
CDMTCS
Research
Report
Series

Structured Modelling with
Hyperdag P Systems: Part B

Radu Nicolescu
Michael J. Dinneen
Yun-Bum Kim

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-373
October 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

Structured Modelling with
Hyperdag P Systems: Part B

Radu Nicolescu, Michael J. Dinneen and Yun-Bum Kim
Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand

October 2009

Abstract

In an earlier paper, we presented an extension to the families of P systems,
called hyperdag P systems (hP systems), by proposing a new underlying topological
structure based on the hierarchical dag structure (instead of trees or digraphs).

In this paper, we develop building-block membrane algorithms for discovery of
the global topological structure from the local cell point of view. In doing so, we
propose more convenient operational modes and transfer modes, that depend only
on each of the individual cell rules.

Additionally, we propose two uniform solutions to an open problem: the Fir-
ing Squad Synchronization Problem (FSSP), for hyperdag and symmetric neural
P systems, with anonymous cells. Our solutions take ec + 5 and 6ec + 7 steps,
respectively, where ec is the eccentricity of the commander cell of the digraph un-
derlying these P systems. The first and fast solution is based on a novel proposal,
which dynamically extends P systems with mobile channels. The second solution is
solely based on classical rules and static channels. In contrast to the previous solu-
tions, which work for tree-based P systems, our solutions synchronize any subset of
the underlying digraph, and do not require membrane polarizations or conditional
rules, but require states, as typically used in hyperdag and neural P systems.

Finally, by extending our initial work on the visualization of hP system mem-
branes with interconnections based on dag structures without transitive arcs, we
propose several ways to represent structural relationships, that may include transi-
tive arcs, by simple-closed planar regions, which are folded (and possibly twisted)
in three dimensional space.

1 Introduction

Following [NDK09a], we develop basic building blocks that are relevant for network dis-
covery (see also [Lyn96]): broadcast, convergecast, flooding, determine shortest paths
and other basic metrics (such as, the number of nodes, descendants, paths) which high-
light the versatility of the dag structure underlying hyperdag P systems (hP systems)

1

[NDK08]. For Algorithms 2 and 6, we extend to dags the approach pioneered by Ciobanu
et al. in [Cio03, CDK02]. We also provide explicit rewriting and transfer rules, as a re-
placement for pseudo-code. In this process, we identify areas where our initial model
was not versatile enough and we propose corresponding adjustments, that can also be
retrofitted to other models of the P family, such as the refinement of the rewriting and
transfer modes. We also advocate the weak policy for priority rules [Pău06], which we
believe is closer to the actual task scheduling in operating systems.

Further, we continue the study of FSSP in the framework of P systems, by providing
solutions for hP systems and for neural P systems [Pău02] with symmetric communica-
tion channels (snP systems). Following [DKN09], we propose two deterministic solutions
to a variant of FSSP [Szw82], in which there is a single commander, at an arbitrary
position. We further generalize this problem by synchronizing a subset of cells of the
considered hyperdag or neural P system. The first solution is based on a novel proposal,
which dynamically extends P systems with mobile channels. The second solution is sub-
stantially longer, but is solely based on classical rules and static channels. In contrast to
the previous FSSP solutions for tree-based P systems [BGMV08, AMV08], our solutions
synchronize any subset of the underlying digraph, and do not require membrane polar-
izations or conditional rules, but require states, as typically used in hyperdag and neural
P systems.

We have earlier proposed an algorithm to visually represent hP systems, where the
underlying cell structure was restricted to a canonical dag (i.e., without transitive arcs)
[NDK09b]. Nodes were represented as simple closed regions on the plane (with possible
nesting or overlaps) and channels were represented by direct containment relationships
of the regions. Following [NDK09a], we extend this planar representation by presenting
several plausible solutions that enable us to visualize any hP system, modelled as an
arbitrary dag, in the plane (or almost). Additionally, we discuss advantages and limita-
tions of these solutions, and provide a new algorithm for representing general hP systems,
where transitive arcs are not excluded.

2 Preliminaries

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A digraph (directed graph) G is a pair (X,A), where X is a finite set of elements
called nodes (or vertices), and A is a binary relation A ⊆ X × X, of elements called
arcs. A length n − 1 path is a sequence of n distinct nodes x1, . . . , xn, such that
{(x1, x2), . . . , (xn−1, xn)} ⊆ A. A cycle is a path x1, . . . , xn, where n ≥ 1 and (xn, x1) ∈
A. A digraph is symmetric if its relation A is symmetric, i.e., (x1, x2) ∈ A⇔ (x2, x1) ∈ A.
By default, all digraphs considered in this paper, and all structures from digraphs (dag,
rooted tree, see below) will be weakly connected, i.e., each pair of nodes is connected via
a chain of arcs, where the arc direction is not relevant.

A dag (directed acyclic graph) is a digraph (X,A) without cycles. For x ∈ X, A−1(x)

2

are x’s parents, A(x) are x’s children, and A(A−1(x))\{x} are x’s siblings.
A rooted tree is a special case of dag, where each node has exactly one parent, except

a distinguished node, called root, which has none.
Throughout this paper, we will use the term graph to denote a symmetric digraph

and tree to denote a rooted tree.
For a given tree, dag or digraph, we define ec, the eccentricity of a node c, as the

maximum length of a shortest path between c and any other reachable node in the
corresponding structure.

For a tree, the set of neighbors of a node x, Neighbor(x), is the union of x’s parent
and x’s children. For a dag δ and node x, we define Neighbor(x) = δ(x) ∪ δ−1(x) ∪
δ(δ−1(x))\{x}, if we want to include the siblings, or, Neighbor(x) = δ(x) ∪ δ−1(x),
otherwise. For a graph G = (X,A), we set Neighbor(x) = A(x) = {y | (x, y) ∈ A}. Note
that, as defined, Neighbor is always a symmetric relation.

A special node c of a structure will be designated as the commander. For a given
commander c, we define the level of a node x, levelc(x) ∈ N, as the length of a shortest
path between the c and x, over the Neighbor relation.

For a given tree, dag or digraph and commander c, for nodes x and y, if y ∈
Neighbor(x) and levelc(y) = levelc(x) + 1, then x is a predecessor of y and y is suc-
cessor of x. Similarly, a node z is a peer of a node x, if z ∈ Neighbor(x) and levelc(z) =
levelc(x). Note that, for a given node x, the set of peers and the set of successors
are disjoint. A node without a successor will be referred to as a terminal. We de-
fine maxlevelc = max{levelc(x) | x ∈ X} and we note ec = maxlevelc. A level-
preserving path from c to a node y is a sequence x0, . . . , xk, such that x0 = c, xk =
y, xi ∈ Neighbor(xi−1), levelc(xi) = i, 1 ≤ i ≤ k. We further define countc(y) as the
number of distinct level-preserving paths from c to y.

The level of a node and number of level-preserving paths to it can be determined
by a standard breadth-first-search, as shown in Algorithm 1. Intuitively, this algorithm
defines a virtual dag based on successor relation and, if the original structure is a tree,
this algorithm will “reset” the root at another node in that tree.

Algorithm 1: Determine levels and count level-preserving paths.

• INPUT: A tree, dag or digraph, with nodes {1, . . . , n} and a commander c ∈
{1, . . . , n}.

• OUTPUT: The arrays levelc[] and countc[] of shortest distances and number of
level-preserving paths from c to each node in the structure, over the Neighbor
relation.

3

array levelc[1, . . . , n] = [−1, . . . ,−1]; countc[1, . . . , n] = [0, . . . , 0]
queue Q = ()
Q⇐ c
levelc[c] = 0; countc[c] = 1
while Q 6= () do

x⇐ Q
for each y ∈ Neighbor(x) do

if levelc[y] = −1 then
Q⇐ y
levelc[y] = levelc[x] + 1

if levelc[y] = levelc[x] + 1 then
countc[y] = countc[y] + countc[x]

return levelc

Example 1 Figures 1, 2 and 3 show levelc, predecessors, successors, peers and countc,
for a tree, a dag and a digraph structure, respectively. Small side-arrows indicate the arcs
traversed while computing the levels, over the induced Neighbor relation, as described
in Algorithm 1.

1

2 3

4 5 6

7

Node levelc predecessors successors peers countc
1 1 3 2 − 1
2 2 1 − − 1
3 0 − 1, 4, 5, 6 − 1
4 1 3 − − 1
5 1 3 − − 1
6 1 3 7 − 1
7 2 6 − − 1

Figure 1: Left: a tree (taken from Bernardini et al [BGMV08]), with commander c = 3,
e3 = 2; Right: table with node levels, predecessors, successors, peers and countc’s.

Definition 2 (Hyperdag P systems) An hP system of order n is a system Π =
(O, σ1, . . . , σn, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects ;

2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ n, where:

• Qi is a finite set of states ;

• si,0 ∈ Qi is the initial state;

• wi,0 ∈ O∗ is the initial multiset of objects;

4

1

2 3

5 6 7

8

9

4

10

Node levelc predecessors successors peers countc
1 2 2, 3 − − 2
2 1 6 1, 5 − 1
3 1 6 1, 7 − 1
4 3 7 − − 1
5 2 2 − − 1
6 0 − 2, 3, 9 − 1
7 2 3 4 8 1
8 2 9 10 7 1
9 1 6 8 − 1
10 3 8 − − 1

Figure 2: Left: a dag with commander c = 6, e6 = 3 (siblings excluded); Right: table
with node levels, predecessors, successors, peers and countc’s.

• Pi is a finite set of multiset rewriting rules of the form sx → s′x′u↑v↓w↔
ygozout, where s, s′ ∈ Qi, x, x

′ ∈ O∗, u↑ ∈ O∗↑, v↓ ∈ O∗↓, w↔ ∈ O∗↔, ygo ∈ O∗go
and zout ∈ O∗out, with the restriction that zout = λ for all i ∈ {1, . . . , n}\Iout;

3. δ is a set of dag parent-child arcs on {1, . . . , n}, i.e., δ ⊆ {1, . . . , n} × {1, . . . , n},
representing duplex channels between cells;

4. Iout ⊆ {1, . . . , n} indicates the output cells, the only cells allowed to send objects
to the “environment”.

A symmetric nP system, (here) in short, a snP system, is an nP system where the
underlying digraph syn is symmetric (i.e., a graph). For further definitions describing the
evolution of hP and nP systems, such as configuration, rewriting modes, transfer modes,
transition steps, halting and results, see our previous work [NDK08]. For all structures,
we also utilize the weak policy for applying priorities to rules, as defined by Păun [Pău06].

Remark 3 Most of the P systems considered here (i.e., nP systems, snP systems, hP sys-
tems with siblings and hP systems without siblings) define a tag go that sends a multiset
of objects along the previously defined Neighbor relation. Traditional tree-based P sys-
tems do not directly provide this facility, however, it can be easily provided by the union
of out and in! target indications, that represent sending “to parent” and “to all children”,
respectively. That is, (w, go) ≡ (w, out)(w, in!).

The dynamic operations of hP systems, i.e., the configuration changes via object
rewriting and object transfer, are a natural extension of similar operations used by transi-
tion and neural P systems. Our earlier paper, [NDK09b], describes the dynamic behavior
of hP systems, in more detail.

5

1

2 3

4 5

6 7

Node levelc predecessors successors peers countc
1 0 − 3, 7 − 1
2 2 3 − 4 1
3 1 1 2, 4, 5 − 1
4 2 3, 7 6 2 2
5 2 3, 7 6 − 2
6 3 4, 5 − − 4
7 1 1 4, 5 − 1

Figure 3: Left: a graph with commander c = 1, e1 = 3; Right: table with node levels,
predecessors, successors, peers and countc’s.

We measure the runtime complexity of a P system in terms of P-steps, where a P-step
corresponds to a transition on a parallel P machine. If no more transitions are possible,
the hP system halts. For halted hP systems, the computational result is the multiset
of objects emitted out (to the “environment”), over all the time steps, from the output
cells Iout. The numerical result is the set of vectors consisting of the object multiplicities
in the multiset result. Within the family of P systems, two systems are functionally
equivalent if they yield the same computational result.

Example 4 Figure 4 shows the structure of an hP system that models a computer
network. Four computers are connected to “Ethernet Bus 1”, the other four computers
are connected to “Ethernet Bus 2”, while two of the first group and two of the second
group are at the same time connected to a wireless cell. In this figure we also suggest
that “Ethernet Bus 1” and “Ethernet Bus 2” are themselves connected to a higher level
communication hub, in a generalized hypergraph.

We have already shown, [NDK09b], that our hP systems can simulate any transition
P system [Pău06] and any snP system [Pău02], with the same number of steps and
object transfers. To keep the arguments simple, we have only considered systems without
additional features, such as dissolving membranes, priorities or polarities. However, our
definition of hP systems can also be extended, as needed, with additional features, in a
straightforward manner, and we do so in this paper.

Model refinements

• As initially defined [NDK09b], the rules are applied according to the current cell
state s, in the rewriting mode α(s) ∈ {min, par, max}, and the objects are sent
out in the transfer mode β(s) ∈ {one, spread, repl}. In this paper, we propose

6

Ethernet Bus 1 Ethernet Bus 2

Wireless Cell

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Cell

Figure 4: A computer network and its corresponding hypergraph representation.

a refinement to these modes and allow that the rewriting and transfer modes to
depend on the rule used (instead of the state), as long as there are no conflicting
requirements. We will highlight the cases where this mode extension is essential.

• We also consider rules with priorities, in their weak interpretation [Pău06]. In the
current paper, lower numbers (i.e., first enumerated) indicate higher priority. In
the weak interpretation of the priority, rules are applied in decreasing order of their
priorities—where a lower priority rule can only applied after all higher priority rules
have been applied (as required by the rewriting modes). In contrast, in the strong
interpretation, a lower priority rule cannot be applied at all, if a higher priority rule
was applied. We will highlight the cases where the weak interpretation is required.

3 Basic algorithms for network discovery—Without

IDs

In this section and the following, we study several basic distributed algorithms for network
discovery, adapted to hP systems. Essentially, all cells start in the same state and with
the same or similar (set of) rules, but there are several different scenarios:

1. Initially, cells know nothing about the structure in which they are linked, and must
even discover their local neighborhood (i.e., their parents, children, siblings), as

7

1

2 3

4 5 6

7

8

9

Figure 5: A dag for illustrating our network discovery algorithms.

well as some global model topology characteristics (such as various dag measures
or shortest paths).

2. As above, but each cell has its own ID (identifier) and is allowed to have custom
rules for this ID.

3. As above, each cell has its own ID and also knows the details of its immediate
neighbors (parents, children and, optionally, siblings).

Algorithm 2: Broadcast to all descendants.

Precondition: Cells do not need any inbuilt knowledge about the network topology. All
cells start in state s0, with the same rules. The initiating cell has an additional object a,
that is not present in any other cell.

Postcondition: All descendant cells are eventually visited and enter state s1.

Rules:

1. s0a→ s1a↓, with α = min, β = repl.

2. s1a→ s1, with α = par.

Proof. This is a deterministic algorithm. Rule 1 is applied exactly once, when a cell is
in state s0 and it contains an a. This a is consumed, the cell enters state s1 and another
a is sent to all the children, replicated as necessary. Additional a’s may appear in a cell,
because, in a dag structure, a cell may have more than one parent. Rule 2 is applicable in
state s1 and silently discards any additional a’s, without changing the state and without
interacting with other cells. All a’s will eventually disappear from the system—however,

8

cells themselves may never know that the algorithm has completed and no other a’s will
come from their parents. By induction, all descendants will receive an a and enter state
s1. �

Remarks 5

• This broadcast algorithm can be initiated anywhere in the dag. However, it is
probably most useful when initiated on a dag source, or on all sources at the same
time (using the same object a or a different object for each source).

• This algorithm completes after h+ 1 P-steps, where h is the height of the initiating
node.

• State s1 may be reached before the algorithm completes and cannot be used as a
termination indicator.

• Several other broadcasting algorithms can be built in a similar manner, such as
broadcast to all ancestors or broadcast to all reachable cells (ancestors and descen-
dants).

• This algorithm family follows the approach used by Ciobanu et al. [Cio03, CDK02],
for tree based algorithms, called skin membrane broadcast and generalized broadcast.

Example 6 We illustrate the algorithm for broadcasting to all descendants, for the
hP system shown in Figure 5.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0a s0a s0 s0 s0 s0 s0 s0
2 s1 s1 s1 s0a s0aa s0a s0 s0 s0
3 s1 s1 s1 s1 s1a s1 s0a s0a s0
4 s1 s1 s1 s1 s1 s1 s1 s1a s0
5 s1 s1 s1 s1 s1 s1 s1 s1 s0

Algorithm 3: Counting all paths from a given ancestor.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
All cells start in state s0 and with the same rules. The initiating cell has an additional
object a, not present in any other cell.

9

Postcondition: All descendant cells are eventually visited, enter state s1 and will have
a number of b’s equal to the number of distinct paths from the initiating cell.

Rules:

1. s0a→ s1ba↓, with α = par, β = repl.

2. s1a→ s1ba↓, with α = par, β = repl.

Proof. This is a deterministic algorithm. Rule 1 is applied when the cell is in state s0 and
an a is available. This a is consumed, the cell enters state s1, a b is generated and another
a is sent to all its children, replicated as necessary. Additional a’s may appear in a cell,
because, in a dag structure, a cell may have more than one parent. Rule 2 is similar to
rule 1. State s1 is similar to state s0 and is not essential here, it appears here only to
mark visited cells. The number of generated b’s is equal to the number of received a’s,
which eventually will be equal to the number of distinct paths from the initiating cell.
All a’s will eventually disappear from the system—however, cells themselves may never
know that the algorithm has completed, that no other a’s will come from their parents
and all paths have been counted. A more rigorous proof will proceed by induction. �

Remarks 7

• This algorithm completes after h+ 1 P-steps, where h is the height of the initiating
node.

• State s1 may be reached before the algorithm completes and cannot be used as a
termination indicator.

• Several other path counting algorithms can be built in a similar manner, such as
the number of paths to a given descendant.

Example 8 We illustrate the algorithm for counting all paths from a given ancestor, for
the hP system shown in Figure 5.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1b s0a s0a s0 s0 s0 s0 s0 s0
2 s1b s1b s1b s0a s0aa s0a s0 s0 s0
3 s1b s1b s1b s1b s1bb s1b s0a s0aa s0
4 s1b s1b s1b s1b s1bb s1b s1b s1abb s0
5 s1b s1b s1b s1b s1bb s1b s1b s1bbb s0

10

Algorithm 4: Counting the children of a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
The initiating cell and its children start in state s0 and with the same rules. The initi-
ating cell has an additional object a, not present in any other cell.

Postcondition: The initiating cell ends in state s1 and will contain a number of c’s
equal to its child count. The child cells end in state s1. As a side effect, other parents (if
any) of these children will receive superfluous c’s—however, these c’s can be discarded,
if needed (rules not shown here).

Rules:

1. s0a→ s1p↓, with α = min, β = repl.

2. s0p→ s1c↑, with α = min, β = repl.

Proof. This is a deterministic algorithm with a straightforward proof, not given here. �

Remarks 9

• This algorithm completes after two P-steps.

• Several other algorithms that enumerate the immediate neighborhood can be built
in a similar manner, such as counting parents, counting siblings, counting neighbors.

Algorithm 5: Broadcast for counting all children.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
All cells start in state s0 and with the same rules. The initiating cell has an additional
object a, not present in any other cell.

Postcondition: Each descendant cell enters state s1 and, eventually, will contain a num-
ber of c’s equal to its child count.

11

Rules:

0. For state s0:

1) s0a→ s1p↓, with α = min, β = repl.

2) s0p→ s1p↓c↑, with α = min, β = repl.

1. For state s1:

1) s1p→ s1, with α = par.

Proof. This is a deterministic algorithm: the proof combines those from the broadcast
algorithm (Algorithm 2) and the child counting algorithm (Algorithm 4). �

Remarks 10

• This algorithm runs in h+ 1 P-steps, where h is the height of the initiating cell.

• State s1 may be reached before the algorithm completes its cleanup phase and
cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of the
initiating node will receive superfluous c’s.

• Several other algorithms that broadcast a request to count the immediate neighbor-
hood can be built in a similar manner, such as broadcast for counting all parents,
broadcast for counting all siblings, broadcast for counting all neighbors.

Example 11 We illustrate the algorithm for counting all children via broadcasting, for
the hP system shown in Figure 5.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p s0p s0 s0 s0 s0 s0 s0
2 s1cc s1 s1 s0p s0pp s0p s0 s0 s0
3 s1cc s1cc s1cc s1 s1p s1 s0p s0p s0c
4 s1cc s1cc s1cc s1 s1c s1c s1c s1p s0c
5 s1cc s1cc s1cc s1 s1c s1c s1c s1 s0c

12

Algorithm 6: Counting heights by flooding.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
All cells start in state s0, with the same rules and have no initial object.

Postcondition: All cells end in state s2. The number of t’s in each cell equals the
distance from a furthest descendant.

Rules:

0. For state s0:

1) s0 → s1ac↑, α = min, β = repl.

1. For state s1, the rules will run under the following priorities, under the weak inter-
pretation:

1) s1ac→ s1atc↑, α = max, β = repl.

2) s1c→ s1, α = max.

3) s1a→ s2, α = min.

Proof. Each cell emits a single object c to each of its parents in the first step. During
successive active steps, a cell either: (a) uses rule 1.3 to enter the terminating state s2 or
(b) continues via rule 1.1 to forward one c up to each of its parents. In the latter case,
since we have α = max, and as enabled by the weak interpretation of priorities, rule 1.2
is further used to remove all remaining c’s (if any), in the same step. The cell safely
enters the end state s2 when no more c’s appear. Induction shows that the set of times
that c’s appear is consecutive: if a cell at k > 1 links away emitted a c, then there must
be another cell at k− 1 links away emitting another c. Finally, the number of times rule
1.1 is applied is the number of times a cell receives at least one new c from below. These
steps are tallied by occurrences of the object t. �

Remarks 12

• This algorithm, like other distributed flooding based algorithms, requires that all
cells start at the same time. Achieving this synchronization is a nontrivial task—in
Section 5, we suggest a simple and fast algorithm that achieves this synchronization.

• The time complexity of this quick algorithm is h+ 2 P-steps, where h is the height
of the dag. The two extra P-steps correspond to the initial step and the step to
detect no more c’s.

13

• This algorithm follows the approach by Ciobanu et al. [Cio03, CDK02], for the
tree based algorithm called convergecast. Here we prefer to use the term flooding,
and use the term convergecast for a result accumulation triggered by an initial
broadcast.

• This algorithm makes critical use of the weak interpretation for priorities.

Example 13 We illustrate the algorithm for counting heights by flooding, for the hP sys-
tem shown in Figure 5.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0 s0 s0 s0 s0 s0 s0 s0 s0
1 s1acc s1acc s1acc s1a s1ac s1ac s1ac s1a s1ac
2 s1acct s1act s1acct s2 s1at s1act s1at s2 s1act
3 s1acctt s1att s1actt s2 s2t s1att s2t s2 s1actt
4 s1act

3 s2tt s1at
3 s2 s2t s2tt s2t s2 s1at

3

5 s1at
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

6 s2t
4 s2tt s2t

3 s2 s2t s2tt s2t s2 s2t
3

Algorithm 7: Counting nodes in a single-source dag.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
All cells start in state s0, with the same rules. The initiating cell is the source of a
single-source dag and has an additional object a, not present in any other cell.

Postcondition: Eventually, the initiating cell will contain a number of c’s equal to the
number of all its descendants, including itself, which is also the required node count.

Rules:

0. For state s0:

1) s0a→ s3p↓c, with α = min, β = repl.

2) s0p→ s1p↓, with α = min, β = repl.

1. For state s1:

1) s1 → s2c↑, with α = min, β = one.

2. For state s2:

1) s2c→ s2c↑, with α = max, β = one.

2) s2p→ s2, with α = max.

14

Proof. We prove that the source will eventually contain k copies of object c, where k is
the order of the single-source dag. The source cell will produce a copy of c following rule
0.1. A non-source cell σi will send one c to a parent σj, where j ∈ δ−1(i), because a node
is at state s1 during at most one P-step, by rule 1.1. A cell σi will forward up, using rule
2.1, additional c’s to one of its parents, which will eventually arrive at the source. �

Remarks 14

• This algorithm takes up to 2h P-steps, where h is the height of the initiating cell.

• The end state s3 is not halting, may be reached before the algorithm completes and
cannot be used as a termination indicator.

Example 15 We illustrate the algorithm for counting nodes in a single-source dag via
convergecast, for the hP system shown in Figure 5, after removing node 9.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
0 s0a s0 s0 s0 s0 s0 s0 s0
1 s3c s0p s0p s0 s0 s0 s0 s0
2 s3c s1 s1 s0p s0pp s0p s0 s0
3 s3c

3 s2 s2 s1 s1p s1 s0p s0p
4 s3c

3 s2c s2cc s2 s2p s2 s1 s1p
5 s3c

6 s2 s2 s2 s2 s2c s2c s2p
6 s3c

6 s2 s2c s2 s2 s2c s2 s2
7 s3c

7 s2 s2c s2 s2 s2 s2 s2
8 s3c

8 s2 s2 s2 s2 s2 s2 s2

4 Basic algorithms for network discovery—With IDs

In this section we assume each cell has an unique ID and each cell only knows its own
ID. Objects may be tagged with IDs to aid in communication.

Algorithm 8: Counting descendants by convergecast—With cell IDs.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
For each cell with index i, 1 ≤ i ≤ m, the alphabet includes special ID objects ci and
c̄i. All cells start in state s0 and have the same rules, except several similar, but custom
specific, rules to process the IDs. The initiating cell has an additional object a, not
present in any other cell.

15

Postcondition: All visited cells enter state s1 and, eventually, each cell will contain
exactly one c̄i for each descendant cell with index i, including itself: the number of these
objects is the descendant count.

Rules:

0. For state s0 and cell σi (these are custom rules, specific for each cell):

1) s0a→ s1p↓c̄i, with α = min, β = repl.

2) s0p→ s1p↓ci↑c̄i, with α = min, β = repl.

1. For state s1, the rules will run under the following priorities :

1) s1cj c̄j → s1c̄j, for 1 ≤ j ≤ m, with α = max.

2) s1c̄j c̄j → s1c̄j, for 1 ≤ j ≤ m, with α = max.

3) s1cj → s1cj↑c̄j, for 1 ≤ j ≤ m, with α = max, β = repl.

4) s1p→ s1, with α = max.

Proof. Assume that δ is the underlying dag relation. For each cell σi, consider the sets
Ci = {cj | j ∈ δ∗(i)}, C̄i = {c̄j | j ∈ δ∗(i)}, which consist of ID objects matching σi’s
children. By induction on the dag height, we prove that each visited cell σi will eventually
contain the set C̄i, and, if it is not the initiating cell, will also send up all elements of
the set Ci, possibly with some duplicates (up to all its parents). The base case, height
h = 0, is satisfied by rule 0.1, if σi is the initiator, or by rule 0.2, otherwise. For cell σi at
height h+ 1, by induction, each child cell σk sends up Ck, possibly with some duplicates.
By rules 0.1 and 0.2, cell σi further acquires one c̄i and, if not the initiator, sends up
one ci. From its children, cell σi acquires the multiset C ′i, consisting of all the elements
of the set

⋃
k∈δ(i)Ck = Ci \ ci, possibly with some duplications. Rule 1.3 sends up one

copy of each element of multiset C ′i and records a barred copy of it. Rule 1.2 halves the
number of duplicates in multiset C ′i. Rule 1.1 filters out duplicates in multiset C ′i, if a
barred copy already exists. Rule 1.4 clears all p’s, which are not needed anymore. �

Remarks 16

• Other counting algorithms can be built in a similar manner, such as counting an-
cestors, counting siblings, counting sources or counting sinks.

• The end state s1 is not halting, it may be reached before the algorithm completes
and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of the
initiating node may receive superfluous ci’s.

16

• This algorithm works under both strong and weak interpretation of priorities.

Example 17 We illustrate the algorithm for counting descendants via convergecast us-
ing cell IDs, for the hP system shown in Figure 5.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p s0p s0 s0 s0 s0 s0 s0

c̄1
2 s1c2c3 s1 s1 s0p s0pp s0p s0 s0 s0

c̄1 c̄2 c̄3
3 s1 s1c4c5 s1c5c6 s1 s1p s1 s0p s0p s0c6

c̄1c̄2c̄3 c̄2 c̄3 c̄4 c̄5 c̄6
4 s1c4c5c5c6 s1 s1 s1 s1c8 s1c7 s1c8 s1p s0c6

c̄1c̄2c̄3 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5 c̄6 c̄7 c̄8
5 s1 s1c8 s1c7c8 s1 s1 s1c8 s1 s1 s0c6c7

c̄1c̄2c̄3c̄4c̄5c̄5c̄6 c̄2c̄4c̄5 c̄3c̄5c̄6 c̄4 c̄5c̄8 c̄6c̄7 c̄7c̄8 c̄8
6 s1c7c8c8 s1 s1c8 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
7 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8
8 s1 s1 s1 s1 s1 s1 s1 s1 s0c6c7c8

c̄1c̄2c̄3c̄4c̄5c̄6c̄7c̄8 c̄2c̄4c̄5c̄8 c̄3c̄5c̄6c̄7c̄8 c̄4 c̄5c̄8 c̄6c̄7c̄8 c̄7c̄8 c̄8

Algorithm 9: Shortest paths from a given cell.

Precondition: Cells do not need any inbuilt knowledge about the network topology.
For each cells with indices i, j, 1 ≤ i, j ≤ m, the alphabet includes special ID objects:
pi, p̄i, c̄i, xij. All cells start in state s0 and have the same rules, except several similar
but custom specific rules to process the IDs. The initiating cell has an additional object
a, not present in any other cell.

Postcondition: This algorithm builds a shortest paths spanning tree, that is a breadth-
first tree rooted at the initiating cell and preserving this dag’s relation δ. Each visited cell
σi, except the initiating cell, will contain one p̄k, indicating its parent σk in the spanning
tree. Each visited cell σi will also contain one c̄j for each σj that is a child of σi in the
spanning tree, i.e., it will contain all elements of the set {c̄j | (i, j) ∈ δ, σj contains p̄i}.

Rules:

0. For state s0 and cell σi (custom rules, specific for cell σi):

1) s0a→ s1pi↓, with α = min, β = repl.

2) s0pj → s1p̄jpi↓xji↑, for 1 ≤ j ≤ m, with α = min, β = repl.

17

3) s0xkj → s0, for 1 ≤ k, j ≤ m, k 6= i, with α = max.

1. For state s1 and cell σi (custom rules, specific for cell σi):

1) s1xij → s1c̄j, for 1 ≤ j ≤ m, with α = max.

2) s1pj → s1, for 1 ≤ j ≤ m, with α = max.

3) s1xkj → s1, for 1 ≤ k, j ≤ m, k 6= i, with α = max.

Proof. It is clear that every visited cell σi, except the initiating cell, contains one p̄k
where k ∈ δ−1(i) from rule 0.2. By a node’s height, we prove that a cell σi will contain
the set Ci = {c̄j | (i, j) ∈ δ, σj contains p̄i}. For height 0, Ci = ∅ is true since a sink σi
does not have any children to receive an xji—see rule 0.2. For a cell σi of height greater
than 0, first observe that rule 1.1 is only applied if rule 0.2 has been applied for a child
cell σj. Thus, Ci contains all c̄j such that (i, j) is in the spanning tree. Those xkj’s are
removed by rule 0.3, and xij’s that are not converted to c̄j are removed by rule 1.3. �

Remarks 18

• For this algorithm, cells need additional symbols, see the precondition.

• This algorithm takes h+ 1 P-steps, where h is the height of the initiating cell.

• The end state s1 is not halting, it may be reached before the algorithm completes
and cannot be used as a termination indicator.

• As a side effect, any parent of the visited children that is not a descendant of the
initiating node will receive superfluous xij’s, but they are removed by rule 0.3.

• The rules for state s0 make effective use of our rewriting mode refinement: rules
0.1 and 0.2 use α = min, while rule 0.3 uses α = max.

• Provided that arcs are associated with weights, this algorithm can be extended into
a distributed version of the Bellman-Ford algorithm [Lyn96].

Example 19 We illustrate the algorithm for counting nodes in a single-source dag via
convergecast, for the hP system shown in Figure 5. The thick arrows in Figure 6 show
the resulting spanning tree.

Step\Cell σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
0 s0a s0 s0 s0 s0 s0 s0 s0 s0
1 s1 s0p1 s0p1 s0 s0 s0 s0 s0 s0
2 s1x12x13 s1p̄1 s1p̄1 s0p2 s0p2p3 s0p3 s0 s0 s0
3 s1c̄2c̄3 s1p̄1x24x25 s1p̄1x25x36 s1p̄2 s1p3p̄2 s1p̄3 s0p6 s0p5 s0x36
4 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2x58 s1p̄3x67 s1p̄6x58 s1p7p̄5 s0
5 s1c̄2c̄3 s1p̄1c̄4c̄5 s1p̄1c̄6 s1p̄2 s1p̄2c̄8 s1p̄3c̄7 s1p̄6 s1p̄5 s0

18

1

2 3

4 5 6

7

8

9

Figure 6: A spanning tree created by the shortest paths algorithm (Algorithm 9).

5 The Firing Squad Synchronization Problem

The Firing Squad Synchronization Problem (FSSP) [KG05, Maz87, Nog04, SW04, Szw82,
UMF02] is one of the best studied problems for cellular automata. The problem involves
finding a cellular automaton, such that, after a command is given, all the cells, after
some finite time, enter a designated firing state simultaneously and for the first time.
Several variants of FSSP [SW04, Szw82], have been proposed and studied. Studies of
these variations mainly focus on finding a solution with as few states as possible and
possibly running in optimum time.

The synchronization problem has recently been studied in the framework of P systems.
A P systems version of the FSSP is described below.

We are given a P, hP, snP or nP system with n cells, {σ1, . . . , σn}, where all cells have
the same states set and same rules set. Two states are distinguished: an initial state s0
and a firing state sφ. We select an arbitrary commander cell σc and an arbitrary subset
of squad cells, F ⊆ {σ1, . . . , σn} (possibly the whole set), that we wish to synchronize;
the commander itself may or may not be part of the firing squad. At startup, all cells
start in the initial state s0; the commander and the squad cells may contain specific
objects, but all other cells are empty. Initially, all cells, except the commander, are idle,
and will remain idle until they receive a message. The commander sends one or more
orders, to one or more of its neighbors, to start and control the synchronization process.
Idle cells may become active upon receiving a first message. Notifications may be relayed
to all cells, as necessary. Eventually, all cells in the squad set F will enter the designated
firing state sφ, simultaneously and for the first time. At that time, all the other cells
have reached a different state, typically s0 or s1, without ever passing through the firing
state sφ. Optionally, at that time, all cells should be empty.

Using tree-based P systems, Bernardini et al [BGMV08] provided a non-deterministic
with time complexity 3h and a deterministic solution with time complexity 4n+2h, where
h is the height of the tree structure underlying the P system and n is the number of
membranes of the P system. The deterministic solution requires membrane polarization
techniques and uses a depth-first-search.

19

More recently, Alhazov et al [AMV08] described an improved deterministic algorithm
for tree-based P systems, that runs in 3h + 3 steps. This solution requires conditional
rules (promoters and inhibitors) and combines a breadth-first-search, a broadcast and a
convergecast, algorithmic techniques with a high potential for parallelism.

In this paper, we continue the study of FSSP in the framework of P systems, by
providing deterministic solutions for dag-based hP and graph-based snP systems. Our
deterministic solutions are a variant of FSSP [Szw82], in which there is a single com-
mander, at an arbitrary position. We further generalize this problem by synchronizing a
subset of cells of the considered hP or snP system.

These more complex structures pose additional challenges, not considered in the pre-
vious FSSP papers on tree-based P systems, such as multiple network sources (no single
root) and multiple paths between cells. Additionally, by allowing an arbitrary position
for the commander, we cannot anymore take advantage of the sense of direction between
adjacent cells; practically, our structures need to be treated as undirected graphs.

Our first solution uses simple rules, but requires dynamical structures. In this paper
we propose a novel extension, which supports the creation of dynamical structures, by
allowing mobile channels. This solution works for hP systems and snP systems; it will also
work for tree-based P systems, but only if we reconsider them as dag-based P systems,
because the resulting structures will be dags, not trees. This solution takes ec + 5 steps,
where ec is the eccentricity of the commander cell of the underlying dag or graph. The
relative simplicity and the speed of this solution supports our hypothesis that basing
P systems on dag, instead of tree, structures allows more natural expressions of some
fundamental distributed algorithms [NDK08, NDK09a].

Our second solution is more traditional and does not require dynamical structures,
but is substantially more complex, combining a breadth-first-search, a broadcast and a
convergecast. This solution works for tree-based P systems, hP systems and snP systems
and takes 6ec + 7 steps. When restricted to P systems, our algorithm takes more steps
than Alhazov et al [AMV08], if the commander is the root node, but comparable to this,
when the commander is a central node of an unbalanced rooted tree.

Our two solutions do not require polarities or conditional rules, but require priorities
and states. Both hP systems and snP systems already have states, by definition. However,
it seems that traditional tree-based P systems have not used states so far, or not much.

5.1 FSSP—Dynamic Structures via Mobile Channels

In this section, we further refine our solution given in an earlier paper [NDK09a]. A
natural solution is possible when we are allowed to extend the cell structure of the given
hP or snP system. We achieve this by supporting the dynamic creation and manipulation
of mobile channels. The endpoints of our mobile channels appear in the rules like all other
objects and are subject to usual rewriting and transfer rules. Our mobile channels move
together with their endpoints and are thus able to “grow” step-by-step, not unlike nerves
which extend in a regenerating tissue, or threads extended by spiders.

As endpoints for mobile channels, we use the objects from the set {α, θ, ω}:

20

• The object α (here we use only one α) marks the containing cell as the starting
endpoint of all mobile channels.

• Each object θ or ω marks the final endpoint of a mobile channel.

• In the graphical representation, a mobile channel will be represented by a dotted
arrow, spanning from the cell containing α to the cell containing θ or ω.

Example 20 Although not strictly needed, we can imagine that Figures 7(a), (b), (c)
correspond to successive hP system configurations (resulting from rewriting and transfer
rules).

• Figure 7(a) shows one mobile channel spanning from σ1 to σ3.

• Figure 7(b) shows two mobile channels, spanning from σ1 to σ3 and σ4, respectively.

• Figure 7(c) shows two mobile channels, spanning from σ1 to σ3 and σ5, respectively.

α

θ

α

ω

θ

α

ω

θ

σ1

σ2

σ3

σ4

σ5

σ1

σ2

σ3

σ4

σ5

σ1

σ2

σ3

σ4

σ5

(a) (b) (c)

Figure 7: Mobile channels, indicated by dotted arrows.

In our algorithm, we further assume that the dag was already extended by an external
cell, which will be called the sergeant. We leave out the details of this extension, but we
note that the existing P system framework provides several facilities, which can achieve
this, e.g., cell division [Pău06].

Next, this sergeant will send a self-replicating θ endpoint, that will be repeatedly
broadcasted, until all cells are reached. A θ endpoint will leave an ω endpoint in a squad
cell and will disappear without trace from the other cells. In the end, the structure will
be extended with new channels which will link the sergeant with all squad cells. Finally,
when there are no more structural changes, the sergeant, will send a firing command to
all squad cells, prompting these cells to enter the firing state, all at the same time.

21

Algorithm 10: FSSP—Dynamic structures via mobile channels.

Precondition: An hP or snP system, with n cells σ1, . . . , σn, a commander cell σc and
a set of squad cells F to be synchronized. Additionally, we already have a sergeant cell,
σn+1, linked to the commander by one arc, (σn+1, σc), for hP systems, or by two arcs,
(σn+1, σc), (σc, σn+1), for snP systems.

All cells start in state s0 and have the same rules. The state sφ is the firing state.
Initially, the sergeant σn+1 is marked by one object α, and each squad cell is marked by
one object f (this can include the commander σc or the sergeant σn+1, or both); all other
cells have no objects.

Postcondition: All cells in the set F enter state sφ, simultaneously and for the first
time, after ec+5 steps, where ec is the commander’s eccentricity in the underlying graph.
All other cells enter state s1, without ever passing through state sφ.

Rules: (rules are applied under the weak interpretation of priorities, in the rewriting
mode α = max and transfer mode β = repl):

1. s0α→ s2αθgo

2. s0fθ → s4ωθgo

3. s0θ → s1θgo

4. s1θ → s1

5. s2α→ s3α

6. s3θ → s3

7. s3fα→ s4fαφφgo

8. s3α→ s1αφgo

9. s4fφ→ sφ

10. s4θ → s4

Example 21 Figure 8 and Table 1 illustrate this algorithm for an hP system based on
the dag of Figure 1. Here, the commander cell is σ3, the squad set is F = {σ1, . . . , σ5}
and this system’s structure has already been extended by the sergeant cell σ8 and the
arc (σ8, σ3). The mobile channels are represented by dotted arrows.

Table 1: Traces for Algorithm 10 on an hP system based on the dag of Figure 1.
Step\Cell σ8 σ3 σ1 σ4 σ5 σ6 σ2 σ7
0 s0α s0f s0f s0f s0f s0 s0f s0
1 s2α s0fθ s0f s0f s0f s0 s0f s0
2 s3αθ s4fω s0fθ s0fθ s0fθ s0θ s0f s0
3 s3αθ

4 s4fωθ
4 s4fω s4fω s4fω s1 s0fθ s0θ

4 s3αθ
2 s4fω s4fωθ s4fω s4fω s1θ s4fω s1

5 s3α s4fω s4fω s4fω s4fω s1 s4fω s1
6 s1α s4fωφ s4fωφ s4fωφ s4fωφ s1 s4fωφ s1
7 s1α sφω sφω sφω sφω s1 sφω s1

22

σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8
α

Step 0 σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8

θ

α
Step 1 σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8

ω

αθ

θθθ

θ
Step 2

σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8

ωθ

αθω

θ

ω ω

θ

Step 3 σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8
αθωθ

ω ω θ

ω ω

Step 4 σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8
α

ω ω

ω

ω

ω

Step 5

σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8
α

ωφ

ωφ

ωφ ωφ

ωφ

Step 6 σ1

σ2 σ3

σ4 σ5 σ6

σ7

σ8
αω

ω

ωω

ω

Step 7

Figure 8: Running Algorithm 10 on an hP system based on the dag of Figure 1.

5.2 FSSP—Static Structures and Rules

Here we consider a second scenario, where we are allowed to modify the rules of the given
hP or snP system, but not its original structure. A brief description of this solution is
as follows. The commander intends to send an order to all cells in the set F , which
will prompt them to synchronize by entering the designated firing state. However, in
general, the commander does not have direct channels with all the cells. In this case,
the process of sending a command to the destination cell will cause delays (some steps),
as the command is relayed through intermediate cells. Hence, to ensure all firing squad
cells enter the firing state simultaneously, each firing squad cell determines the number
of steps it needs to wait before entering the firing state.

As in our earlier paper [NDK09a], cells have no built-in knowledge of the network
topology. Additionally, cells are anonymous, i.e., not identified by cell IDs, and not

23

implicitly named by membrane polarization techniques. The cells are initially empty,
except the commander, which is initially marked by one a, and the squad cells, which are
initially marked by one f each. All cells start with the same set of rules, applied under
the weak interpretation of priorities, in the rewriting mode α = max and the transfer
mode β = repl.

Each cell independently progresses through four phases, called FSSP-I, FSSP-II,
FSSP-III and FSSP-IV, which are detailed in Algorithms 11, 12, 13 and 14, respectively.
An overview of these four phases is as follows:

• Phase FSSP-I is a broadcast from the commander, that follows the virtual dag
defined by levelc. This phase starts in state s0 and ends in state s2. Also, the
commander starts a counter, which, at the end of Phase FSSP-II, will determine
its eccentricity.

• Phase FSSP-II is a subsequent convergecast from terminal cells, that follows the
same virtual dag. This phase starts in state s2 and ends when the commander
enters state s6. At the end of this phase, the commander’s counter determines its
eccentricity.

• Phase FSSP-III is a second broadcast, initiated from the commander, that follows
the same virtual dag. This phase starts in state s6 and ends in state s8. The
commander sends out its eccentricity, which is successively decremented at each
level.

• Phase FSSP-IV is a timing (countdown) for entering the firing state. This phase
starts in state s8 and continues with a countdown, until squad cells simultaneously
enter the firing state s9, and all other cells enter state s0.

The statechart in Figure 9 illustrates the combined flow of these four phases. The
nodes represent the states of the hP or snP system and the arcs are labelled with numbers
of the rules that match the corresponding transitions. The rest of this section describes
these four phases, proving their correctness and time complexities. A sample run of our
algorithm will follow at the end of this section, in Example 27.

FSSP: The initial configuration

• Γ = {σ1, . . . , σn}, n > 1, is the set of all cells, σc is the commander, and the firing
squad is F ⊆ Γ;

• O = {a, b, c, d, e, f, g, h, k, l, p, q};

• Qi = {s0, s1, s2, s3, s4, s5, s6, s7, s8, s9}, for i ∈ {1, . . . , n}, which is “allocated” to
four phases as follows: FSSP-I contains rules for states {s0, s1}; FSSP-II contains
rules for states {s2, s3, s4, s5, s6}; FSSP-III contains rules for states {s6, s7}; FSSP-
IV contains rules for states {s8, s9};

• sφ = s9 is the firing state;

24

s0 s1 s2 s4 s6 s7 s80.1, 0.2 1.1, 1.2, 2.2, 2.3,

4.3

7.2, 7.3, 8.2, 8.4
s5

5.6

s9

8.1
4.1, 4.2,

s3 3.1, 3.2,

2.1, 2.7

2.5, 2.6 3.3, 3.4
4.6, 4.7,

5.1, 5.3,

5.2, 5.7 6.1, 6.2

7.1

7.4, 7.5,
7.6, 7.7,

4.4, 4.5

2.4

8.3

7.8, 7.9

1.3 4.8, 4.9

5.4, 5.5,

Figure 9: Statechart view of the combined FSSP algorithm phases.

• si,0 = s0, for i ∈ {1, . . . , n};

• wc,0 = {a}, if σc /∈ F , or {a, f}, otherwise; wi,0 = {f} for all σi ∈ F \ σc; wi,0 = ∅,
for all σi ∈ Γ \ (F ∪ {σc});

• The following rules are applied under the weak interpretation of priorities, in the
rewriting mode α = max and transfer mode β = repl:

0. For state s0:

1) s0a→ s1aedgo

2) s0d→ s1adgo

1. For state s1:

1) s1ae→ s2aeek

2) s1a→ s2ak

3) s1d→ s2l

2. For state s2:

1) s2k → s2

2) s2ae→ s3aee

3) s2d→ s3d

4) s2a→ s6acgo

5) s2l→ s3lggo

6) s2g → s3

7) s2ae→ s2aee

3. For state s3:

1) s3ae→ s4aee

2) s3a→ s4a

3) s3g → s4p

4) s3c→ s4

25

4. For state s4:

1) s4cd→ s4

2) s4ade→ s4adee

3) s4d→ s4d

4) s4aeeeee→ s6aeee

5) s4eeeee→ s6e

6) s4a→ s5ak

7) s4l→ s5lhgo

8) s4h→ s5

9) s4q → s5

10) s4c→ s6

11) s4g → s6

12) s4h→ s6

13) s4q → s6

5. For state s5:

1) s5k → s5

2) s5a→ s6acgo

3) s5hp→ s5p

4) s5pq → s5

5) s5p→ s5kp

6) s5l→ s5lhgo

7) s5l→ s6qgo

6. For state s6:

1) s6ae→ s7ak

2) s6e→ s7bego

3) s6c→ s6

4) s6g → s6

5) s6h→ s6

6) s6p→ s6

7) s6q → s6

7. For state s7:

1) s7k → s7

2) s7a→ s8a

3) s7e→ s8

8. For state s8:

1) s8ab→ s8a

2) s8af → s9

3) s8a→ s0

4) s8a→ s9

Algorithm 11 (FSSP-I: First broadcast from the commander)

Precondition: The initial configuration as specified earlier.
Postcondition:

• The end state is s2.

• A cell σi has

◦ countc(i) copies of a and countc(i) copies of k;

◦ u copies of l, where u is the total number of a’s in σi’s peers ;

◦ v copies of d, where v is the total number of a’s in σi’s successors ;

◦ two copies of e, if σi = σc;

26

◦ one copy of f , if σi ∈ F .

Proof. This phase of the algorithm is a broadcast that follows the virtual dag created by
the levels determined by Algorithm 1.

Consider a cell σi. By induction:

• At step levelc(i), σi (except the commander) receives a total of countc(i) copies of
d from its predecessors.

• At step levelc(i)+1, σi broadcasts countc(i) copies of d to each of its neighbors and
transits to state s1. At the same time, σi accumulates one local copy of a for each
sent d, for a total count of countc(i) of a’s. Also, σi receives u copies of d, similarly
sent by its peers, where u is equal to the total number of a’s similarly accumulated,
at the same time step, by σi’s peers.

• At step levelc(i) + 2, σi receives v copies of d, sent back by its successors ; and
transits to state s2, where v is equal to the total number of a’s created, at the same
time step, by σi’s successors;

The commander, by initially having one a, creates two copies of e. Finally, the rules
associated with this phase do not change the number of f ’s, thus, each cell in the firing
squad still ends with one f . �

Corollary 22 (FSSP-I: Number of steps) For each cell σi, the phase FSSP-I takes
levelc(i) + 2 steps.

Proof. As indicated in the proof of the Algorithm 11, the total number of steps is
levelc(i) + 2. �

Algorithm 12 (FSSP-II: Convergecasts from terminal nodes)

Precondition: As described in the postcondition of Algorithm 11.
Postcondition:

• This phase ends when the commander enters state s6.

• A cell σi has

◦ countc(i) copies of a;

◦ ec + 2 copies of e, if σi = σc;

27

◦ one copy of f , if σi ∈ F .

Proof. Briefly, this phase of the algorithm is a convergecast of c’s, starting from terminal
cells, and further relayed up, on the virtual dag, until the commander is reached.

For the purpose of this phase, the non-commander cells can be organized in the
following three groups: TC cells = terminal cells; NTC-NTP cells = non-terminal cells
without non-terminal peers (i.e., cells without peers or cells with terminal peers only);
NTC+NTP cells = non-terminal cells with non-terminal peers (these cells may also have
terminal peers).

During this phase, these cells will make transitions between the following three con-
ceptual stages: WCS = waiting for convergecasts from successors (state s4); RTC =
ready to convergecast (state s5); HC = have convergecasted (state s6). Specifically, the
following transitions will be made: the TC cells will transit immediately from the WCS
stage to the HC stage; the NTC-NTP cells will linger in the WCS stage until they receive
convergecasts from all their successors, after which they will transit directly to the HC
stage; the NTC+NTP cells will linger in the WCS stage until they receive convergecasts
from all their successors, subsequently they will linger in the RTC stage until all their
non-terminal peers reach the RTC stage as well, after which they will transit to the HC
stage.

During this process, cells will exchange c-notifications, which are messages consisting
of number of c’s and h-notifications, which are messages consisting of number of h’s. The
actual numbers depend on network topology and take into account the multiple paths
that appear in the virtual dag.

The c-notification broadcasted by cell σi consists of countc(i) copies of c and is only
sent once when σi transits into the HC stage.

The h-notification broadcasted by cell σi consists of u copies of h, where u is the
number defined in the precondition. This notification is sent repeatedly, while σi remains
in the RTC stage, until σi transits into the HC stage. The h-notifications synchronize
the non-terminal peers that cannot transit to the HC stage until all of them have reached
the RTC stage. This avoids the potential confusion that could otherwise arise when a
non-terminal cell receives an “ambiguous” c-notification, i.e., a c-notification that could
come both from a successor or from a non-terminal peer.

Without loss of generality, we illustrate our solution on the dag from Figure 10. This
figure shows a typical sub-dag of the virtual dag created by Algorithm 1, where cells σ1,
σ2, σ3, σ4 and σ5 are at the same level, and the horizontal lines indicate peer relations.

Cell σ1 is a TC cell and will transit from stage WCS to stage HC, immediately after
detecting that it has no successors (there is no need for any synchronization with its peer
σ2).

Cell σ5 is a NTC-NTP cell and will transit from stage WCS to stage HC, after receiving
c-notifications from all its successors.

Cells σ2, σ3 and σ4 are NTC+NTP cells. Each of these cells will linger in stage WCS
until it receives c-notifications from all its successors, when it will enter stage RTC. Cells
σ2 and σ3 are peers, therefore none of them will be allowed to transit to stage HC, until

28

σc

σ2 σ3 σ4σ1 σ5

Figure 10: A typical sub-dag of the virtual dag.

both of them have reached the RTC stage. Similarly, cells σ3 and σ4 are peers, therefore
none of them will be allowed to transit to stage HC, until both of them have reached the
RTC stage. Assume that cells σ2, σ3 and σ4 will reach stage RTC in this order. Then,
cell σ2 will wait in stage RTC until σ3 also reaches the same stage. When this eventuates,
σ2 will transit to stage HC, while σ3 will still linger in stage RTC until σ4 reaches the
same stage. When this eventuates, both σ3 and σ4 will transit at the same time to stage
HC.

A TC cell σi enters this phase levelc(i) steps after the commander, idles one step in
state s2, then starts its role in the convergecast, by broadcasting countc(i) copies of c to
its predecessors and peers (it does not have successors) and transits to state s6. This cell
further idles in state s6 until it receives e’s from its predecessors. The convergecast takes
four steps at each level.

The total run-time is dominated by ec, the length of the longest level-preserving path
from commander. Therefore, the convergecast wave will complete at commander after
ec+4ec−2 = 5ec−2 steps after the commander starts this phase. When the commander
receives the convergecast from all its successors, it takes two steps to transit to state s6.
Therefore, the commander enters state s6, 5ec steps after it starts this phase. �

Corollary 23 (FSSP-II: Number of steps) For each cell σi, the phase FSSP-II takes
5ec − levelc(i) steps.

Proof. As indicated in the proof of Algorithm 12, this phase takes 5ec steps. �

Algorithm 13 (FSSP-III: Second broadcast from the commander)

Precondition: As described in the postcondition of Algorithm 12.

29

Postcondition:

• The end state is s8.

• A cell σi has

◦ countc(i) copies of a;

◦ (ec + 1− levelc(i))countc(i) copies of b;

◦ one copy of f , if σi ∈ F .

Proof. In this phase, commander starts its second broadcast, by sending ec + 1 copies
of e’s to all its successors. By induction on level, a cell σi receives a total of (ec + 2 −
levelc(i))countc(i) copies of e’s from its predecessors, reduces this count by countc(i) (i.e.,
the count of a’s), forwards the remaining (ec + 1− levelc(i))countc(i) copies of e’s to all
its successors and creates for itself (ec + 1 − levelc(i))countc(i) copies of b’s. A more
detailed description will be given in the final version.

All rules of this phase do not change the number of a’s or the number of f ’s; therefore,
the corresponding postcondition holds. �

Corollary 24 (FSSP-III: Number of steps) For each cell σi, the phase FSSP-III
takes levelc(i) + 3 steps.

Proof. As indicated in the proof of Algorithm 13, this phase takes levelc(i) + 3 steps. �

Algorithm 14 (FSSP-IV: Timing for entering the firing state)

Precondition: As described in the postcondition of Algorithm 13.
Postcondition:

• The end state is s9 for cells in the firing squad, or s0, otherwise.

• Each cell is empty.

Proof. As long as b’s are present, a cell σi performs a transition step that decreases
the number of b’s by countc(i) (i.e., the number of a’s). This step will be repeated
(ec+1− levelc(i)) times, as given by the initial ratio between the number of b’s, (ec+1−
levelc(i))countc(i), and the number of a’s, countc(i). This is the delay every cell needs
to wait, before entering either the firing state s9 or the initial state s0.

Finally, in the last step, cell σi enters s9, if σi has one f , or s0, otherwise. At the
same time, all existing objects are removed. �

30

Corollary 25 (FSSP-IV: Number of steps) For each cell σi, the phase FSSP-IV
takes ec + 2− levelc(i) steps.

Proof. As indicated in the proof of Algorithm 14, this phase takes (ec+1−levelc(i))+1 =
ec + 2− levelc(i). �

Theorem 26 For each cell σi, the combined running time of the four phases Algo-
rithm 11, 12, 13 and 14 is 6ec + 7, where ec is the eccentricity of the commander σc.

Proof. The result is obtained by summing the individual running times of the four phases,
as given by Corollaries 22, 23, 24 and 25: (levelc(i) + 2) + (5ec − levelc(i)) + (levelc(i) +
3) + (ec + 2− levelc(i)) = 6ec + 7. �

Example 27 We present in Table 2 the traces of the FSSP algorithm for an hP system
with the dag in Figure 2 as its underlying structure. All cells are ordered according
to their levels and the starting states of phases FSSP-II, FSSP-III and FSSP-IV are
highlighted.

6 Planar representation

We define a simple region as the interior of a simple closed curve (Jordan curve). By
default, all our regions will be delimited by simple closed curves that are also smooth,
with the possible exception of a finite number of points. This additional assumption is
not strictly needed, but simplifies our arguments.

A simple region Rj is directly contained in a simple region Ri, if Rj ⊂ Ri and there
is no simple region Rk, such that Rj ⊂ Rk ⊂ Ri (where ⊂ denotes strict inclusion).

It is well known that any transition P system has a planar Venn-like representation,
with a 1:1 mapping between its tree nodes and a set of hierarchically nested simple
regions. Conversely, any single rooted set of hierarchically nested simple regions can be
interpreted as a tree, which can further form the structural basis of a number of transition
P systems.

We have already shown that this planar representation can be generalized for hP sys-
tems based on canonical dags (i.e., without transitive arcs) and arbitrary sets of simple
regions (not necessarily nested), while still maintaining a 1:1 mapping between dag nodes
and simple regions [NDK09b].

Specifically, any hP system structurally based on a canonical dag can be intensionally
represented by a set of simple regions, where direct containment denotes a parent-child

31

Table 2: The traces of the FSSP algorithm for an hP system with the dag in Figure 2 as
its underlying structure, where c = 6, e6 = 3, F = {σ1, σ4, σ5, σ7, σ9, σ10}.

σ6 σ2 σ3 σ9 σ1 σ5 σ7 σ8 σ4 σ10

0 s0af s0 s0 s0f s0 s0f s0f s0 s0f s0f

1 s1aef s0d s0d s0df s0 s0f s0f s0 s0f s0f

2 s2ad
3e2fk s1a s1a s1af s0d

2 s0df s0df s0d s0f s0f

3 s2ad
3e3f s2ad

3k s2ad
3k s2adfk s1a

2 s1af s1adf s1ad s0df s0df

4 s3ad
3e4f s2ad

3 s2ad
3 s2adf s2a

2k2 s2afk s2adfkl s2adkl s1af s1af

5 s4ad
3e5f s3ad

3 s3ad
3 s3adf s2a

2 s2af s2adfl s2adl s2afk s2afk

6 s4ad
3e6f s4ac

3d3 s4ac
2d3g s4adfg s6a

2 s6af s3adfgl s3adgl s2afg s2afg

7 s4ad
3e7f s4a s4adg s4adfg s6a

2 s6af s4acdflp s4acdlp s6afg s6afg

8 s4ad
3e8f s5ak s4adg s4adfg s6a

2 s6af s4aflp s4alp s6af s6af

9 s4ad
3e9f s5a s4adgh s4adfgh s6a

2 s6af s5afhklp s5ahklp s6afh s6afh

10 s4acd
3e10f s6a s4adgh

2 s4adfgh
2 s6a

2c s6acf s5afhlp s5ahlp s6afh s6afh

11 s4ad
2e11f s6a s4acdgh

2q s4acdfgh
2q s6a

2 s6af s6acfhpq s6achpq s6acfq s6acfq

12 s4ad
2e12f s6a s4agh

2q s4afgh
2q s6a

2 s6af s6af s6a s6af s6af

13 s4ad
2e13f s6a s5agk s5afgk s6a

2 s6af s6af s6a s6af s6af

14 s4ad
2e14f s6a s5ag s5afg s6a

2 s6af s6af s6a s6af s6af

15 s4ac
2d2e15f s6a s6ag s6afg s6a

2c s6af s6acf s6ac s6af s6af

16 s4ae
15f s6a s6a s6af s6a

2 s6af s6af s6a s6af s6af

17 s6ae
5f s6a s6a s6af s6a

2 s6af s6af s6a s6af s6af

18 s7ab
4fk s6ae

4 s6ae
4 s6ae

4f s6a
2 s6af s6af s6a s6af s6af

19 s7ab
4e9f s7ab

3k s7ab
3k s7ab

3fk s6a
2e6 s6ae

3f s6ae
3f s6ae

3 s6af s6af

20 s8ab
4f s7ab

3e6 s7ab
3e6 s7ab

3e2f s7a
2b4k2 s7ab

2fk s7ab
2e2fk s7ab

2e2k s6ae
2f s6ae

2f

21 s8ab
3f s8ab

3 s8ab
3 s8ab

3f s7a
2b4 s7ab

2f s7ab
2e3f s7ab

2e3 s7abfk s7abfk

22 s8ab
2f s8ab

2 s8ab
2 s8ab

2f s8a
2b4 s8ab

2f s8ab
2f s8ab

2 s7abf s7abf

23 s8abf s8ab s8ab s8abf s8a
2b2 s8abf s8abf s8ab s8abf s8abf

24 s8af s8a s8a s8af s8a
2 s8af s8af s8a s8af s8af

25 s9 s0 s0 s9 s0 s9 s9 s0 s9 s9

32

relation. The converse is also true, any set of simple regions can be interpreted as a
canonical dag, which can further form the structural basis of a number of hP systems.

We will now provide several solutions to our open question [NDK09b]: How to repre-
sent the other dags, that do contain transitive arcs? First, we discuss a negative result.
First, a counter-example that appeals to the intuition, and then a theorem with a brief
proof.

Example 28 Consider the dag (a) of Figure 11, where nodes 1, 2, 3 are to be represented
by simple regions R1, R2, R3, respectively. We consider the following three candidate
representations: (e), (f) and (g). However, none of them properly match the dag (a),
they only match dags obtained from (a) by removing one of its arcs:

(e) represents the dag (b), obtained from (a) by removing the arc (1, 3);

(f) represents the dag (c), obtained from (a) by removing the arc (1, 2);

(g) represents the dag (d), obtained from (a) by removing the arc (2, 3).

Theorem 29 Dags with transitive arcs cannot be planarly represented by simple regions,
with a 1:1 mapping between nodes and regions.

Proof. Consider again the counter-example in Example 28. The existence of arcs
(2, 3), (1, 2) requires that R3 ⊂ R2 ⊂ R1. This means that R3 cannot be directly con-
tained in R1, as required by the arc (1, 3). �

It is clear, in view of this negative result, that we must somehow relax the require-
ments, if we want to obtain meaningful representations for general hP systems, based
on dag structure that may contain transitive arcs. We consider in turn five tentative
solutions.

6.1 Solution I: Self-intersecting curves

We drop the requirement of mapping nodes to simple regions delimited by simple closed
curves. We now allow self-intersecting closed curves with inward folds. A node can be
represented as the union of subregions : first, a base simple region, and, next, zero, one or
more other simple regions, which are delimited by inward folds of base region’s contour
(therefore included in the base region). For this solution, we say that there is an arc
(i, j) in the dag if and only if a subregion of Ri directly contains region Rj, where regions
Ri, Rj represent nodes i, j in the dag, respectively.

Example 30 The region R1 in Figure 12 is delimited by a self-intersecting closed curve
with an inward fold that defines the inner R′′1 subregion. Note the following relations:

33

1

2

3

R1

R2

R3

R1 R2R3

(a)

1

2

3

(b)

(e)

1 2

3

1

2 3

(c) (d)

(f)

R1

R3R2

(g)

Figure 11: A counter-example for planar representation of non-canonical dags.

1

2

3

R1R2R3R′′
1

Figure 12: Solution I: R1 is delimited by a self-intersecting closed curve.

• R1 = R1 ∪R′′1, thus R′′1 is a subregion of R1;

• R1 directly contains R2, which indicates the arc (1, 2);

• R2 directly contains R3, which indicates the arc (2, 3);

• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1 is a
subregion of R1.

Remark 31 It is difficult to visualize a cell that is modelled by a self-intersecting curve.
Therefore, this approach does not seem adequate.

6.2 Solution II: Distinct regions

We drop the requirement of a 1:1 mapping between dag nodes and regions. Specifically,
we accept that a node may be represented by the union of one or more distinct simple

34

1

2

3

R′
1

R2R3
R′′

1

Figure 13: Solution II: R1 is the union of two simple regions, R′1 and R′′1.

regions, here called subregions. Again, as in Solution I, an arc (i, j) is in the dag if and
only if a subregion of Ri directly contains region Rj.

Example 32 In Figure 13, the simple region R1 is the union of two simple regions, R′1
and R′′1, connected by a dotted line. Note the following relations:

• R1 = R′1 ∪R′′1, thus R′1 and R′′1 are subregions of R1;

• R′1 directly contains R2, which indicates the arc (1, 2), because R′1 is a subregion
of R1;

• R2 directly contains R3, which indicates the arc (2, 3);

• R′′1 directly contains R3, which indicates the transitive arc (1, 3), because R′′1 is a
subregion of R1.

Remark 33 In Example 32, a dotted line connects two regions belonging to the same
node. It is difficult to see the significance of such dotted lines in the world of cells.
Widening these dotted lines could create self-intersecting curves—a solution which we
have already rejected. Two distinct simple regions should represent two distinct cells,
not just one. Therefore, this approach does not seem adequate either.

6.3 Solution III: Flaps

We again require simple regions, but we imagine that our representation is an infinites-
imally thin “sandwich” of several superimposed layers, up to one distinct layer for each
node (see Figure 14b). Initially, each region is a simple region that is conceptually par-
titioned into a base subregion (at some bottom layer) and zero, one or more other flap
subregions, that appear as flaps attached to the base. These flaps are then folded, in the
three-dimensional space, to other “sandwich” layers (see Figure 14c). The idea is that
orthogonal projections of the regions corresponding to destinations of transitive arcs,
which cannot be contained directly in the base region, will be directly contained in such
subregions (or vice-versa). Because the thin tethered strip that was used for flapping is
not relevant, it is represented by dots (see Figure 14d). As in the previous solutions, an
arc (i, j) is in the dag if and only if a subregion Sk of Ri directly contains region Rj.

35

Superficially, this representation looks similar to Figure 13. However, its interpreta-
tion is totally different, it is now a flattened three-dimensional object. We can visualize
this by imagining a living organism that has been totally flattened by a roller-compactor
(apologies for the “gory” image).

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Figure 14: The process described in Solution III.

We next give a constructive algorithm that takes as input a dag (X, δ) and produces
a set of overlapping regions {Rk | k ∈ X}, such that (i, j) ∈ δ if and only if a subregion
of Ri directly contains Rj.

Algorithm 15: A dag to regions.

Input: dag (X, δ).
Output: flattened regions {Rk | k ∈ X}.

Step 1: Reorder the nodes of the dag (X, δ) to be in reverse topological order.
(That is, sink nodes come before source nodes.)

Step 2: For each node i in δ ordered as in step 1 do:
If i is a sink:

Create a new region Ri disjoint from all previous regions.
Otherwise:

Create a base region of Ri by creating a simple closed re-
gion properly containing the union of all regions Rj such
that (i, j) ∈ δ. Further, for any transitive arc (i, j) create
a flap subregion that directly contains Rj and attach it
with a strip to the edge of the base region.

36

Remark 34 In the set constructed by this algorithm, if two or more transitive arcs are
incident to a node j then the respective flaps (without tethers) may share the same
projected subregion directly containing region Rj.

Example 35 Figure 15 shows an input dag with six nodes, three transitive arcs and
its corresponding planar region representation. Note the reverse topological order is
6, 5, 4, 3, 2, 1 and the regions R1 and R2 use the same flap subregions containing the
region R6.

1 2

3 4

5 6

R5R1 R6 R4 R2R3

Figure 15: Illustration of Algorithm 15.

Theorem 36 Every dag with transitive arcs can be represented by a set of regions with
folded flaps, with a 1:1 mapping between nodes and regions.

Proof. We show by induction on the order of the dags that we can always produce a corre-
sponding planar representation. First, note that any dag can be recursively constructed
by adding a new node i and arcs incident from i to existing nodes. Note that Algo-
rithm 15 builds planar representations from sink nodes (induction base case) to source
nodes (inductive case). Hence, any dag has at least one folded planar representation,
depending on the topological order used. We omit the details of how to ensure non-arcs;
this can be easily achieved by adding “spikes” to the regions—see our first paper for
representing non-transitive dags [NDK09b]. �

Theorem 37 Every set of regions with folded flaps can be represented by a dag with
transitive arcs, with a 1:1 mapping between nodes and regions.

Proof. We show how to produce a unique dag from a folded planar representation. The
first step is to label each region Rk, which will correspond to node k ∈ X of a dag (X, δ).
We add an arc (i, j) to δ if an only if a subregion of Ri directly contains the region Rj.

�

37

Remark 38 One could imagine an additional constraint, that nodes, like cells, need to
differentiate between its outside and inside or, in a planar representation, between up
and down. We can relate this to membrane polarity, but we refrain from using this idea
here, because it can conflict with the already accepted role of polarities in P systems. It
is clear that, looking at our example, this solution does not take into account this sense
of direction.

For example, considering the scenario of Figure 15, regions R3, R2 and R′1 (the base
subregion of R1) can be stacked “properly”, i.e., with the bottom side of R3 on the top
side of R2 and the bottom side of R2 on the top side of R′1. However, the top side of R′′1
(the flap of R1) will improperly sit on the top side of R3, or, vice-versa, the bottom side
of R′′1 will improperly sit on the bottom side of R3.

Can we improve this? The answer follows.

6.4 Solution IV: Flaps with half-twists

This is a variation of Solution III, that additionally takes proper care of the outside/inside
(or up/down) directions. We achieve this by introducing half-twists (as used to build
Moebius strips), of which at most one half-twist is needed for each simple region.

1

2

3

R3

R2

R1

(a) (b)

(c) (d)

R3

R2

R1

R3 R1

R2

Half twist

Figure 16: The process described in Solution IV.

Example 39 Figure 16 describes this process.

(a) a given dag with three nodes, 1, 2 and 3;

(b) three simple regions, R1, R2 and R3, still in the same plane;

(c) R1 flapped and half-twisted in three-dimensional space;

38

(d) final “roller-compacted” representation, where dots represent the thin strip that was
flapped, and the mark × a possible location of the half-twist.

1

2

3

4

R4 R3

R2

R1

(a) (b)

(c) (d)

R4 R3 R2R1

R4
R3

R2R1

Half twist

Half twist

Figure 17: The process described in Solution IV.

Corollary 40 Dags with transitive arcs can be represented by regions with half-twisted
flaps, with a 1:1 mapping between nodes and regions.

Proof. Since half-twisted flaps are folded flaps, the projection of the boundary of the base
and flaps used for a region is the same region as given in the proof of Theorems 36 and 37,
provided we always twist a fold above its base. �

Remark 41 This solution solves all our concerns here and seems the best, taking into
account the impossibility result (Theorem 29).

39

6.5 Solution V: Moebius strips

To be complete, we mention another possible solution, which removes any distinction
between up and down sides. This representation can be obtained by representing mem-
branes by (connected) Moebius strips.

R3

R1

R2

Figure 18: The process described in Solution IV.

Perhaps interestingly, Solutions IV and V seem to suggest links (obviously superficial,
but still links) to modern applications of topology (Moebius strips and ladders, knot
theory) to molecular biology, for example, see [Fla00].

7 Conclusions

We presented several concrete examples of hP systems for the discovery of basic mem-
brane structure. Our primary goal was to show that, with the correct model in terms
of operational and transfer modes, we could present simple algorithms. Our secondary
goal was to obtain reasonably efficient algorithms. We first started with cases, where the
cells could be anonymous, and showed, among other things, how an hP system could (a)
broadcast to descendants, (b) count paths between cells, (c) count children and descen-
dants, and (d) determine cell heights. We then provided examples where we allowed each
cell to know its own ID and use it as a communication marker. This model is highlighted
by our algorithm that computes all the shortest paths from a given source cell—a simpli-
fied version of the distributed Bellman-Ford algorithm, with all unity weights. For each
of our nontrivial algorithms, we illustrated the hP system computations on a fixed dag,
providing step-by-step traces.

We presented two deterministic solutions FSSP for hP systems and neural P systems
with symmetric channels. In contrast to the previous FSSP solutions for tree-based
P systems [BGMV08, AMV08], our solutions are a variant of FSSP [Szw82], in which
there is one commander, at an arbitrary position. We further generalized the problem
by synchronizing a subset of (possibly all) cells of hP systems and neural P systems with
symmetric channels. The first solution is based on a novel proposal, which dynamically
extends P systems with mobile channels. The second solution is substantially longer,
but is solely based on classical rules and static channels. Our solutions do not require
membrane polarizations or conditional rules, but require states, as typically used in
hyperdag and neural P systems.

40

We focused on visualizing hP systems in the plane. We presented a natural model,
using folded simple closed regions to model the membrane interconnections, including
the transitive arcs, as specified by an arbitrary dag structure of an hP system.

As with most ongoing projects, there are several open problems regarding practical
computing using P systems and their extended models. We end by mentioning just a few,
closely related to the development of fundamental algorithms for discovery of membrane
topology.

• In terms of using membrane computing as a model for realistic networking, is there
a natural way to route a message between cells (not necessarily connected directly)
using messages, tagged by addressing identifiers, in analogy to the way messages
are routed on the internet, with dynamically created routing information?

• What are the system requirements to model fault tolerant computing? The tree
structure seems to fail here, because a single node failure can disconnect the tree
and make consensus impossible. Is the dag structure versatile enough?

• Do we have the correct mix of rewriting and transfer modes for membrane com-
puting? For example, in which situations can we exploit parallelism and in which
scenarios are we forced to sequentially apply rewriting rules?

• Can we find simpler and more efficient solutions for hP systems based on single-
source dags? Can we find simpler and more efficient solutions for hP or snP systems
using named cells (unique cell IDs)? Can we find a solution for arbitrary strongly-
connected (not necessarily symmetric) nP systems?

• What is the relation between the mobile channels we have presented here for P sys-
tems and the support for mobile channels in the π-calculus?

Acknowledgements

The authors wish to thank John Morris for detailed comments and feedback that helped
us improve the paper.

References

[AMV08] Artiom Alhazov, Maurice Margenstern, and Sergey Verlan. Fast synchro-
nization in P systems. In David W. Corne, Pierluigi Frisco, Gheorghe Păun,
Grzegorz Rozenberg, and Arto Salomaa, editors, Workshop on Membrane
Computing, volume 5391 of Lecture Notes in Computer Science, pages 118–
128. Springer, 2008.

[BGMV08] Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey
Verlan. How to synchronize the activity of all components of a P system?
Int. J. Found. Comput. Sci., 19(5):1183–1198, 2008.

41

[CDK02] Gabriel Ciobanu, Rahul Desai, and Akash Kumar. Membrane systems and
distributed computing. In Gheorghe Păun, Grzegorz Rozenberg, Arto Sa-
lomaa, and Claudio Zandron, editors, WMC-CdeA, volume 2597 of Lecture
Notes in Computer Science, pages 187–202. Springer, 2002.

[Cio03] Gabriel Ciobanu. Distributed algorithms over communicating membrane sys-
tems. Biosystems, 70(2):123–133, 2003.

[DKN09] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. New solutions to
the firing squad synchronization problem for neural and hyperdag P systems.
In Membrane Computing and Biologically Inspired Process Calculi, Third
Workshop, MeCBIC 2009, Bologna, Italy, September 5, 2009, pages 117–
130, 2009.

[Fla00] Erica Flapan. When Topology Meets Chemistry: A Topological Look at Molec-
ular Chirality. Cambridge University Press, 2000.

[KG05] Kojiro Kobayashi and Darin Goldstein. On formulations of firing squad
synchronization problems. In Cristian Calude, Michael J. Dinneen, Gheorghe
Păun, Mario J. Pérez-Jiménez, and Grzegorz Rozenberg, editors, UC, volume
3699 of Lecture Notes in Computer Science, pages 157–168. Springer, 2005.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[Maz87] Jacques Mazoyer. A six-state minimal time solution to the firing squad syn-
chronization problem. Theor. Comput. Sci., 50:183–238, 1987.

[NDK08] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured mod-
elling with hyperdag P systems: Part A. Report CDMTCS-342, Centre for
Discrete Mathematics and Theoretical Computer Science, The University of
Auckland, Auckland, New Zealand, December 2008.

[NDK09a] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Discovering the
membrane topology of hyperdag P systems. In Membrane Computing, Tenth
International Workshop, WMC 2009, Curtea de Argeş, Romania, August
24-27, 2009, pages 426–451, 2009.

[NDK09b] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Structured mod-
elling with hyperdag P systems: Part A. In Membrane Computing, Seventh
Brainstorming Week, BWMC 2009, Sevilla, Spain, February 2-6, 2009, vol-
ume 2, pages 85–107, 2009.

[Nog04] Kenichiro Noguchi. Simple 8-state minimal time solution to the firing squad
synchronization problem. Theor. Comput. Sci., 314(3):303–334, 2004.

[Pău02] Gheorghe Păun. Membrane Computing-An Introduction. Springer-Verlag,
2002.

42

[Pău06] Gheorghe Păun. Introduction to membrane computing. In Gabriel Ciobanu,
Mario J. Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Mem-
brane Computing, Natural Computing Series, pages 1–42. Springer, 2006.

[SW04] Hubert Schmid and Thomas Worsch. The firing squad synchronization prob-
lem with many generals for one-dimensional ca. In Jean-Jacques Lévy,
Ernst W. Mayr, and John C. Mitchell, editors, IFIP TCS, pages 111–124.
Kluwer, 2004.

[Szw82] Helge Szwerinski. Time-optimal solution of the firing-squad-synchronization-
problem for n-dimensional rectangles with the general at an arbitrary posi-
tion. Theor. Comput. Sci., 19:305–320, 1982.

[UMF02] Hiroshi Umeo, Masashi Maeda, and Norio Fujiwara. An efficient mapping
scheme for embedding any one-dimensional firing squad synchronization al-
gorithm onto two-dimensional arrays. In Stefania Bandini, Bastien Chopard,
and Marco Tomassini, editors, ACRI, volume 2493 of Lecture Notes in Com-
puter Science, pages 69–81. Springer, 2002.

43

