TN,L. See Figure 2 for an example of the EIG tree
T4,2.

We also assume familiarity with P systems [17, 18], nP systems [18] or hP systems [15].
Although the P systems considered here can be described in these classical frameworks,
we prefer to present them in a modular way, using a new definition, that subsumes their
essential features and provides facilities for recursive modular composition.

Definition 1 (P module). A P module is a system Π = (O,K, δ, P), where:

1. O is a finite non-empty alphabet of objects ;

2. K is a finite set of cells, where each cell, σ ∈ K, has the form σ = (Q, s0, w0, R),
where:

• Q is a finite set of states ;

• s0 ∈ Q is the initial state;

• w0 ∈ O∗ is the initial multiset of objects;

• R is a finite ordered set of multiset rewriting rules of the general form: s x→α

s′ x′ (u)βγ , where s, s′ ∈ Q, x, x′ ∈ O∗, u ∈ O∗, α ∈ {min,max}, β ∈ {↑, ↓
, l}, γ ∈ {one, spread, repl} ∪ K. If u = λ, this rule can be abbreviated as
s x→α s

′ x′. The meaning of operators α, β, γ is described at the end of this
definition.

3. δ is a binary relation on K, i.e. a set of parent-child structural arcs, representing
duplex or simplex communication channels between cells;

4. P is a subset of K, indicating the port cells, i.e. the only cells can be connected to
other modules.

The rules given by the ordered set R are attempted in weak priority order [18]. If
a rule is applicable, then it is applied and then the next rule is attempted (if any). If a
rule is not applicable, then the next rule is attempted (if any). Note that state-based
rules introduce an extra requirement for determining rule applicability, namely the target
state indicated on the right-hand side must be the same as the previously chosen target
state (if any) [17, 13, 15]. Rules are applied under the usual eager evaluation of their
left-hand sides and lazy evaluation of their right-hand sides [17].

3

With these conventions, one cell’s ordered set of rules becomes a sequence of pro-
gramming statements for a hypothetical P machine, where each rule includes a simple
if-then-fi conditional test for applicability and, as we see below, some while-do-od looping
facilities (max and repl operators), with some potential for in-cell parallelism, in addi-
tion to the more obvious inter-cell parallelism. State compatibility introduces another
intra-cell if-then-fi conditional test, this time between rules.

The rewriting operator α = min indicates that the rewriting is applied once, if the
rule is applicable; and α = max indicates that the rewriting is applied as many times
as possible, if the rule is applicable. Here, we intentionally avoid the α = par operator,
because we do not use it and it is more complicated to integrate it into a priority scheme.

The transfer operator β = ↑ indicates that the multiset u is sent “up” to the parents;
β = ↓ indicates that the multiset u is sent “down” to the children; and β = l indicates
that the multiset u is sent both “up” and “down”. For simplicity, here we intentionally
avoid other operators that we do not use in this paper, such as β =↔, which indicates
transfer to the siblings.

The additional transfer operator γ = one indicates that the multiset u is sent to one
recipient (parent or child, according to the direction indicated by β). The operator γ =
spread indicates that the multiset u is spread among an arbitrary number of recipients
(parents, children or parents and children, according to the direction indicated by β).
The operator γ = repl indicates that the multiset u is replicated and broadcast to all
recipients (parents, children or parents and children, according to the direction indicated
by β). The operator γ = σ ∈ K indicates that the multiset u is sent to σ, if cell σ is
in the direction indicated by β; otherwise, the multiset u is “lost”. By convention, if
cells have unique indices or are labelled and labels are locally unique, we can abbreviate
γ = σ by γ = i, where i is the index or label of σ.

The following examples illustrate the behavior of these operators. Consider a cell σ, in
state s and containing aa. Consider the potential application of a rule s a→α s

′ b (c)βγ ,
by looking at specific values for α, β, γ operators:

• The rule s a →min s
′ b (c)↑repl can be applied and, after its application, cell σ will

contain ab and a copy of c will be sent to each of σ’s parents.

• The rule s a→max s
′ b (c)↑repl can be applied and, after being applied twice, cell σ

will contain bb and a copy of cc will be sent to each of σ’s parents.

• The rule s a→min s
′ b (c)↓σ′ (where σ′ ∈ K), can be applied and, after its applica-

tion, cell σ will contain ab and a copy of c will be sent to σ′, if σ′ appears among
the children of σ, otherwise, this c will be lost.

• The rule s a→max s
′ b (c)↓σ′ (where σ′ ∈ K) can be applied and, after being applied

twice, cell σ will contain bb and a copy of cc will be sent to σ′, if σ′ appears among
the children of σ, otherwise, this cc will be lost.

In this paper, we are only interested in deterministic solutions, and we will exclusively
use the min, max, repl, and K operators, and avoid operators with a higher potential
for non-determinism, such as par, one, spread.

4

By default, unless specifically mentioned, the channels are duplex, allowing simultane-
ous transmissions from both ends. Simplex channels are explicitly specified, and indicate
a single open direction, either from parent to child, or from child to parent (there is
no necessary relation between the structural directions and communication direction);
messages sent in the other direction are “lost”.

This definition of P module subsumes several earlier definitions of P systems, hP sys-
tems and nP systems. If δ is a tree, then P is essentially a tree-based P system (which
can also be interpreted as a cell-like P system). If δ is a dag, then P is essentially an
hP system. If δ is a digraph, then P is essentially an nP system.

Given an arbitrary finite set of P modules, we can construct a higher level P module
by creating channels between ports of the given P modules. This construction requires
that the original P modules have disjoint cells.

Consider a finite family of n P modules, P = {Πi | i ∈ [1, n]}, where Πi =
(Oi, Ki, δi, Pi), i ∈ [1, n]. This family P is cell-disjoint, if their cell sets are disjoint,
i.e. Ki ∩Kj = ∅, for i, j ∈ [1, n]. If required, any such family can be made cell-disjoint,
by a deep copy process, which clones all cells and, as a convenience, automatically allo-
cates successive indices to cloned cells (e.g., starting from cell σ, the first cloned cell is
σ1, the second is σ2, etc).

Definition 2 (P module composition). The P module Ψ = (O,K, δ, P) is a composition
of the P module family P , if:

• P is cell-disjoint,

• O =
⋃
i∈[1,n] Oi,

• K =
⋃
i∈[1,n] Ki,

• δ = δ′ ∪⋃
i∈[1,n] δi, where δ′ is a binary relation on

⋃
i∈[1,n] Pi,

• P ⊆ ⋃
i∈[1,n] Pi.

In this case, the P modules in P are called components of Ψ.

When defining a new P module composition, we only need two items: (1) the addi-
tional δ′ relation and (2) the remaining port set P . To simplify the discourse, we will use
this approach, and omit the description of the other components, which are always the
same in any P module composition.

This modular approach provides encapsulation, information hiding and recursive com-
position, facilitating the design of P programs for complex algorithms.

The following definition embodies the idea of a P system with rules which depend on
generic objects, which can be specified at a later stage.

Definition 3 (Generic P module). A generic P module is a system Π〈x1, x2, . . . , xn〉
= (O,K, δ, P), where its generic parameters, x1, x2, . . . , xn, designate fixed, but yet un-
specified, objects. These generic parameters can be used as additional objects in the
definition of its rules and must be instantiated to actual objects in O, before the rules
can be applied. For each cell, its rule sequence is also generic on 〈x1, x2, . . . , xn〉, empha-
sizing that these additional symbols can be used as objects.

5

Instantiation is indicated by assigning specific objects to generic parameter names,
and is accomplished by an automatic deep copy plus a textual substitution of the generic
parameter names by their associated specific objects. We accept both total instantiations,
which fix all generic parameters of a generic P module, and partial instantiations, which
only fix a subset of the generic parameters.

For example, consider a generic P module Π〈x, y〉 = (O, {σxy, τxy}, {σxy → τxy}, {σxy}),
where x and y are its generic parameters, and assume that the object set O includes the
digits. Then, Π〈x = 2, y = 3〉 = (O, {σ23, τ23}, {σ23 → τ23}, {σ23}) is a total instantiation,
and Π〈x, y = 3〉 = (O, {σx3, τx3}, {σx3 → τx3}, {σx3}) is a partial instantiation.

As suggested above, a good practice is to systematically index all cells of a generic
P module, by the names of the generic parameters or of their actual associated objects
(or their indices). Although not required, we will generally follow this convention.

Composing generic P modules, or a mixture of generic and non-generic P modules,
constructs another generic P module. Depending on the intended effect, generic param-
eter names can be freely renamed (or not), as needed. For example, we can combine
Π〈x = 3, y〉, Π〈x = 4, y〉 into a generic P module Γ〈b〉; and Π〈x = 3, y1〉, Π〈x = 4, y2〉
into a generic P module ∆〈y1, y2〉.

While generic P modules are not strictly needed, we will use them to better manage
the design complexity.

3 Byzantine agreement problem

We first introduce an anthropomorphic version of the Byzantine agreement problem:

The Byzantine Generals’ Problem is an agreement problem (first proposed by
Pease et al. [20]) in which N generals of the Byzantine Empire’s army must
unanimously decide whether to attack some enemy army or to retreat.

The problem is complicated by the geographic separation of the generals, who
must communicate by sending messengers to each other, and by the possible
presence of up to F traitors amongst the N generals. These traitors can act
arbitrarily in order to achieve the following aims: trick some generals into
attacking; force a decision that is not consistent with the generals’ desires,
e.g., forcing an attack when no general wished to attack; or confusing some
generals to the point that they are unable to make up their minds. If the
traitors succeed in any of these goals, any resulting attack is doomed, as only
a concerted effort can result in victory.

Byzantine fault tolerance can be achieved if the loyal (non-faulty) generals
have a unanimous agreement on their strategy. Note that if all loyal generals
start with the same initial assessment value, attack or retreat, they must in
the end agree upon the same value. Otherwise, the choice of strategy agreed
upon is irrelevant.

The Byzantine failure assumption models real-world environments in which
computers and networks may behave in unexpected ways due to hardware

6

failures, network congestion and disconnection, as well as malicious attacks.
Byzantine failure-tolerant algorithms must cope with such failures and still
satisfy the specifications of the problems they are designed to solve. Such
algorithms are commonly characterized by their resilience F , the number of
faulty processes with which an algorithm can cope.

[Taken from [21], with minor changes]

In less anthropomorphic terms, we are given N distributed participants (or processes),
which model the N generals. A small number F of these participants model the traitors
and are called Byzantine faulty, i.e. they can fail in any possible way. All the faults
considered here are Byzantine faults and we will use the abbreviations fault and faulty to
mean Byzantine fault and Byzantine faulty, respectively. Example of faults are: sending
different messages to different participants, sending incorrect messages, refraining from
sending messages. Briefly, it can do anything that has a chance of disrupting the agree-
ment. The other N − F participants model the loyal generals and are called correct.
Correct participants never fail and strictly follow the same agreement algorithm. The
initial decision values are conventionally represented by a single bit, e.g., 1 for “attack”
and 0 for “retreat”.

In this paper, we consider only the basic scenario, where each pair of participants
is connected by a fully reliable duplex channel and the resulting network works syn-
chronously. It is well known that, in this basic case, the agreement is possible, if and
only if N ≥ 3F + 1. Note that, outside this basic scenario, the agreement is still possible
for 2F + 1 connected communication graphs, for channels with specific bounds on faults,
for asynchronous networks with specific bounds on delays. However, agreement is not
possible for arbitrary communication graphs, for arbitrary communication faults or for
unbounded delays. These topics are not further discussed here and, for further details,
refer to Lynch [11].

Figure 1 illustrates this basic case. We have four participants, P1, P2, P3, P4, with
initial values 0, 0, 1, 1, respectively. These four participants are connected in a complete
graph, often with loopback arcs (useful for uniform treatment), where the arcs indicate
fully reliable channels. We assume that P2, P3, P4 are correct, but P1 is faulty. In this
case, correct participants can agree, because N = 4, F = 1, and N ≥ 3F + 1. Each
participant has its own exact copy of one of the existing algorithms which solves the
Byzantine agreement problem. In the next section, we review the first classical algorithm
for this problem and illustrate how the agreement is always reached, despite the effort of
the faulty participant P1.

4 Classical Byzantine agreement algorithm based on

EIG trees

The classical solution of the Byzantine agreement problem uses EIG TN,L trees as a data
structure, and guarantees a solution if N ≥ 3F + 1 and L = F + 1. It also uses a built-in
default value, W (called V0 [11]), to break ties and to replace wrong or missing messages.
These parameters N , L and W are global and “hardcoded” into its rules.

7

P1

P2

P4

P3

0

1

0

1

Figure 1: A Byzantine agreement problem, with N = 4.

A complete description of this algorithm is available in Lynch [11]. We give a sim-
plified description, illustrating this on a particular case, where N = 4, F = 1, L = 2,
W = 0. We assume that participants P1, P2, P3, P4 start with the initial values 0, 0, 1,
1, respectively, as shown in Figure 1. Participants P2, P3, P4 are assumed correct, but
P1 is faulty and therefore allowed to send out arbitrary messages, if it chooses so.

This algorithm works in two distinct phases: first, a messaging phase, where the EIG
trees are populated with the received messages, in a top-down order and, secondly, an
evaluation phase which works bottom-up on the EIG trees.

We use apostrophes (′) and quotation marks (′′) to mark top-down values and bottom-
up values, respectively (Lynch designates these values val and newval [11]).

4.1 Phase I: messaging and filling top-down values

Phase I consists of L messaging rounds, which fill the EIG trees, top-down, one tree level
per round. In our specific example, there will be two messaging rounds, respectively
filling the first and the second EIG tree levels.

In the first messaging round, each correct participant, Pi, sends a copy of its initial
decision value, vi, to each of all four participants, i.e. to the other three participants and,
using a loopback interface, back to itself, Pi

vi⇒ Pj, j ∈ [1, 4]. For example, the correct
participant P2, with initial value v0 = 0, sends out four identical 0 messages to all four

participants: P2
0⇒ Pi, i ∈ [1, 4]. The other two correct participants, P3 and P4, proceed

similarly: P3
1⇒ Pi, i ∈ [1, 4], P4

1⇒ Pi, i ∈ [1, 4].
A correct participant P1 would have also been expected to send out identical messages

to all participants, according to its initial decision value, 0 in our example. However, P1

is faulty and can send out conflicting messages, if it wishes so. For example, P1 sends 0

to each of P1, P2, P3, but 1 to P4: P1
0⇒ Pi, i ∈ [1, 3], P1

1⇒ P4.
As the channels are all reliable, all messages are properly received. Participant P2

receives the following four messages: P2
0⇐ P1, P2

0⇐ P2, P2
1⇐ P3, P2

1⇐ P4. Participants

P1 and P3 receive the same messages as P2, for example: P3
0⇐ P1, P3

0⇐ P2, P3
1⇐ P3,

P3
1⇐ P4. However, one of the messages received by P4 differs: P4

1⇐ P1, P4
0⇐ P2,

P4
1⇐ P3, P4

1⇐ P4.
All round 1 received values are now stored in the EIG trees, in a position related to

the sender’s identity, which is known by the receiver. Each correct participant Pk uses
its EIG node i to store the value v received from participant Pi. For example, P2 stores

8

0′, 0′, 1′ and 1′, in its EIG nodes 1, 2, 3 and 4, respectively, as also shown by level 1 EIG
nodes of Figure 2. Level 1 EIG nodes of Figures 3 and 4 illustrate the round 1 messages
received and stored by P3 and P4, respectively.

1 2 3 4

2 4 1 4 1 4 1 3

0′′ 0′′ 1′′ 0′′ 0′′ 0′′ 1′′ 1′′ 1′′ 1′′ 1′′

0′′ 0′′ 1′′ 1′′

0′ 0′ 1′ 0′ 0′ 0′ 1′ 1′ 1′ 1′ 1′

0′ 0′ 1′ 1′

0′′0′

3 3 2 2

λ

1′′1′

Figure 2: EIG tree for P2.

1 2 3 4

2 4 1 4 1 4 1 3

0′′ 0′′ 1′′ 0′′ 0′′ 0′′ 1′′ 1′′ 1′′ 1′′ 1′′

0′′ 0′′ 1′′ 1′′

0′ 0′ 1′ 0′ 0′ 0′ 1′ 1′ 1′ 1′ 1′

0′ 0′ 1′ 1′

0′′1′

3 3 2 2

λ

0′′0′

Figure 3: EIG tree for P3.

1 2 3 4

2 4 1 4 1 4 1 3

0′′ 0′′ 1′′ 0′′ 0′′ 0′′ 1′′ 1′′ 1′′ 1′′ 1′′

0′′ 0′′ 1′′ 1′′

0′ 0′ 1′ 0′ 0′ 0′ 1′ 1′ 1′ 1′ 1′

1′ 0′ 1′ 1′

0′′1′

3 3 2 2

λ

1′′1′

Figure 4: EIG tree for P4.

In the second messaging round, each correct participant further relays copies of round
1 received messages, to all four participants. All received messages are faithfully relayed,
except where this would create loops. For this round, this means that a participant will
not relay messages that have been received via its own loopback interface (i.e. a message
originated from itself at round 1). For example, participant P2 will not further relay the

message 0 received from itself: P2
0⇒ P2.

The messages are sent using a protocol that identifies the original source of each
message. Although not size optimal, we will here assume a straightforward protocol,
which prefixes each message with the ID of the originator. For example, P2 sends out

9

four identical messages to all four participants: P2
(1,0)(3,1)(4,1)

=⇒ Pi, i ∈ [1, 4]. The other

two correct participants, P3 and P4, proceed in a similar way: P3
(1,0)(2,0)(4,1)

=⇒ Pi, i ∈ [1, 4],

P4
(1,1)(2,0)(3,1)

=⇒ Pi, i ∈ [1, 4].
Again, our faulty participant P1 can, if it wishes, send out conflicting messages, which

may or may not be consistent with its received values. For example, consider that P1 sends

out the following round 2 messages: P1
(2,0)(3,0)(4,1)

=⇒ P3, P1
(2,0)(3,1)(4,1)

=⇒ Pi, i ∈ {1, 2, 4}.
All messages are properly received and stored in level 2 EIG nodes. Each correct

participant Pk uses its EIG node i.j to store the value v received from Pj via the message

Pj
(i,v)
=⇒ Pk. For example, participant P2 stores the values 0′, 0′, 0′, 0′, 0′, 0′, 1′, 1′, 1′, 1′,

1′, 1′, in its EIG nodes 1.2, 1.3, 1.4, 2.1, 2.3, 2.4, 3.1, 3.2, 3.4, 4.1, 4.2, 4.3, respectively.
Level 2 EIG nodes of Figures 2, 3 and 4 illustrate the round 2 messages received and
stored by participants P2, P3 and P4.

In our case, the messaging rounds end after filling two levels in the EIG trees. How-
ever, in general, messaging will continue, using a similar mechanism, until all EIG levels
are completely filled. Essentially, each correct participant Pk will use its EIG node

i1.i2 . . . it.it+1 to store the value v received from Pit+1 via the message Pit+1

(i1.i2...it,v)
=⇒ Pk.

A correct participant Pit+1 will forward such a message only if it does not create a loop,
i.e. if it+1 /∈ {i1, i2, . . . , it}. The recursive application of this loop avoiding strategy en-
sures that the sequence i1.i2 . . . it.it+1 is one of the permutations of [1, N] of size t + 1
and the value v always finds its proper unique place in the EIG tree.

Intuitively, this v is claimed to be the initial value of Pi1 , further relayed to Pk via
Pi2 , . . . , Pit , Pit+1 , in this order. In fact, this is indeed the case, if all these participants
are correct. For further and more precise details, see Lynch [11].

4.2 Phase II: evaluating bottom-up values

Phase II consists of L evaluation rounds, which proceed level by level, in a bottom-up
manner.

First, for a leaf EIG node, the bottom-up value is set equal to its already filled top-
down value. In our example, for participant P2, the EIG nodes 1.2, 1.3, 1.4, 2.1, 2.3, 2.4,
3.1, 3.2, 3.4, 4.1, 4.2, 4.3, evaluate the following bottom-up values: 0′′, 0′′, 0′′, 0′′, 0′′, 0′′,
1′′, 1′′, 1′′, 1′′, 1′′, 1′′, respectively.

Next, assume that the bottom-up values have already been evaluated for level L− t,
t ∈ [0, L − 1]. The bottom-up values at the next higher level, L − t − 1, are evaluated
using a strict majority rule, or, if there is no strict majority, the result is the default
value W (0 in our case). For example, using the strict majority rule, participant P2’s
EIG nodes 1, 2, 3, 4, evaluate the bottom-up values 0′′, 0′′, 1′′, 1′′, respectively. However,
at the next round, no strict majority exists at the EIG node λ. This tie is broken using
the default value 0′′. Because λ is the EIG root, the final value for P2 is 0.

Figures 2, 3 and 4 illustrate all bottom-up values evaluated by participants P2, P3

and P4, respectively. We can see that all correct participants reach a common final
decision. Although this is not required by the formal specifications of the Byzantine
agreement problem, this common decision can also be reached by the faulty participant

10

P1, regardless of its arbitrary outgoing messages, if it bothers to properly fill and evaluate
an EIG tree. For further and more precise details, again see Lynch [11].

This brief example illustrates some fundamental properties of the EIG-based Byzan-
tine agreement algorithm. The correct participants always reach a common decision,
as long as the number of faulty participants does not exceed the prescribed bound F
(here F = 1). In some border cases, by “cleverly” sending out inconsistent messages, the
faulty participants are able to sway the common decision one way or another, but never
to disrupt it.

We can show this by reconsidering the above example, with the only difference that,
at the first messaging round, the faulty participant P1 sends out 1 (instead of 0) to P3,

P1
1⇒ P3. In this case, all correct participants, P2, P3, P4, will all reach the final decision

1 (instead of 0). They will still agree on a common decision value.

5 P system program for the Byzantine agreement

The following global parameters are known in advance and “hard-coded” into our current
model: N , the number of participants, L, the height of the EIG trees, and W , the default
value, for wrong or missing values.

We design our program by recursive composition of simpler P modules. The common
vocabulary, O, used by all P modules includes the set {v, v′, v′′ | v ∈ {0, 1}} ∪ {?, ∗}
∪ {xvπ | v ∈ {0, 1, ?}, π ∈ P (N, t), t ∈ [0, L]}. Depending on the objects sent by faulty
P modules, O can be larger than this set, as we cannot constrain the behavior of faulty
participants in any way.

Objects 0 and 1 designate decision values. Objects 0′ and 1′ represent decision values
stored as top-down values in the EIG trees. Objects 0′′ and 1′′ represent decision values
stored as bottom-up values in the EIG trees. Object ? is a template that can match any
decision value, 0 or 1. Object ∗ designates the last step in the top-down evaluation.

The object xvi1.i2...it represents a tth round message received from Pit , i.e. using our
earlier notation, xvi1.i2...it = (i1.i2 . . . it, v), where the right-hand side string is considered
a single object. To simplify the notations, we also use the following natural conventions:
xvi1.i2...it = xvi1i2...it and xv() = xv = v. These notations are summarized in Figure 5. We
prefer the xvπ notation when we want to emphasize an “atomic” vocabulary object, and
the (π, v) notation when we work on its constituent “sub-atomic” objects.

xv = v, for v ∈ {0, 1}
xvπ = (π, v), for v ∈ {0, 1},

t ∈ [0, L], π ∈ P (N, t)

Figure 5: Notations summary (left, “atomic” notation; right, “sub-atomic” insight).

Our design uses the following elementary P modules: Ψ, a P module representing
the “core” of a participant in a Byzantine decision; Θ, a P module representing an

11

EIG tree; and Γ〈h, f〉, a generic P module, which takes care of all communications of
participant h, with another participant f , if h 6= f , or with self, otherwise. Using these
elementary P modules, as basic building blocks, we compose the generic P module Π〈h〉,
which represents a correct participant with index h, and, finally, the P module Ω, which
represents a complete Byzantine scenario.

Figure 6 illustrates the generic P module Π〈h〉, for the case N = 4 and L = 2,
including its constituent P modules: Ψ, Θ, Γ〈h, f = 1〉, Γ〈h, f = 2〉, Γ〈h, f = 3〉,
Γ〈h, f = 4〉. Dotted lines represent P module borders and shaded cells are the remaining
ports of the figure’s top P module, Π〈h〉. As this figure clearly shows, Θ is (as expected)
based on a tree, which is further included in the dag underlying the participant Π〈h〉.
The rest of this section clarifies this construction. We will first focus on the structural
details and consider the rules after these are completed.

ψh

Γ〈h, f=4〉

Π〈h〉Ψ

Γ〈h, f=3〉Γ〈h, f=2〉Γ〈h, f=1〉

γ′h1

γh1

θλ

θ2

θ1 θ3 θ4

Θ

θ3

θ1 θ2 θ4

θ1

θ2 θ3 θ4

θ4

θ1 θ2 θ3

γ′h2

γh2

γ′h3

γh3

γ′h4

γh4

Figure 6: The P module Π〈h〉, for N = 4, L = 2.

The P module Ψ contains a single cell and is defined by: Ψ = (O,KΨ, ∅, PΨ), where
KΨ = PΨ = {ψ}, ψ = (Qψ, s0, v, Rψ), Qψ = {si | i ∈ [0, L]} ∪ {sL+1}, v ∈ {0, 1} is
the initial decision value of this participant and the rule sequence RΨ is given in the
next section. The P module Ψ does not need to be generic, its rules are identical for all
participants.

The P module Θ contains the EIG tree and is defined by: Θ = (O,KΘ, δΘ, PΘ).

12

Essentially, KΘ and δΘ define an EIG tree as previously described, for the global pa-
rameters N and L. The root cell of the tree is labelled θλ, which is also its single
port, PΘ = {θλ}. All EIG cells start with empty contents and share the same states,
QΘ = {dt | t ∈ [0, L]} ∪ {ut | t ∈ [0, 5]} ∪ {tz}, and rule sequence RΘ, which is given in
the next section. The P module Θ does not need to be generic, its rules are identical for
all participants.

The generic P module Γ〈h, f〉 contains two cells and is defined by: Γ〈h, f〉 = (O,KΓ,
δΓ, PΓ), where KΓ = PΓ = {γhf , γ′hf}, δΓ = {γhf → γ′hf}, γhf = (Qγ, p0, ∅, Rγ〈h, f〉),
Qγ = {pt, qt, rt | t ∈ [0, L− 1]} ∪ {pL, pL+1}, γ′hf = (Q′γ, c0, ∅, R′γ), Q′γ = {ct | t ∈ [0, 3]}.

The rule sequences Rγ〈h, f〉 (generic) and R′γ (non-generic) are given in the next sec-
tion. After constructing the higher levels P modules (Π and Ω), these generic parameters
will be fixed: h ∈ [1, N], as the index of the participant which contains it (its “home”);
and f ∈ [1, N], as the index of the participant at the other connection end (a potentially
faulty “friend-or-foe”). Although not strictly necessary, this generic approach facilitates
a uniform design.

We now design a higher generic P module, Π〈h〉 = (O,KΠ, δΠ, PΠ), representing a
generic Byzantine participant, with index h, by composing: one deep copy of P module Ψ
(the main cell), one deep copy of P module Θ (the EIG tree), and the following N partial
instances of the generic P module Γ〈h, f〉: Γ〈h, f = 1〉, Γ〈h, f = 2〉, . . . , Γ〈h, f = N〉.
To complete the definition, we define its additional arcs, δ′Π = {ψh → θλ} ∪ {γhj → ψh |
j ∈ [1, N]}, and its remaining port set, PΠ = {γhj | j ∈ [1, N]}.

It might be useful, at this stage, to have a second look at Figure 6. In this case, N = 4
and the P module Π〈h〉 has four groups of two ports available for further connections—
one group for each participant (including self). Single ended arrows indicate how this
participant will be finally connected.

To complete the design, we define the final composition, Ω = (O,KΩ, δΩ, PΩ), repre-
senting a complete Byzantine scenario, by composing the following N instances of the
P module Π〈h〉: Π〈h = 1〉, Π〈h = 2〉, . . . , Π〈h = N〉. We define its remaining port
set, PΩ = ∅ (assuming that Ω does not need to be further connected); and its additional
arcs, δ′Ω = {γ′ij → γji | i, j ∈ [1, N]}, where these new structural arcs work as simplex
communication channels, only from transmission from child (γij) to parent (γ′ij). At this
stage, we have completed the customization of parameters f and h, for each constituent
Γ〈i, j〉, i, j ∈ [1, N].

Figure 7 illustrates a fragment of the P module Ω (for N = 4 and L = 2) showing the
channels between two participants, Π2 and Π3; all other connection pairs are similar. As
expected, the last added channels define a complete graph among the participants, where
each participant has also a loopback connection, corresponding to the channels γ′ii → γii,
i ∈ [1, N].

To start the system, we “magically” drop the initial decision values in participants’
main cells, ψi, for i ∈ [1, N]. Thereafter, all cells start in the same time step, syn-
chronously, as in the standard Byzantine agreement algorithms [11].

Remark 4. The number of cells in the P module Π grows exponentially with N , the
number of participants, and L, the height of the EIG trees used. It is easy to see by
induction, that each EIG tree TN,L contains at most 2(N)L nodes, where (N)L denotes

13

EIG
tree

EIG
tree

γ′23

γ23

γ21

γ′21

γ24 γ′24γ22

γ′22

γ′31 γ31 γ33

γ′33

γ32

γ′32 γ34

γ′34

ψ2 ψ3

Π〈h=2〉 Π〈h=3〉

Figure 7: Fragment of the P module Ω, for N = 4, L = 2, showing connections between
participants 2 and 3 (here, node contents indicate cell indices).

the falling factorial N(N − 1) · · · (N − L − 1). Thus, since our P module construction
needs N copies, we have an upper bound of O((N)LN) number of cells.

As mentioned earlier, in any Byzantine agreement algorithm, the maximum number
of tolerated faults is F = (N − 1)/3. Also, in the EIG algorithm, the maximum number
of tolerated faults is bounded by the height of the EIG tree, F ≤ L − 1. Therefore, for
maximum fault tolerance, L is linearly related to N , L = (N − 1)/3 + 1, and therefore
we conclude that the number of cells in Π grows exponentially with N .

6 Byzantine agreement rules

This section lists the four rule sequences which appear in our modules’ definition: Rγ〈h, f〉
and R′γ for module Γ〈h, f〉, RΨ for module Ψ, and RΘ for module Θ. Rulesets Rγ〈h, f〉,
R′γ, RΨ and part of RΘ (states d0 to dL) simulate Phase I of the classical EIG-based
algorithm (described in Section 4.1), the messaging and the filling of top-down values.
The remaining RΘ rules (states u0 to u6) simulate the bottom-up evaluation Phase II.

We summarize these rule sequences as templates, which (most of them) depend on
the “hard-coded” global parameters N , L and W . As earlier mentioned, several rules
for Rγ〈h, f〉 depend additionally on the generic objects h (“home”) and f (“friend-or-
foe”). Note that, for some rule templates, the number of corresponding actual rules grows
exponentially with N and L.

To facilitate the understanding of our rules, each rule sequence is preceded by a
statechart, graphically illustrating state transitions. Where several rules are grouped
together, their relative order is omitted as irrelevant, because they start from the same
state, end in the same state, and their left-hand sides are disjoint. Also, each rule
template, which refers to permutations of size L or L − 1, is followed by an itemized
expansion for the sample case L = 2 (as used by our specific examples).

14

6.1 Rule sequences Rγ〈h, f〉 and R′γ

These rule sequences define the behavior of cells in module Γ〈h, f〉. The ruleset Rγ〈h, f〉
is for cells γhf and the ruleset R′γ for cells γ′hf . The state transitions for these sequences
are illustrated in Figure 8. State pL is the final state for cell γhf , i.e. no further transition
is possible from this state. Cell γ′hf does not have a distinct final state; however, cell γ′hf
will normally end in state c2. For ruleset (4), a message sent up by repl is an internal
message sent to cell γhf . For rulesets (8, 9), a message sent up by repl is an external
message sent to cell γ′fh (i.e. to another participant). For rulesets (11, 12, 13), a message
sent down by repl is an internal message sent to the main cell ψh (a copy of it is also
sent to γ′hf , where it is discarded). These rules are further discussed in Section 7.1.

c0 c1 c2 c3

p0 p1

q0 q1

r0 r1

pLL-1p

L-1q

L-1r

Figure 8: State diagram for Γ〈h, f〉.

1. c0 →min c1

2. c0 o→max c1, for o ∈ O

3. c1 →min c2

4. c2 x
v
π →min c3 (xvπ)↑repl , for v ∈ {0, 1} and π ∈ ⋃

l∈[0,L−1] P (N, l)

• c2 v →min c3 (v)↑repl , for v ∈ {0, 1}
• c2 x

v
j →min c3 (xvj)↑repl , for v ∈ {0, 1}, j ∈ [1, N]

5. c3 →min c0

6. pt x
v
π →min qt x

?
π (xvπ)↑repl , for t ∈ [0, L−1], v ∈ {0, 1}, π ∈ P (N, t), s.t. h /∈ Im(π),

f /∈ Im(π)

• p0 v →min q0 ? (v)↑repl , for v ∈ {0, 1}
• p1 x

v
j →min q1 x

?
j (xvj)↑repl , for v ∈ {0, 1}, j ∈ [1, N], s.t. j 6= h, j 6= f

7. pt x
v
π →min qt (xvπ)↑repl , for t ∈ [0, L − 1], v ∈ {0, 1}, π ∈ P (N, t), s.t. h /∈ Im(π),

f ∈ Im(π)

• p1 x
v
j →min q1 (xvj)↑repl , for v ∈ {0, 1}, j ∈ [1, N], s.t. j = f 6= h

8. pt x
v
π →min qt x

?
π, for t ∈ [0, L − 1], v ∈ {0, 1}, π ∈ P (N, t), s.t. h ∈ Im(π),

f /∈ Im(π)

15

• p1 x
v
j →min q1 x

?
j , for v ∈ {0, 1}, j ∈ [1, N], s.t. j = h 6= f

9. pt x
v
π →min qt, for t ∈ [0, L−1], v ∈ {0, 1}, π ∈ P (N, t), s.t. h ∈ Im(π), f ∈ Im(π)

• p1 x
v
j →min q1, for v ∈ {0, 1}, j ∈ [1, N], s.t. j = h = f

10. qt →min rt, for t ∈ [0, L− 1]

11. rt x
?
π x

0
π →min pt+1 (x0

π⊕(f))↓repl , for t ∈ [0, L− 1], π ∈ P (N, t)

• r0 ? 0→min p1 (x0
f)↓repl

• r1 x
?
j x

0
j →min p2 (x0

jf)↓repl , for j ∈ [1, N]

12. rt x
?
π x

1
π →min pt+1 (x1

π⊕(f))↓repl , for t ∈ [0, L− 1], π ∈ P (N, t)

• r0 ? 1→min p1 (x1
f)↓repl

• r1 x
?
j x

1
j →min p2 (x1

jf)↓repl , for j ∈ [1, N]

13. rt x
?
π →min pt+1 (xWπ⊕(f))↓repl , for t ∈ [0, L− 1], π ∈ P (N, t)

• r0 ?→min p1 (xWf)↓repl

• r1 x
?
j →min p2 (xWjf)↓repl , for j ∈ [1, N]

14. rt y →max pt+1, for t ∈ [0, L− 1] and y ∈ V

As we will discuss in Section 7.1, rulesets (6,7,8,9) can be replaced by the follow-
ing ruleset (15), provided that rulesets (11, 12, 13) are expanded with the additional
constraint f /∈ Im(π).

15. pt x
v
π →min qt x

?
π (xvπ)↑repl , for t ∈ [0, L− 1], v ∈ {0, 1}, π ∈ P (N, t)

• p0 v →min q0 ? (v)↑repl , for v ∈ {0, 1}
• p1 x

v
j →min q1 x

?
j (xvj)↑repl , for v ∈ {0, 1}, j ∈ [1, N]

6.2 Rule sequence RΨ

These are the rules for cell ψh, the only cell of module Ψ. The state transitions for these
sequences are illustrated in Figure 9. State sL+1 is the final state for cell ψh, i.e. no
further transition is possible from this state. For ruleset (1), a message sent up and down
by repl is an internal message sent to cells γhf and θλ. For ruleset (2), a message sent
down by repl is an internal message sent to cell θλ. These rules are further discussed in
Section 7.2.

s0 s1 sL. . .
L-1s sL 1

Figure 9: State diagram for the P module Ψ.

16

1. st x
v
π →min st+1 (xvπ)lrepl , for t ∈ [0, L− 1], v ∈ {0, 1}, π ∈ P (N, t)

• s0 v →min s1 (v)lrepl , for v ∈ {0, 1}
• s1 x

v
j →min s2 (xvj)lrepl , for v ∈ {0, 1}, j ∈ [1, N]

2. sL x
v
π →min sL+1 (∗ xvπ)↓repl , for v ∈ {0, 1}, π ∈ P (N,L)

• s2 x
v
jk →min s3 (∗ xvjk)↓repl , for v ∈ {0, 1}, j, k ∈ [1, N], j 6= k

6.3 Rule sequence RΘ

These are the rules for the EIG cells of module Θ and belong to Phase I (states d0 to dL)
and Phase II (states u0 to u6). The state transitions for these sequences are illustrated in
Figure 10. State u6 is the final state for all EIG cells, i.e. no further transition is possible
from this state. For rulesets (3, 4), a message sent down to π(1) is an internal message
sent to the child cell θπ(1). These rules are further discussed in Section 7.3.

d0 d1

u0 u1 u2

u3

u4

u5

dL
. . .

L-1d

u6

Figure 10: State diagram for the P module Θ.

1. d0 ∗ v →min u0 v
′ v, for v ∈ {0, 1}

2. d0 v →min d1 v
′, for v ∈ {0, 1}

3. dt ∗ xvπ →min u0 (∗ xvπ(2:t))↓π(1)
, for t ∈ [1, L], v ∈ {0, 1}, π ∈ P (N, t)

• d1 ∗ xvj →min u0 (∗ v)↓j , for v ∈ {0, 1}, j ∈ [1, N]

• d2 ∗ xvjk →min u0 (∗ xvk)↓j , for v ∈ {0, 1}, j, k ∈ [1, N], j 6= k

4. dt x
v
π →min dt+1 (xvπ(2:t))↓π(1)

, for t ∈ [1, L− 1], v ∈ {0, 1}, π ∈ P (N, t)

• d1 x
v
j →min d2 (v)↓j , for v ∈ {0, 1}, j ∈ [1, N]

5. u0 v →min u1 v, for v ∈ {0, 1}

6. u1 0 1→max u2

7. u1 →min u2

8. u2 0→max u3

9. u2 1→max u4

10. u2 →min u5

11. u3 →min u6 0′′ (0)↑repl

12. u4 →min u6 1′′ (1)↑repl

13. u5 →min u6 W
′′ (W)↑repl

17

7 Program correctness and runtime complexity

Due to space constraints, we only present semi-formal and informal arguments, which at
times appeal to the intuition. However, our discussion can be further elaborated into a
more formal set of results and proofs.

7.1 Rule sequences Rγ〈h, f〉 and R′γ

Consider t ∈ [0, L − 1], a messaging round of Phase I, in the algorithm described in
Section 4.1.

Let ∆(t) be the set of correctly formatted objects that can be sent between participants
at round t, ∆(t) = {xvπ | v ∈ {0, 1}, π ∈ P (N, t)}. Let ∆i(t) be the subset of messages
which can be sent by the correct participant i ∈ [1, N], ∆i(t) = {xvπ ∈ ∆(t) | i /∈ Im(π)}
(as noted in Section 4.1, objects which already include the sender’s identity will create
useless loops and should not be included).

Let ∆?(t) = {x?
π | π ∈ P (N, t)} and ∆?

j(t) = {x?
π ∈ ∆?(t) | j /∈ Im(π)}, for j ∈ [1, N].

Set ∆?(t) defines templates, which describe the format of all correct inter-participant
messages possible at round t. Set ∆?

j(t) restricts these templates, to the format of correct
messages expected from external participant j. An object xvπ matches a template x?

π′ if
they share the underlying permutation, π = π′ (ignoring the actual value v ∈ {0, 1}).

Consider a module Γ〈h, f〉, where h is the internal trusted “home” participant and f
is the external unreliable “friend-or-foe” participant. This module has two cells, the rule
sequence Rγ〈h, f〉 applies to cell γhf , and the rule sequence R′γ to cell γ′hf .

Cell γ′hf is the front-end prepared to receive any kind of messages, from the unreli-
able cell γfh (i.e. from external participant f). Rulesets (1,2,3,4,5) collectively ensure
the required inter-participant synchronization. Additionally, ruleset (2) deletes all un-
necessary objects, and rulesets (4) forwards to γhf exactly one copy of each correctly
formatted message received (that also appears in ∆(t)). Thus, rulesets (1,2,3,4,5) form
a filter which ensures that cell γhf receives external messages at specific steps only and
is not “polluted” with duplicate objects or template objects from an unreliable source.

Cell γhf can only receive trusted messages from the main cell ψh and filtered messages
from γ′hf ; cell γhf cannot receive any message directly from external participant f , because
its external connection is an out-going simplex channel.

Consider a set of trusted messages, Σh(t), sent by the main cell ψh to cell γhf . As-
sume that Σh(t) completely describes the EIG level t of participant h, i.e. {π | ∃v ∈
{0, 1}, s.t., xvπ ∈ Σh(t)} = P (N, t). Rulesets (6,7,8,9) forward Σh(t) ∩ ∆h(t) to the ex-
ternal cell γ′fh (i.e. to participant f) and create the templates set ∆?

f (t) (for the correct
messages expected to be received in turn from participant f), assuming, as above, that
P (N, t) equals the permutations set underlying Σh(t).

Ruleset (6) processes trusted messages in Σh(t) ∩∆h(t) ∩∆f (t). These messages are
sent to f , and they are also used to build the templates set ∆?

f (t). Ruleset (7) processes

trusted messages in Σh(t)∩∆h(t)∩∆f (t). These messages are sent to f , but no templates

are built. Ruleset (8) processes trusted messages in Σh(t)∩∆h(t)∩∆f (t). These messages
are not sent, however, they are used to build the template set templates set ∆?

f (t). Ruleset

18

(9) processes trusted messages in Σh(t) ∩∆h(t) ∩∆f (t). These messages are discarded,
they are not sent from participant h and no templates are built.

Ruleset (10) defines a one step delay, required for synchronization.
Rulesets (11, 12, 13) attempt to match previously created templates ∆?

f (t) against
untrusted but correctly formatted objects received from γ′fh. Ruleset (11) matches tem-
plates against objects which carry the 0 value and ruleset (12) matches templates against
objects which carry the 1 value. If both these matches fail, ruleset (13) assumes a match
against the default value W . Finally, the matched object xvπ is sent to the main cell ψh,
after appending f to the permutation π, to indicate the sender in a trusted way. This
is a critical step, which justifies the complex construction of the module Γ〈h, f〉, on top
of the main cell ψh. The usual definitions for channels used in P systems do not offer
any protection against impersonation, specifically against participants which claim false
identities.

Ruleset (14) performs an additional cell cleanup.
As mentioned in Section 6.1, rulesets (6,7,8,9) can be replaced by the ruleset (15), pro-

vided that rulesets (11, 12, 13) are expanded with the additional constraint f /∈ Im(π).
This simplified ruleset still functions correctly, but slightly increases the messaging com-
plexity of the original algorithm. According to the new ruleset (15), cell γhf sends out
all objects in Σh(t) (not only those in Σh(t)∩∆h(t)) and creates the larger hence weaker
templates set ∆?(t). However, the new versions of rulesets (11,12,13) still filter cor-
rectly, because the combination of the template set ∆?(t) with the additional constraint
f /∈ Im(π) logically recreates the stronger template set ∆?

f (t).

7.2 Rule sequence RΨ

Ruleset (1) takes one object xvπ, where π is a permutation of N of length up to L − 1,
and sends one copy of this object to each cell γhf . Cell γhf will forward this copy, via its
external connection, to another participant, as discussed in Section 7.1. Simultaneously,
ruleset (1) sends down one copy of the same object xvπ, to the EIG root cell θλ. Cell θλ
uses the objects, that are not accompanied by asterisks, to populate levels 0 to L− 1 of
the EIG tree with top-down values, as discussed in Section 7.3.

Ruleset (2) takes one object xvπ, where π is a permutation of N of length L and sends
down one copy of this object, accompanied by one asterisk (*), to the EIG root cell θλ.
Cell θλ uses the objects, that are accompanied by asterisks, to populate the last level of
the EIG tree with top-down values, as discussed in Section 7.3.

These two rulesets, (1) and (2), run as part of a send-receive cycle, which is repeated
L times. Initially, cell ψh starts with one object v = xv(), representing its initial decision

value. This object is processed by ruleset (1), as described above, i.e. is sent to all other
participants and used as the first top-down value in the EIG tree. At the end of the first
messaging round, cell ψh receives a set of messages of the form xuf , where f is the index of
another participant and u is f ’s initial decision value. These messages are simultaneously
processed by ruleset (1), which continues the cycle.

For the first L − 1 times, the received messages are processed by ruleset (1), which
continues the send-receive cycle. The messages received at the end of the last cycle, L,
are processed by ruleset (2), which stops the send-receive cycle.

19

The asterisks sent down by ruleset (2) accompanies the top-down values of the last
EIG level. As discussed in Section 7.3, this triggers the bottom-up evaluation of the EIG
tree. The bottom-up value evaluated by the root EIG cell θλ represents the final decision
of this participant and a copy of it is sent to the main cell ψh.

7.3 Rule sequence RΘ

Rules starting from states d0 to dL belong to Phase I and ensure that the EIG nodes
are properly filled with top-down values. The asterisk object (*) accompanies the last
round values, until these reach the leaves, ensuring a proper transition to the next phase.
Rules starting from states u0 to u6 belong to Phase II and evaluate bottom-up values.
Figure 10 shows a bird’s eye view of the state transitions of this rule sequence.

An inductive argument can used to describe the successive filling of the first L EIG
levels with top-down values. Consider t ∈ [0, L− 1] and assume the following induction
hypothesis: (a) all EIG cells at level k ∈ [0, t] are in state dt−k; and (b) all EIG cells
below level t are in state d0. Obviously, this hypothesis holds initially, for t = 0.

Consider now that (c) the root EIG cell receives the object xvπ, where v ∈ {0, 1},
π ∈ P (N, t), without any accompanying asterisk object. Rulesets (2, 4) ensure that the
value v is carried over by successively trimmed objects xvπ = xvπ1π2...πt

, xvπ2...πt
, . . . , xv() = v,

and routed downwards, along a path λ, π1, . . . , πt−1, πt. All cells involved in this transfer,
λ, π1, . . . , πt−1, πt, successively change their states to dt+1, dt, . . ., d2, d1, respectively.
Additionally, by ruleset (2), the last cell in the path keeps its original top-down value v
in the alternate form v′.

A slightly different argument is needed to describe the filling of the last EIG level,
L. Consider a similar context as above, for t = L, where condition (a) still holds and
condition (b) is true, but irrelevant, because there are no cells below level L.

Consider a modified condition (c∗), where the root cell additionally receives one as-
terisk for each object xvπ. Rulesets (3, 1) ensure that this asterisk accompanies the value
v, along a similar path, until they reach the leaf level L. All cells involved in this transfer
successively change their state to u0. Additionally, by ruleset (1), the last cell in the
path (the leaf) keeps both its original top-down value v and its alternate form v′. Similar
transitions eventuate synchronously for all leaf cells, assuming that the root cell is timely
filled with the objects required to completely fill the EIG tree, successively, level by level.

State u0 is the initial state of Phase II, the bottom-up evaluation. This process starts
from the EIG leaf cells and continues upwards, level by level. Each cell applies a local
voting scheme, to the values received from its child cells, if it is not a leaf, or, if it is a
leaf, to its single value v. Ruleset (5) ensures that the bottom-up evaluation does not
start prematurely. Rule (6) cancels matching 0 and 1 pairs. If any 0’s remain, the cell
decides on 0, by way of rules (8, 11). If any 1’s remain, the cell decides on 1, by way
of rules (9, 12). Otherwise, the cell decides on the default hardcoded value W , by way
of rules (10, 13). Any decision v ∈ {0, 1} is sent up to the parent cell and also recorded
locally in the alternate form v′′. Using an inductive argument, the root cell takes the
expected decision and sends it up to the main cell.

20

7.4 Runtime complexity

Revisiting the above arguments and counting the steps, we obtain the following result,
which highlights the runtime complexity of our system.

Theorem 5. This EIG tree based Byzantine algorithm takes 9L+ 6 steps, where Phase I
takes 5L+ 2 steps and Phase II takes 4L+ 4 steps.

Proof. In Phase I, each messaging round between two main cells ψh and ψf takes 4 steps,
along the following route: ψh, γhf , γ

′
fh, γfh, ψf . Therefore, L messaging rounds take 4L

steps, which also covers the time required to fill the first L − 1 levels of the EIG tree.
After the last round messages are received, L+ 2 steps are further required to fill level L
of each EIG tree. Thus, Phase I takes 5L+ 2 steps in total.

The bottom-up evaluation takes 4 steps for each level and the EIG tree has L + 1
levels. Thus, Phase II takes 4(L+ 1) steps to complete its evaluation.

7.5 Sample run

Figures 11, 12 and 13 offer additional insight on the overall behavior of module Ω, via
partial traces of our main sample scenario, described in detail in Section 4 and illustrated
in Figures 2, 3 and 4.

Figure 11 illustrates traces, describing the messaging interaction between participants
2 and 3. The following cells are included: θλ2 , ψ2, γ23, γ′23 (for participant 2); and γ′32,
γ32, ψ3, θλ3 (for participant 3). After ten steps, all port cells reach their final states.

Figure 12 and Figure 13 illustrate the top-down and bottom-up evaluations, respec-
tively, of the EIG tree of participant 2. The following cells are included: θ1.2, θ1.3, θ1.4,
θ1, θλ, θ2, θ3, θ4. All EIG cells end in the final state u6. In the last step, the root EIG
cell, θλ, decides on 0 and, simultaneously, records this as 0” and sends one 0 up, to the
main cell ψ2 (cell ψ2 is not illustrated in these figures).

This sample run ends in 24 steps, which is consistent with the runtime complexity
given by Theorem 5, i.e. 9L+ 6 steps, where L = 2.

8 Conclusion

In this paper, we have proposed a new modular framework for designing P system pro-
grams and used it to investigate the Byzantine agreement problem. Our modular frame-
work allows encapsulations, information hiding and modular composition. We believe
that our solution of the Byzantine agreement problem is the first complete P system
solution for this problem (which effectively lists all its rules).

Our P program was also successfully tested on our P system simulator, for a fair
number of scenarios, including various combinations of Byzantine behaviors, such as
wrong messages, incorrectly formatted messages, extra messages, missing messages and
out-of-sync messages.

Our investigation leaves open a number of interesting and challenging problems. The
Byzantine agreement algorithm is an interactive algorithm which solves its problem only

21

in synchronous networks, where all interactions must eventuate within fixed time limits.
Will an algorithm built via an universalization technique meet such requirements? Can
we achieve a Byzantine agreement using only duplex channels (without any simplex
channels)? The number of cells and rules of our P program for the Byzantine agreement
grows exponentially in N and L and the message size is larger than optimal. Can we
reduce the space complexity of our messaging phase? In our program, all the cells must
be created and connected before our algorithm starts. Is it possible to solve the same
problem with a fixed number of cells? Otherwise, is it possible to solve the same problem
starting with a fixed number of cells, and develop a dynamically growing EIG tree? Is it
possible to solve the same problem with a fixed number of rules? Can we design P system
programs for other Byzantine agreement algorithms, not EIG-based, for example using
reliable broadcasts? Can we extend our P system programs to cover 2F + 1 connected
graphs, but not necessarily complete?

Acknowledgments

The authors wish to thank John Morris and the four anonymous reviewers for detailed
comments and feedback that helped us improve the paper.

References

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Re-
iter, and Jay J. Wylie. Fault-scalable Byzantine fault-tolerant services. In Andrew
Herbert and Kenneth P. Birman, editors, SOSP, pages 59–74. ACM, 2005.

[2] Artiom Alhazov, Maurice Margenstern, and Sergey Verlan. Fast synchronization in
P systems. In David W. Corne, Pierluigi Frisco, Gheorghe Păun, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Workshop on Membrane Computing, volume 5391
of Lecture Notes in Computer Science, pages 118–128. Springer, 2008.

[3] Michael Ben-Or and Avinatan Hassidim. Fast quantum Byzantine agreement. In
Harold N. Gabow and Ronald Fagin, editors, STOC, pages 481–485. ACM, 2005.

[4] Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey Verlan.
How to synchronize the activity of all components of a P system? Int. J. Found.
Comput. Sci., 19(5):1183–1198, 2008.

[5] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantino-
ple: Practical asynchronous Byzantine agreement using cryptography. J. Cryptology,
18(3):219–246, 2005.

[6] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[7] Gabriel Ciobanu. Distributed algorithms over communicating membrane systems.
Biosystems, 70(2):123–133, 2003.

22

[8] Gabriel Ciobanu, Rahul Desai, and Akash Kumar. Membrane systems and dis-
tributed computing. In Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors, WMC-CdeA, volume 2597 of Lecture Notes in Computer
Science, pages 187–202. Springer, 2002.

[9] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. New solutions to the
firing squad synchronization problems for neural and hyperdag P systems. EPTCS,
11:107–122, 2009.

[10] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[11] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[12] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. IEEE Trans.
Dependable Sec. Comput., 3(3):202–215, 2006.

[13] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling
with hyperdag P systems: Part A. Report CDMTCS-342, Centre for Discrete
Mathematics and Theoretical Computer Science, The University of Auckland, Auck-
land, New Zealand, December 2008. http://www.cs.auckland.ac.nz/CDMTCS/

researchreports/342hyperdagA.pdf

[14] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Discovering the mem-
brane topology of hyperdag P systems. In Gheorghe Păun, Mario J. Pérez-Jiménez,
Agust́ın Riscos-Núñez, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane
Computing, Tenth International Workshop, WMC 2009, volume 5957 of Lecture
Notes in Computer Science, pages 410–435. Springer, 2009.

[15] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling with
hyperdag P systems: Part A. In Rosa Gutiérrez-Escudero, Miguel A. Gutiérrez-
Naranjo, Gheorghe Păun, and Ignacio Pérez-Hurtado, editors, Membrane Comput-
ing, Seventh Brainstorming Week, BWMC 2009, Sevilla, Spain, February 2-6, 2009,
volume 2, pages 85–107. Universidad de Sevilla, 2009.

[16] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured modelling
with hyperdag P systems: Part B. Report CDMTCS-373, Centre for Discrete
Mathematics and Theoretical Computer Science, The University of Auckland,
Auckland, New Zealand, October 2009. http://www.cs.auckland.ac.nz/CDMTCS/
researchreports/373hP_B.pdf

[17] Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[18] Gheorghe Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.
Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 1–42. Springer, 2006.

23

[19] Gheorghe Păun and Mario J. Pérez-Jiménez. Solving problems in a distributed
way in membrane computing: dP systems. International Journal of Computers,
Communications and Control, 2 (2010, to appear), 2010.

[20] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in
the presence of faults. J. ACM, 27(2):228–234, 1980.

[21] Wikipedia.org Byzantine fault tolerance—Wikipedia, the free encyclope-
dia, 2009. http://en.wikipedia.org/w/index.php?title=Byzantine_fault_

tolerance&oldid=330075795, [Online; accessed 9-January-2010].

[22] Wikipedia.org Quantum byzantine agreement—Wikipedia, the free encyclope-
dia, 2009. http://en.wikipedia.org/w/index.php?title=Quantum_Byzantine_

agreement&oldid=335090911, [Online; accessed 9-January-2010].

24

γ23

1

2

3

0 1

0

4

5

6

7

8

0 11

? 1 0 ?

? 1 ? 0

0′ 1′

0′ 1′

(1,0)(2,0)
(3,1)(4,1)

0′ (1,0)(2,0)
(3,1)(4,1)

1′

(1,0)(2,0)
(3,1)(4,1)

0′
(1,0)(2,0)
(3,1)(4,1)

(1,0)(2,0)
(3,1)(4,1) (1,0)(2,0)

(3,1)(4,1)

1′

(1,?)(2,?)
(4,?)

(1,0)(2,0)
(4,1)

(1,?)(3,?)
(4,?)

(1,0)(3,1)
(4,1)

0′ 1′

(1,?)(1,0)
(2,?)(2,0)
(4,?)(4,1)

0′ (1,?)(1,0)
(3,?)(3,1)
(4,?)(4,1)

1′

0′ 1′

Step

Cell

0 0 1 1

0 1

α β

9

(1,0)(2,0)
(3,1)(4,1)

(1,0)(2,0)
(3,1)(4,1)

(1,0)(2,0)
(3,1)(4,1)

(1,0)(2,0)
(3,1)(4,1)

(3,1) (2,0)

(1,0)
(3,1)(4,1)

(1,0)
(2,0)(4,1)

(1,0)
(2,0)(4,1)

(1,0)
(3,1)(4,1)

(1.3,0)
(2.3,0)

(1.2,0)
(3.2,1)

1 0

s0 s0

p0 p0d0 d0

d1 d1q0 q0c2 c2

d1 r0 r0 d1

d1 d1s1 s1

d1 d1p1 p1

d2 d2q1 q1c2 c2

d2 d2r1 r1

d2 d2s2 s2

d2 d2

∗12 0′ ∗12 1′

α β

d0 p0 c0 c0 p0 d0

s1 c1 c1 s1

s1 s1

s1 c3 c3 s1

p1 c0 c0 p1

s2 c1 c1 s2

s2 s2

s2 c3 c3 s2

p2
c0 p2

α

s3 p2 c1 c1 p2 s3

β

u0 s3 p2 c2 c2 p2 s3

10

0′ 1′
u0

θλ2
ψ2 γ′23 γ′32 γ32 ψ3 θλ3

(3,1) (2,0)

(4.3,1)

(1.3,0)
(2.3,0)

(4.3,1) (4.2,1)

(1.2,0)
(3.2,1)

(4.2,1)

(3,1) (2,0)

(1.3,0)
(2.3,0)
(4.3,1)

(1.2,0)
(3.2,1)
(4.2,1)

c0

Figure 11: Traces of the message phase between participants 2 and 3 (fragments). Here,
α = { (1.2,0), (1.3,0), (1.4,1), (2.1,0), (2.3,0), (2.4,0), (3.1,1), (3.2,1), (3.4,1), (4.1,1),
(4.2,1), (4.3,1) } and β = { (1.2,0), (1.3,0), (1.4,1), (2.1,0), (2.3,0), (2.4,0), (3.1,0),
(3.2,1), (3.4,1), (4.1,1), (4.2,1), (4.3,1) }.

25

θ1.2 θ1

6

7

8

9

10

11

12

13

Step

Cell

14

θ1.3 θλ

d0

0
d2

0′

d0 d0 d0 d0

d0 d0 d0

d2

0′
d1

0′
d0 d0 d0

d2

0′
d1

0′
d0 d0 d0

d2

∗12 0′
d1

0′
d0 d0 d0

u0

0′
d1
∗3 0′
(2,0)(3,0)
(4,1)

d0 d0 d0

d1
0′
(1,0)(2,0)
(3,1)(4,1)

u0

0′
u0

0′
d0

∗ 0

d0

∗ 0

d0

∗ 1

u0

0 0′
u0

0 0′
u0

1 1′
u0

0′
u0

0′

u1

0 0′
u1

0 0′
u1

1 1′
u0

0′
u0

0′

u2

0 0′
u2

0 0′
u2

1 1′
u0

0′
u0

0′

θ2 θ3 θ4

d0

1
d0

1
d0

0

d0 d0 d0

d1

1′
d1

1′
d1

0′

d1

1′
d1

1′
d1

0′

d1

1′
d1

1′
d1

0′

d1
∗3 0′
(1,0)(3,0)
(4,0)

d1
∗3 1′
(1,1)(2,1)
(4,1)

d1
∗3 1′

(1,1)(2,1)
(3,1)

u0

0′
u0

1′
u0

1′

u0

0′
u0

1′
u0

1′

u0

0′
u0

1′
u0

1′

u0

0′
u0

1′
u0

1′

00 1 1

(2,0)
(3,0)(4,1)

(1,0)
(3,0)(4,0)

(1,1)
(2,1)

(1,1)(2,1)
(3,1)

∗3

∗ 1∗ 0∗ 0

α

θ1.4

∗3 ∗3 ∗3

(4,1)

u3

0′
u3

0′
u4

1′
u0

0′
u0

0′
u0

1′
u0

1′
u0

0′

15

Figure 12: Traces of the top-down evaluation of the EIG tree of participant 2 (fragments).
Here, α = { (1.2,0), (1.3,0), (1.4,1), (2.1,0), (2.3,0), (2.4,0), (3.1,1), (3.2,1), (3.4,1),
(4.1,1), (4.2,1), (4.3,1) }.

26

Step

Cell

u3

0′
u3

0′
u4

1′
u0

0′
u0

0′
u0

1′
u0

1′

16

u0 u0

03 0′
u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u0

13 1′
u0

13 1′

17

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u1 u1

03 0′
u1

13 1′
u1

13 1′

18

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u2 u2

03 0′
u2

13 1′
u2

13 1′0 0′

19

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u3 u3

0′
u4

1′
u4

1′0′

20

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u6 u6

0′ 0′′ 1′ 1′′ 1′ 1′′0′ 0′′

02 1
0′

02 1
0′

21

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u6 u6

0′ 0′′ 1′ 1′′ 1′ 1′′0′ 0′′

22

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u6 u6

0′ 0′′ 1′ 1′′ 1′ 1′′0′ 0′′

23

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u6 u6

0′ 0′′ 1′ 1′′ 1′ 1′′0′ 0′′

24

u6

0′ 0′′ 0′ 0′′ 1′ 1′′
u6 u6

0′ 0′′ 1′ 1′′ 1′ 1′′0′ 0′′

0 0 1

u0

0′

u0

0′

u0

0′

u0

0′

u0

0′

u0

02 12

0′

u1

02 12

0′

u2

0′

u5

0′

u6

0′ 0′′

100 1

θ1.2 θ1θ1.3 θλ θ2 θ3 θ4θ1.4

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

u6

Figure 13: Traces of the bottom-up evaluation of the EIG tree of participant 2 (frag-
ments).

27

