
CDMTCS
Research
Report
Series

Chaitin Ω numbers and
halting problems

Kohtaro Tadaki
Chuo University, Japan

CDMTCS-359
April 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

Chaitin Ω numbers and halting problems

Kohtaro Tadaki

Research and Development Initiative, Chuo University
CREST, JST

1–13–27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail: tadaki@kc.chuo-u.ac.jp
http://www2.odn.ne.jp/tadaki/

Abstract. Chaitin [G. J. Chaitin, J. Assoc. Comput. Mach., vol. 22, pp. 329–340,
1975] introduced Ω number as a concrete example of random real. The real Ω is defined
as the probability that an optimal computer halts, where the optimal computer is
a universal decoding algorithm used to define the notion of program-size complexity.
Chaitin showed Ω to be random by discovering the property that the first n bits of
the base-two expansion of Ω solve the halting problem of the optimal computer for all
binary inputs of length at most n. In the present paper we investigate this property from
various aspects. We consider the relative computational power between the base-two
expansion of Ω and the halting problem by imposing the restriction to finite size on both
the problems. It is known that the base-two expansion of Ω and the halting problem
are Turing equivalent. We thus consider an elaboration of the Turing equivalence in a
certain manner.

Key words: algorithmic information theory, Chaitin Ω number, halting problem, Turing
equivalence, algorithmic randomness, program-size complexity

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying information-theoretic
and probabilistic ideas to recursive function theory. One of the primary concepts of AIT is the
program-size complexity (or Kolmogorov complexity) H(s) of a finite binary string s, which is
defined as the length of the shortest binary input for a universal decoding algorithm U , called
an optimal computer, to output s. By the definition, H(s) can be thought of as the information
content of the individual finite binary string s. In fact, AIT has precisely the formal properties of
classical information theory (see Chaitin [2]). In particular, the notion of program-size complexity
plays a crucial role in characterizing the randomness of an infinite binary string, or equivalently,
a real. In [2] Chaitin introduced the halting probability ΩU as an example of random real. His
ΩU is defined as the probability that the optimal computer U halts, and plays a central role in the
metamathematical development of AIT. The real ΩU is shown to be random, based on the following
fact:1

Fact 1 (Chaitin [2]). The first n bits of the base-two expansion of ΩU solve the halting problem of
U for inputs of length at most n.

1A rigorous form of Fact 1 is seen in Theorem 5.3 below in a more general form.

1

In this paper, we first consider the following converse problem:

Problem 1. For every positive integer n, if n and the list of all halting inputs for U of length at
most n are given, can the first n bits of the base-two expansion of ΩU be calculated ?

As a result of this paper, we can answer this problem negatively. In this paper, however, we
consider more general problems in the following forms. Let V and W be optimal computers.

Problem 2. Find a succinct equivalent characterization of a total recursive function f : N+ → N
which satisfies the condition: For all n ∈ N+, if n and the list of all halting inputs for V of length
at most n are given, then the first n − f(n) − O(1) bits of the base-two expansion of ΩW can be
calculated.

Problem 3. Find a succinct equivalent characterization of a total recursive function f : N+ → N
which satisfies the condition: For infinitely many n ∈ N+, if n and the list of all halting inputs for
V of length at most n are given, then the first n − f(n) − O(1) bits of the base-two expansion of
ΩW can be calculated.

Here N+ denotes the set of positive integers and N = {0} ∪N+. Theorem 3.1 and Theorem 4.1
below are two of the main results of this paper. On the one hand, Theorem 3.1 gives to Problem 2
a solution that the total recursive function f must satisfy

∑∞
n=1 2−f(n) < ∞, which is the Kraft

inequality in essence. Note that the condition
∑∞

n=1 2−f(n) < ∞ holds for f(n) = b(1 + ε) log2 nc
with an arbitrary computable real ε > 0, while this condition does not hold for f(n) = blog2 nc.
On the other hand, Theorem 4.1 gives to Problem 3 a solution that the total recursive function f
must not be bounded to the above. Theorem 4.1 also results in Corollary 4.2 below, which refutes
Problem 1 completely.

It is also important to consider whether the bound n on the length of halting inputs given in
Fact 1 is tight or not. We consider this problem in the following form:

Problem 4. Find a succinct equivalent characterization of a total recursive function f : N+ → N
which satisfies the condition: For all n ∈ N+, if n and the first n bits of the base-two expansion of
ΩV are given, then the list of all halting inputs for W of length at most n + f(n) − O(1) can be
calculated.

Theorem 5.1, which is one of the main results of this paper, gives to Problem 4 a solution that
the total recursive function f must be bounded to the above. Thus, we see that the bound n on
the length of halting inputs given in Fact 1 is tight up to an additive constant.

It is well known that the base-two expansion of ΩU and the halting problem of U are Turing
equivalent, i.e., ΩU ≡T domU holds, where domU denotes the domain of definition of U . This
paper investigates an elaboration of the Turing equivalence. For example, consider the Turing
reduction ΩU ≤T domU , which partly constitutes the Turing equivalence ΩU ≡T domU . The
Turing reduction can be equivalent to the condition that there exists an oracle deterministic Turing
machine M such that, for all n ∈ N+,

MdomU (n) = ΩU�n, (1)

where ΩU�n denotes the first n bits of the base-two expansion of ΩU . Let g : N+ → N and h : N+ → N
be total recursive functions. Then the condition (1) can be elaborated to the condition that there
exists an oracle deterministic Turing machine M such that, for all n ∈ N+,

MdomU—g(n)(n) = ΩU�h(n), (2)

2

where domU�g(n) denotes the set of all strings in domU of length at most g(n). This elaboration
allows us to consider the asymptotic behavior of h which satisfies the condition (2), for a given g.
We might regard g as the degree of the relaxation of the restrictions on the computational resource
(i.e., on the oracle domU) and h as the difficulty of the problem to solve. Thus, even in the context
of computability theory, we can deal with the notion of asymptotic behavior in a manner like in
computational complexity theory in some sense. Theorem 3.1, a solution to Problem 2, is obtained
as a result of the investigation in this line, and gives the upper bound of the function h in the case
of g(n) = n.

The other Turing reduction domU ≤T ΩU , which constitutes ΩU ≡T domU , is also elaborated
in the same manner as above to lead to Theorem 5.1, a solution to Problem 4.

Thus, in this paper, we study the relationship between the base-two expansion of Ω and the
halting problem of an optimal computer using a more rigorous and insightful notion than the
notion of Turing equivalence. The paper is organized as follows. We begin in Section 2 with some
preliminaries to AIT. We then prove Theorems 3.1, 4.1, and 5.1 in Sections 3, 4, and 5, respectively.

2 Preliminaries

2.1 Basic notation

We start with some notation about numbers and strings which will be used in this paper. #S is
the cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is the set of natural numbers, and N+ is the
set of positive integers. Z is the set of integers, and Q is the set of rational numbers. R is the set
of real numbers. Let f : S → R with S ⊂ R. We say that f is increasing (resp., non-decreasing) if
f(x) < f(y) (resp., f(x) ≤ f(y)) for all x, y ∈ S with x < y.

Normally, O(1) denotes any function f : N+ → R such that there is C ∈ R with the property
that |f(n)| ≤ C for all n ∈ N+.
{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . . } is the set of finite binary strings where λ denotes the

empty string, and {0, 1}∗ is ordered as indicated. We identify any string in {0, 1}∗ with a natural
number in this order, i.e., we consider ϕ : {0, 1}∗ → N such that ϕ(s) = 1s− 1 where the concate-
nation 1s of strings 1 and s is regarded as a dyadic integer, and then we identify s with ϕ(s). For
any s ∈ {0, 1}∗, |s| is the length of s. A subset S of {0, 1}∗ is called prefix-free if no string in S is
a prefix of another string in S. For any subset S of {0, 1}∗ and any n ∈ Z, we denote by S�n the
set {s ∈ S | |s| ≤ n}. Note that S�n= ∅ for every subset S of {0, 1}∗ and every negative integer
n ∈ Z. {0, 1}∞ is the set of infinite binary strings, where an infinite binary string is infinite to the
right but finite to the left. For any partial function f , the domain of definition of f is denoted by
dom f . We write “r.e.” instead of “recursively enumerable.”

Let α be an arbitrary real number. bαc is the greatest integer less than or equal to α, and dαe
is the smallest integer greater than or equal to α. For any n ∈ N+, we denote by α�n∈ {0, 1}∗
the first n bits of the base-two expansion of α − bαc with infinitely many zeros. For example, in
the case of α = 5/8, α�6= 101000. On the other hand, for any non-positive integer n ∈ Z, we set
α�n= λ.

A real number α is called r.e. if there exists a total recursive function f : N+ → Q such that
f(n) ≤ α for all n ∈ N+ and limn→∞ f(n) = α. An r.e. real number is also called a left-computable
real number.

3

2.2 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic information the-
ory [2, 4]. A computer is a partial recursive function C : {0, 1}∗ → {0, 1}∗ such that domC
is a prefix-free set. For each computer C and each s ∈ {0, 1}∗, HC(s) is defined by HC(s) =
min

{
|p|
∣∣ p ∈ {0, 1}∗ & C(p) = s

}
(may be ∞). A computer U is said to be optimal if for each

computer C there exists d ∈ N with the following property; if p ∈ domC, then there is q for which
U(q) = C(p) and |q| ≤ |p|+ d. It is easy to see that there exists an optimal computer. We choose
a particular optimal computer U as the standard one for use, and define H(s) as HU (s), which is
referred to as the program-size complexity of s, the information content of s, or the Kolmogorov
complexity of s [7, 9, 2]. It follows that for every computer C there exists d ∈ N such that, for
every s ∈ {0, 1}∗,

H(s) ≤ HC(s) + d. (3)

Based on this we can show that there exists c ∈ N such that, for every s ∈ {0, 1}∗,

H(s) ≤ 2 |s|+ c. (4)

Using (3) we can also show that, for every partial recursive function Ψ: {0, 1}∗ → {0, 1}∗, there
exists c ∈ N such that, for every s ∈ dom Ψ,

H(Ψ(s)) ≤ H(s) + c. (5)

For any s ∈ {0, 1}∗, we define s∗ as min{ p ∈ {0, 1}∗ | U(p) = s}, i.e., the first element in the ordered
set {0, 1}∗ of all strings p such that U(p) = s. Then, |s∗| = H(s) for every s ∈ {0, 1}∗. For any s, t ∈
{0, 1}∗, we define H(s, t) as H(b(s, t)), where b : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a particular bijective
total recursive function. Note also that, for every n ∈ N, H(n) is H(the nth element of {0, 1}∗).

Definition 2.1 (Chaitin Ω number, Chaitin [2]). For any optimal computer V , the halting proba-
bility ΩV of V is defined by

ΩV =
∑

p∈domV

2−|p|.

For every optimal computer V , since domV is prefix-free, ΩV converges and 0 < ΩV ≤ 1. For
any α ∈ R, we say that α is weakly Chaitin random if there exists c ∈ N such that n− c ≤ H(α�n)
for all n ∈ N+ [2, 4].

Theorem 2.2 (Chaitin [2]). For every optimal computer V , ΩV is weakly Chaitin random.

Therefore 0 < ΩV < 1 for every optimal computer V . For any α ∈ R, we say that α is Chaitin
random if limn→∞H(α�n) − n = ∞ [2, 4]. We can then show the following theorem (see Chaitin
[4] for the proof and historical detail).

Theorem 2.3. For every α ∈ R, α is weakly Chaitin random if and only if α is Chaitin random.

The following is an important result on random r.e. reals.

Theorem 2.4 (Calude, et al. [1], Kučera and Slaman [8]). For every α ∈ (0, 1), α is r.e. and
weakly Chaitin random if and only if there exists an optimal computer V such that α = ΩV .

4

3 Elaboration I of the Turing reduction ΩU ≤T dom U

Theorem 3.1 (main result I). Let V and W be optimal computers, and let f : N+ → N be a total
recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for all n ∈ N+,
MdomV —n(n) = ΩW�n−f(n)−c.

(ii)
∑∞

n=1 2−f(n) <∞.

Theorem 3.1 follows from Theorem 3.2 and Theorem 3.3 below, and Theorem 2.4.

Theorem 3.2. Let α be an r.e. real, and let V be an optimal computer. For every total recursive
function f : N+ → N, if

∑∞
n=1 2−f(n) <∞, then there exist an oracle deterministic Turing machine

M and c ∈ N such that, for all n ∈ N+, MdomV —n(n) = α�n−f(n)−c.

Theorem 3.3. Let α be a real which is weakly Chaitin random, and let V be an optimal computer.
For every total recursive function f : N+ → N, if there exists an oracle deterministic Turing machine
M such that, for all n ∈ N+, MdomV —n(n) = α�n−f(n), then

∑∞
n=1 2−f(n) <∞.

The proofs of Theorem 3.2 and Theorem 3.3 are given in the next two subsections, respectively.
Note that, as a variant of Theorem 3.1, we can prove the following theorem as well, in a similar

manner to the proof of Theorem 3.1.

Theorem 3.4 (variant of the main result I). Let V and W be optimal computers, and let f : N+ → N
be a total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for all n ∈ N+,
MdomV —n+f(n)+c(n) = ΩW�n.

(ii)
∑∞

n=1 2−f(n) <∞.

3.1 The proof of Theorem 3.2

In order to prove Theorem 3.2, we need Theorem 3.5 and Corollary 3.8 below.

Theorem 3.5 (Kraft-Chaitin Theorem, Chaitin [2]). Let f : N+ → N be a total recursive function
such that

∑∞
n=1 2−f(n) ≤ 1. Then there exists a total recursive function g : N+ → {0, 1}∗ such that

(i) the function g is an injection, (ii) the set { g(n) | n ∈ N+} is prefix-free, and (iii) |g(n)| = f(n)
for all n ∈ N+.

Let M be a deterministic Turing machine with the input and output alphabet {0, 1}, and let C
be a computer. We say that M computes C if the following holds: for every p ∈ {0, 1}∗, when M
starts with the input p, (i) M halts and outputs C(p) if p ∈ domC; (ii) M does not halt forever
otherwise. We use this convention on the computation of a computer by a deterministic Turing
machine throughout the rest of this paper. Thus, we exclude the possibility that there is p ∈ {0, 1}∗
such that, when M starts with the input p, M halts but p /∈ domC.

Theorem 3.6. Let V be an optimal computer. Then, for every computer C there exists d ∈ N
such that, for every p ∈ {0, 1}∗, if p and the list of all halting inputs for V of length at most |p|+ d
are given, then the halting problem of the input p for C can be solved.

5

Proof. Let M be a deterministic Turing machine which computes a computer C. For each p ∈
{0, 1}∗, let hM (p) be the computation history of M from the initial configuration with input p, and
let binM (p) ∈ {0, 1}∗ ∪ {0, 1}∞ be the binary representation of hM (p) in a certain format. Note
that binM (p) ∈ {0, 1}∗ if and only if p ∈ domC for every p ∈ {0, 1}∗, by our convention on the
computation of a computer by a deterministic Turing machine. We consider the computer D such
that (i) domD = domC and (ii) D(p) = binM (p) for every p ∈ domC. It is easy to see that such a
computer D exists. Then, since V is an optimal computer, from the definition of optimality there
exists d ∈ N with the following property; if p ∈ domD, then there is q for which V (q) = D(p) and
|q| ≤ |p|+ d.

Given p ∈ {0, 1}∗ and the list {q1, . . . , qL} of all halting inputs for V of length at most |p|+d, one
first calculates the finite set Sp = {V (qi) | i = 1, . . . , L }. One then checks whether binM (p) ∈ Sp
or not. This can be possible since Sp is a finite subset of {0, 1}∗. In the case of binM (p) ∈ Sp,
binM (p) ∈ {0, 1}∗ and therefore p ∈ domC. On the other hand, if p ∈ domC, then there is q such
that V (q) = binM (p) and |q| ≤ |p| + d, and therefore q ∈ {q1, . . . , qL} and binM (p) ∈ Sp. Thus,
p /∈ domC in the case of binM (p) /∈ Sp.

Remark 3.7. A partial recursive function u : {0, 1}∗ → {0, 1}∗ is called optimal if for every partial
recursive function f : {0, 1}∗ → {0, 1}∗ there exists d ∈ N such that, for every p ∈ dom f , there
is q ∈ domu for which u(q) = f(p) and |q| ≤ |p| + d. An optimal partial recursive function
u : {0, 1}∗ → {0, 1}∗ is used to define the notion of plain program-size complexity. Obviously,
we can show that the same theorem as Theorem 3.6 holds between the halting problem of any
optimal partial recursive function u : {0, 1}∗ → {0, 1}∗ and one of any partial recursive function
f : {0, 1}∗ → {0, 1}∗.

As a corollary of Theorem 3.6 above we obtain the following.

Corollary 3.8. Let V be an optimal computer. Then, for every computer C there exist an oracle
deterministic Turing machine M and d ∈ N such that, for all n ∈ N+, MdomV —n+d(n) = domC�n,
where the finite subset domC �n of {0, 1}∗ is represented as a finite binary string in a certain
format.

Based on Theorem 3.5 and Corollary 3.8, Theorem 3.2 is proved as follows.

Proof of Theorem 3.2. Let α be an r.e. real, and let V be an optimal computer. For an arbitrary
total recursive function f : N+ → N, assume that

∑∞
n=1 2−f(n) <∞. In the case of α ∈ Q, the result

is obvious. Thus, in what follows, we assume that α /∈ Q and therefore the base-two expansion of
α− bαc is unique and contains infinitely many ones.

Since
∑∞

n=1 2−f(n) < ∞, there exists d0 ∈ N such that
∑∞

n=1 2−f(n)−d0 ≤ 1. Hence, by the
Kraft-Chaitin Theorem, i.e., Theorem 3.5, there exists a total recursive function g : N+ → {0, 1}∗
such that (i) the function g is an injection, (ii) the set { g(n) | n ∈ N+} is prefix-free, and (iii)
|g(n)| = f(n) + d0 for all n ∈ N+. On the other hand, since α is r.e., there exists a total recursive
function h : N+ → Q such that h(k) ≤ α for all k ∈ N+ and limk→∞ h(k) = α.

Now, let us consider the following computer C. For each n ∈ N+, p, s ∈ {0, 1}∗ and l ∈ N such
that U(p) = l, g(n)ps ∈ domC if and only if (i) |g(n)ps| = n− l and (ii) 0.s < h(k)− bαc for some
k ∈ N+. It is easy to see that such a computer C exists. Then, by Corollary 3.8, there exist an oracle
deterministic Turing machine M and d ∈ N such that, for all n ∈ N+, MdomV —n+d(n) = domC�n,

6

where the finite subset domC�n of {0, 1}∗ is represented as a finite binary string in a certain format.
We then see that, for every n ∈ N+ and s ∈ {0, 1}∗ such that |s| = n− |g(n)| − d− |d∗|,

g(n)d∗s ∈ domC if and only if s ≤ α�n−|g(n)|−d−|d∗|, (6)

where s and α�n−|g(n)|−d−|d∗| are regarded as a dyadic integer. Then, by the following procedure,
we see that there exist an oracle deterministic Turing machine M1 and c ∈ N such that, for all
n ∈ N+, MdomV —n

1 (n) = α�n−f(n)−c. Note here that |g(n)| = f(n) + d0 for all n ∈ N+ and also
H(d) = |d∗|.

Given n and domV �n with n > d, one first checks whether n− |g(n)| − d−H(d) ≤ 0 holds. If
this holds then one outputs λ. If this does not hold, one then calculates the finite set domC�n−d
by simulating the computation of M with the input n − d and the oracle domV �n. Then, based
on (6), one determines α�n−|g(n)|−d−H(d) by checking whether g(n)d∗s ∈ domC holds or not for
each s ∈ {0, 1}∗ with |s| = n− |g(n)| − d−H(d). This is possible since |g(n)d∗s| = n− d for every
s ∈ {0, 1}∗ with |s| = n− |g(n)| − d−H(d). Finally, one outputs α�n−|g(n)|−d−H(d).

3.2 The proof of Theorem 3.3

In order to prove Theorem 3.3, we need Theorem 3.9 and the Ample Excess Lemma (i.e., Theo-
rem 3.10) below.

Let M be an arbitrary deterministic Turing machine with the input alphabet {0, 1}. We define
LM = min{ |p| | p ∈ {0, 1}∗ & M halts on input p } (may be ∞). For any n ≥ LM , we define TMn
as the maximum running time of M on all halting inputs of length at most n.

Theorem 3.9. Let V be an optimal computer, and let M be a deterministic Turing machine which
computes V . Then n = H(TMn , n) +O(1) = H(TMn) +O(1) for all n ≥ LM .

Note that Solovay [14] showed a similar result to Theorem 3.9 for hn = #{p ∈ domV | |p| ≤ n}
in place of TMn . On the other hand, Chaitin showed a similar result to Theorem 3.9 for p ∈ domV
such that |p| ≤ n and the running time of M on the input p equals to TMn , in place of TMn (see Note
in Section 8.1 of Chaitin [4]). We include the proof of Theorem 3.9 in Appendix A for completeness.

Miller and Yu [11] recently strengthened Theorem 2.3 to the following form.

Theorem 3.10 (Ample Excess Lemma, Miller and Yu [11]). For every α ∈ R, α is weakly Chaitin
random if and only if

∑∞
n=1 2n−H(α—n) <∞.

Then the proof of Theorem 3.3 is as follows.

Proof of Theorem 3.3. Let α be a real which is weakly Chaitin random. Let V be an optimal
computer, and let M be a deterministic Turing machine which computes V . For an arbitrary total
recursive function f : N+ → N, assume that there exists an oracle deterministic Turing machine M0

such that, for all n ∈ N+, MdomV —n
0 (n) = α�n−f(n). Note that, given (TMn , n) with n ≥ LM , one

can calculate the finite set domV �n by simulating the computation of M with the input p until at
most TMn steps, for each p ∈ {0, 1}∗ with |p| ≤ n. Thus, we see that there exists a partial recursive
function Ψ: N×N+ → {0, 1}∗ such that, for all n ≥ LM , Ψ(TMn , n) = α�n−f(n). It follows from (5)
that H(α�n−f(n)) ≤ H(TMn , n) +O(1) for all n ≥ LM . Thus, by Theorem 3.9 we have

H(α�n−f(n)) ≤ n+O(1) (7)

7

for all n ∈ N+.
In the case where the function n − f(n) of n is bounded to the above, there exists c ∈ N such

that, for every n ∈ N+, −f(n) ≤ c− n, and therefore
∑∞

n=1 2−f(n) ≤ 2c. Thus, in what follows, we
assume that the function n− f(n) of n is not bounded to the above.

We define a function g : N+ → Z by g(n) = max{k − f(k) | 1 ≤ k ≤ n}. It follows that
the function g is non-decreasing and limn→∞ g(n) = ∞. Thus we can choose an enumeration
n1, n2, n3, . . . of the countably infinite set {n ∈ N+ | n ≥ 2 & 0 ≤ g(n− 1) < g(n)} with nj < nj+1.
It is then easy to see that g(nj) = nj − f(nj) and 1 ≤ nj − f(nj) < nj+1 − f(nj+1) hold for all
j. On the other hand, since α is weakly Chaitin random, using the Ample Excess Lemma, i.e.,
Theorem 3.10, we have

∑∞
n=1 2n−H(α—n) <∞. Thus, using (7) we see that

∞∑
j=1

2−f(nj) ≤
∞∑
j=1

2nj−f(nj)−H(α—nj−f(nj))+O(1) ≤
∞∑
n=1

2n−H(α—n)+O(1) <∞. (8)

On the other hand, it is easy to see that (i) g(n) ≥ n − f(n) for every n ∈ N+, and (ii)
g(n) = g(nj) for every j and n with nj ≤ n < nj+1. Thus, for each k ≥ 2, it is shown that

nk−1∑
n=n1

2−f(n) ≤
nk−1∑
n=n1

2g(n)−n =
k−1∑
j=1

nj+1−1∑
n=nj

2g(n)−n =
k−1∑
j=1

2g(nj)

nj+1−1∑
n=nj

2−n

=
k−1∑
j=1

2nj−f(nj)2−nj+1
(
1− 2−nj+1+nj

)
< 2

k−1∑
j=1

2−f(nj).

Thus, using (8) we see that limk→∞
∑nk−1

n=n1
2−f(n) < ∞. Since 2−f(n) > 0 for all n ∈ N+ and

limj→∞ nj =∞, we have
∑∞

n=1 2−f(n) <∞.

4 Elaboration II of the Turing reduction ΩU ≤T dom U

Theorem 4.1 (main result II). Let V and W be optimal computers, and let f : N+ → N be a total
recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for infinitely
many n ∈ N+, MdomV —n(n) = ΩW�n−f(n)−c.

(ii) The function f is not bounded to the above.

The proof of Theorem 4.1 is given in Subsection 4.1 below. By setting f(n) = 0 and W = V in
Theorem 4.1, we obtain the following.

Corollary 4.2. Let V be an optimal computer. Then, for every c ∈ N, there does not exist an oracle
deterministic Turing machine M such that, for infinitely many n ∈ N+, MdomV —n+c(n) = ΩV �n.

Note that, as a variant of Theorem 4.1, we can prove the following theorem as well, in a similar
manner to the proof of Theorem 4.1.

Theorem 4.3 (variant of the main result II). Let V and W be optimal computers, and let f : N+ →
N be a total recursive function. Then the following two conditions are equivalent:

8

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for infinitely
many n ∈ N+, MdomV —n+f(n)+c(n) = ΩW�n.

(ii) The function f is not bounded to the above.

4.1 The proof of Theorem 4.1

Theorem 4.1 follows from Theorem 4.4 and Theorem 4.6 below, and Theorem 2.4.

Theorem 4.4. Let α be an r.e. real, and let V be an optimal computer. For every total recursive
function f : N+ → N, if the function f is not bounded to the above, then there exist an oracle
deterministic Turing machine M and c ∈ N such that, for infinitely many n ∈ N+, MdomV —n(n) =
α�n−f(n)−c.

In order to prove Theorem 4.4, we need Lemma 4.5 below. It is easy to show Lemma 4.5. For
completeness, however, we include the proof of Lemma 4.5 in Appendix B.

Lemma 4.5. Let f : N+ → N be a total recursive function. If the function f is not bounded to the
above, then H(n) ≤ f(n) for infinitely many n ∈ N+.

Based on Lemma 4.5 and Corollary 3.8, Theorem 4.4 is proved as follows.

Proof of Theorem 4.4. Let α be an r.e. real, and let V be an optimal computer. For an arbitrary
total recursive function f : N+ → N, assume that the function f is not bounded to the above. In
the case of α ∈ Q, the result is obvious. Thus, in what follows, we assume that α /∈ Q and therefore
the base-two expansion of α− bαc is unique and contains infinitely many ones.

Since the total recursive function f is not bounded to the above, by Lemma 4.5 we see that
H(n) ≤ f(n) for infinitely many n ∈ N+. Note also that limn→∞ n −H(n) = ∞. This is because
H(n) ≤ 2 log2 n+O(1) holds for all n ∈ N+ by (4). On the other hand, since α is r.e., there exists
a total recursive function g : N+ → Q such that g(k) ≤ α for all k ∈ N+ and limk→∞ g(k) = α.

Let us consider the following computer C. For each p, q, s ∈ {0, 1}∗ and n, l ∈ N such that
U(p) = n and U(q) = l, pqs ∈ domC if and only if (i) |pqs| = n − l and (ii) 0.s < g(k) − bαc
for some k ∈ N+. It is easy to see that such a computer C exists. Then, by Corollary 3.8,
there exist an oracle deterministic Turing machine M and d ∈ N such that, for all n ∈ N+,
MdomV —n+d(n) = domC �n, where the finite subset domC �n of {0, 1}∗ is represented as a finite
binary string in a certain format. We then see that, for every n ∈ N+ and p, s ∈ {0, 1}∗ such that
U(p) = n and |s| = n− |p| − d− |d∗|,

pd∗s ∈ domC if and only if s ≤ α�n−|p|−d−|d∗|, (9)

where s and α�n−|p|−d−|d∗| are regarded as a dyadic integer. Then, by the following procedure, we
see that there exist an oracle deterministic Turing machine M1 and c ∈ N such that, for infinitely
many n ∈ N+, MdomV —n

1 (n) = α�n−f(n)−c. Note here that H(d) = |d∗|.
Given n and domV �n with n > d, one first tries to find p ∈ {0, 1}∗ which satisfies that (i)

U(p) = n, (ii) |p| ≤ f(n), and (iii) n − |p| − d − H(d) ≥ 1. One can find such a string p for the
cases of infinitely many n ∈ N+. This is because H(k) ≤ f(k) holds for infinitely many k ∈ N+ and
limk→∞ k − H(k) = ∞. If such a string p is found, one then calculates the finite set domC�n−d
by simulating the computation of M with the input n − d and the oracle domV �n. Then, based

9

on (9), one determines α�n−|p|−d−H(d) by checking whether pd∗s ∈ domC holds or not for each
s ∈ {0, 1}∗ with |s| = n− |p| − d−H(d). This is possible since |pd∗s| = n− d for every s ∈ {0, 1}∗
with |s| = n− |p| − d−H(d). Finally, one calculates and outputs α�n−f(n)−d−H(d). This is possible
since n− f(n)− d−H(d) ≤ n− |p| − d−H(d).

Theorem 4.6. Let α be a real which is weakly Chaitin random, and let V be an optimal computer.
For every total recursive function f : N+ → N, if there exists an oracle deterministic Turing machine
M such that, for infinitely many n ∈ N+, MdomV —n(n) = α�n−f(n), then the function f is not
bounded to the above.

Using (5), Theorem 3.9 and Theorem 2.3, we can prove Theorem 4.6 as follows.

Proof of Theorem 4.6. Let α be a real which is weakly Chaitin random. Let V be an optimal
computer, and let M be a deterministic Turing machine which computes V . For an arbitrary total
recursive function f : N+ → N, assume that there exists an oracle deterministic Turing machine
M0 such that, for infinitely many n ∈ N+, MdomV —n

0 (n) = α�n−f(n). Note that, given (TMn , n)
with n ≥ LM , one can calculate the finite set domV �n by simulating the computation of M with
the input p until at most TMn steps, for each p ∈ {0, 1}∗ with |p| ≤ n. Thus, we see that there
exists a partial recursive function Ψ: N × N+ → {0, 1}∗ such that, for infinitely many n ≥ LM ,
Ψ(TMn , n) = α�n−f(n). It follows from (5) that H(α�n−f(n)) ≤ H(TMn , n) +O(1) for infinitely many
n ≥ LM . Thus, by Theorem 3.9 we see that there exists an infinite subset S of N+ such that

H(α�n−f(n)) ≤ n+O(1) (10)

for all n ∈ S.
In the case where the function n− f(n) of n is bounded to the above on S, there exists c ∈ N

such that, for every n ∈ S, n− c ≤ f(n), and therefore the function f itself is not bounded to the
above. Thus, in what follows, we assume that the function n−f(n) of n is not bounded to the above
on S. Thus we can choose a sequence n1, n2, n3, . . . in S such that 1 ≤ nj−f(nj) < nj+1−f(nj+1)
for all j ∈ N+. It follows from (10) that H(α �nj−f(nj)) − (nj − f(nj)) ≤ f(nj) + O(1) for all
j ∈ N+. On the other hand, since α is weakly Chaitin random, it follows from Theorem 2.3 that
limn→∞H(α�n) − n = ∞. This implies that limj→∞ f(nj) = ∞. Hence, the function f is not
bounded to the above.

5 Elaboration of the Turing reduction dom U ≤T ΩU

Theorem 5.1 (main result III). Let V and W be optimal computers, and let f : N+ → N be a total
recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for all n ∈
N+, M{ΩV —n}(n) = domW �n+f(n)−c, where the finite subset domW �n+f(n)−c of {0, 1}∗ is
represented as a finite binary string in a certain format.

(ii) The function f is bounded to the above.

In order to prove the implication (i) ⇒ (ii) of Theorem 5.1, we need Theorem 5.2 below. For
the purpose of understanding the statement of Theorem 5.2, we concisely review some definitions
and results of the theory of relative randomness. See e.g. [12, 6] for the detail of the theory.

10

An oracle computer is an oracle deterministic Turing machine M with the input and output
alphabet {0, 1} such that, for every subset A of {0, 1}∗, the domain of definition of MA is a prefix-
free set. For each oracle computer M , each subset A of {0, 1}∗, and each s ∈ {0, 1}∗, HA

M (s) is
defined by HA

M (s) = min
{
|p|
∣∣ p ∈ {0, 1}∗ &MA(p) = s

}
(may be ∞). An oracle computer R is

said to be optimal if for every oracle computer M there exists d ∈ N such that, for every subset A
of {0, 1}∗ and every s ∈ {0, 1}∗,

HA
R (s) ≤ HA

M (s) + d. (11)

It is then easy to see that there exists an optimal oracle computer. For any α ∈ R, we say that α
is 2-random if there exist an optimal oracle computer R and c ∈ N such that n− c ≤ HdomU

R (α�n)
for all n ∈ N+. Recall here that U is the optimal computer used to define H(s).

For any α ∈ R, we say that α is strongly Chaitin random if there exists c ∈ N such that, for
infinitely many n ∈ N+, n+H(n)− c ≤ H(α�n). J. Miller recently showed the following theorem.
See [6, 12] for the detail.

Theorem 5.2 (J. Miller). For every α ∈ R, α is strongly Chaitin random if and only if α is
2-random.

The implication (i) ⇒ (ii) of Theorem 5.1 is then proved as follows, based on Lemma 4.5,
Theorem 5.2, and the fact that ΩV is an r.e. real.

Proof of (i) ⇒ (ii) of Theorem 5.1. Let V and W be optimal computers. For an arbitrary total
recursive function f : N+ → N, assume that there exist an oracle deterministic Turing machine M
and c ∈ N such that, for all n ∈ N+, M{ΩV —n}(n) = domW �n+f(n)−c. Then, by considering the
following procedure, we first see that n+ f(n) < H(ΩV �n) +O(1) for all n ∈ N+.

Given ΩV �n, one first calculates the finite set domW�n+f(n)−c by simulating the computation of
M with the input n and the oracle ΩV �n. Then, by calculating the set {W (p) | p ∈ domW�n+f(n)−c}
and picking any one finite binary string s which is not in this set, one can obtain s ∈ {0, 1}∗ such
that n+ f(n)− c < HW (s).

Thus, there exists a partial recursive function Ψ: {0, 1}∗ → {0, 1}∗ such that, for all n ∈ N+,
n+ f(n)− c < HW (Ψ(ΩV �n)). It follows from the optimality of W and (5) that

n+ f(n) < H(ΩV �n) +O(1) (12)

for all n ∈ N+.
Now, let us assume contrarily that the function f is not bounded to the above. Then it follows

from Lemma 4.5 that H(n) ≤ f(n) for infinitely many n ∈ N+. Combining this with (12) we see
that ΩV is strongly Chaitin random. Thus, by Theorem 5.2, ΩV is 2-random and therefore there
exist an optimal oracle computer R and d ∈ N such that

n− d ≤ HdomU
R (ΩV �n) (13)

for all n ∈ N+.
On the other hand, ΩV ≤T domU holds, as shown in Theorem 3.1 in a stronger form. Thus,

using (11) we can show that HdomU
R (ΩV �n) ≤ 2 log2 n + O(1) for all n ∈ N+. However, this

contradicts (13), and the proof is completed.

11

On the other hand, in order to prove the implication (ii) ⇒ (i) of Theorem 5.1, we need Theo-
rem 5.3 below. Theorem 5.3 can be proved based on Fact 1 and Corollary 3.8. For completeness,
however, we include in Appendix C a direct and self-contained proof of Theorem 5.3 without using
Corollary 3.8.

Theorem 5.3. Let V be an optimal computer, and let C be a computer. Then there exist an oracle
deterministic Turing machine M and d ∈ N such that, for all n ∈ N+, M{ΩV —n+d}(n) = domC�n,
where the finite subset domC �n of {0, 1}∗ is represented as a finite binary string in a certain
format.

Then the proof of the implication (ii) ⇒ (i) of Theorem 5.1 is as follows.

Proof of (ii) ⇒ (i) of Theorem 5.1. Let V and W be optimal computers. For an arbitrary total
recursive function f : N+ → N, assume that the function f is bounded to the above. Then there
exists d1 ∈ N such that f(n) ≤ d1 for all n ∈ N+. On the other hand, by Theorem 5.3, there exist
an oracle deterministic Turing machine M and d2 ∈ N such that, for all n ∈ N+, M{ΩV —n+d2

}(n) =
domW �n, where the finite subset domW �n of {0, 1}∗ is represented as a finite binary string in a
certain format. We set c = d1 + d2. Then, by the following procedure, we see that there exists an
oracle deterministic Turing machine M such that, for all n ∈ N+, M{ΩV —n}(n) = domW�n+f(n)−c.

Given n and ΩV �n with n > d2, one first calculates the finite set domW�n−d2 by simulating the
computation of M with the input n− d2 and the oracle {ΩV �n}. One then calculates and outputs
domW�n+f(n)−c. This is possible since n+ f(n)− c ≤ n+ d1 − c = n− d2.

Note that, as a variant of Theorem 5.1, we can prove the following theorem as well, in a similar
manner to the proof of Theorem 5.1.

Theorem 5.4 (variant of the main result III). Let V and W be optimal computers, and let f : N+ →
N be a total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Turing machine M and c ∈ N such that, for all n ∈ N+,
M{ΩV —n−f(n)+c}(n) = domW�n, where the finite subset domW�n of {0, 1}∗ is represented as
a finite binary string in a certain format.

(ii) The function f is bounded to the above.

For completeness, we give a proof of the implication (i) ⇒ (ii), i.e., the difficult part, of Theo-
rem 5.4 as follows.

Proof of (i) ⇒ (ii) of Theorem 5.4. Let V and W be optimal computers. For an arbitrary total
recursive function f : N+ → N, assume that there exist an oracle deterministic Turing machine M
and c ∈ N such that, for all n ∈ N+, M{ΩV —n−f(n)+c}(n) = domW �n. Then, by considering the
following procedure, we first see that n < H(n,ΩV �n−f(n)+c) +O(1) for all n ∈ N+.

Given n and ΩV �n−f(n)+c, one first calculates the finite set domW �n by simulating the com-
putation of M with the input n and the oracle

{
ΩV �n−f(n)+c

}
. Then, by calculating the set

{W (p) | p ∈ domW�n} and picking any one finite binary string s which is not in this set, one can
obtain s ∈ {0, 1}∗ such that n < HW (s).

12

Thus, there exists a partial recursive function Ψ: N+ × {0, 1}∗ → {0, 1}∗ such that, for all
n ∈ N+, n < HW (Ψ(n,ΩV �n−f(n)+c)). It follows from the optimality of W and (5) that

n < H(n,ΩV �n−f(n)+c) +O(1) (14)

for all n ∈ N+.
Now, let us assume contrarily that the function f is not bounded to the above. It is then easy

to show that there exists an increasing total recursive function g : N+ → N+ such that the function
f(g(k)) of k is increasing. Note that H(s, t) ≤ H(s) + H(t) + O(1) holds for all s, t ∈ {0, 1}∗ by
(3). It follows from (14) that

g(k)−H(g(k)) < H(ΩV �g(k)−f(g(k))+c) +O(1) (15)

for all k ∈ N+. On the other hand, note that limn→∞ n − H(n) = ∞ holds by (4). Hence we
have limk→∞ g(k) − H(g(k)) = ∞ since the function g is increasing. Based on (15), it is then
easy to see that the function g(k)− f(g(k)) + c of k is not bounded to the above. Therefore there
exists an increasing total recursive function h : N+ → N+ such that g(h(l)) − f(g(h(l))) + c ≥ 1
for all l ∈ N+ and the function g(h(l)) − f(g(h(l))) + c of l is increasing. For clarity, we define a
total recursive function m : N+ → N+ by m(l) = g(h(l))− f(g(h(l))) + c. Since m is an increasing
function, it is then easy to see that there exists a partial recursive function Φ: N+ → N+ such that
Φ(m(l)) = g(h(l)) for all l ∈ N+. Thus, based on (5), it is shown that

H(g(h(l)),ΩV �m(l)) ≤ H(ΩV �m(l)) +O(1)

for all l ∈ N+. It follows from (14) that

m(l) + f(g(h(l))) < H(ΩV �m(l)) +O(1) (16)

for all l ∈ N+. On the other hand, note that the total recursive function f(g(h(l))) of l is increasing
and therefore not bounded to the above. Thus, in a similar manner to the proof of Lemma 4.5 we
can show that H(m(l)) ≤ f(g(h(l))) for infinitely many l ∈ N+. It follows from (16) that

m(l) +H(m(l)) < H(ΩV �m(l)) +O(1)

for infinitely many l ∈ N+. Since the function m is increasing, we see that ΩV is strongly Chaitin
random.

Hereafter, in the same manner as the proof of the implication (i)⇒ (ii) of Theorem 5.1, we can
derive a contradiction using Theorem 5.2. This completes the proof.

Acknowledgments

This work was supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (20540134), by
SCOPE from the Ministry of Internal Affairs and Communications of Japan, and by CREST from
Japan Science and Technology Agency.

13

References

[1] C. S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang, “Recursively enumerable reals
and Chaitin Ω numbers,” Theoret. Comput. Sci, vol. 255, pp. 125–149, 2001.

[2] G. J. Chaitin, “A theory of program size formally identical to information theory,” J. Assoc.
Comput. Mach., vol. 22, pp. 329–340, 1975.

[3] G. J. Chaitin, “Incompleteness theorems for random reals,” Adv. in Appl. Math., vol. 8,
pp. 119–146, 1987.

[4] G. J. Chaitin, Algorithmic Information Theory. Cambridge University Press, Cambridge, 1987.

[5] G. J. Chaitin, “Program-size complexity computes the halting problem,” Bulletin of the Eu-
ropean Association for Theoretical Computer Science, vol. 57, p. 198, October 1995.

[6] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity. Springer-
Verlag, To appear.

[7] P. Gács, “On the symmetry of algorithmic information,” Soviet Math. Dokl., vol. 15, pp. 1477–
1480, 1974; correction, ibid. vol. 15, pp. 1480, 1974.

[8] A. Kučera and T. A. Slaman, “Randomness and recursive enumerability,” SIAM J. Comput.,
vol. 31, No. 1, pp. 199–211, 2001.

[9] L. A. Levin, “Laws of information conservation (non-growth) and aspects of the foundations
of probability theory,” Problems of Inform. Transmission, vol. 10, pp. 206–210, 1974.

[10] P. Martin-Löf, “The definition of random sequences,” Information and Control, vol. 9, pp. 602–
619, 1966.

[11] J. Miller and L. Yu, “On initial segment complexity and degrees of randomness,” Trans. Amer.
Math. Soc., vol. 360, pp. 3193–3210, 2008.

[12] A. Nies, Computability and Randomness. Oxford University Press Inc., New York, 2009.

[13] C.-P. Schnorr, “Process complexity and effective random tests,” J. Comput. System Sci., vol.
7, pp. 376–388, 1973.

[14] R. M. Solovay, “Draft of a paper (or series of papers) on Chaitin’s work ... done for the most
part during the period of Sept.–Dec. 1974,” unpublished manuscript, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, May 1975, 215 pp.

A The proof of Theorem 3.9

We here prove Theorem 3.9 using Lemma A.1 below. Let V be an optimal computer, and let M
be a deterministic Turing machine which computes V .

Lemma A.1. There exists d ∈ N such that, for every p ∈ domV , there exists q ∈ domV for which
|q| ≤ |p| + d and the running time of M on the input q is longer than the running time of M on
the input p.

14

Proof. Consider the computer C such that (i) domC = domV and (ii) for every p ∈ domV ,
C(p) = 12|p|+T (p)+1, where T (p) is the running time of M on the input p. It is easy to see that
such a computer C exists. Then, since V is an optimal computer, from the definition of an optimal
computer there exists d1 ∈ N with the following property; if p ∈ domC, then there is q for which
V (q) = C(p) and |q| ≤ |p|+ d1.

Thus, for each p ∈ domV with |p| ≥ d1, there is q for which V (q) = C(p) and |q| ≤ |p|+ d1. It
follows that

|V (q)| = 2 |p|+ T (p) + 1 > |p|+ d1 + T (p) ≥ |q|+ T (p). (17)

Note that exactly |q| cells on the tapes of M have the symbols 0 or 1 in the initial configuration of
M with the input q, while at least |V (q)| cells on the tape of M , on which the output is put, have
the symbols 0 or 1 in the resulting final configuration of M . Since M can write at most one 0 or 1
on the tape, on which an output is put, every one step of its computation, the running time T (q)
of M on the input q is bounded to the below by the difference |V (q)| − |q|. Thus, by (17), we have
T (q) > T (p).

On the other hand, since domV is not a recursive set, the function TMn of n ≥ LM is not
bounded to the above. Therefore, there exists r0 ∈ domV such that, for every p ∈ domC with
|p| < d1, T (r0) > T (p). By setting d2 = |r0| we then see that, for every p ∈ domC with |p| < d1,
|r0| ≤ |p|+ d2.

Thus, by setting d = max{d1, d2} we see that, for every p ∈ domV , there is q ∈ domV for
which |q| ≤ |p|+ d and T (q) > T (p). This completes the proof.

The proof of Theorem 3.9 is given as follows.

Proof of Theorem 3.9. By considering the following procedure, we first show that n ≤ H(TMn , n) +
O(1) for all n ≥ LM .

Given (TMn , n) with n ≥ LM , one first calculates the finite set domV �n by simulating the
computation of M with the input p until at most TMn steps, for each p ∈ {0, 1}∗ with |p| ≤ n.
Then, by calculating the set {V (p) | p ∈ domV �n} and picking any one finite binary string s which
is not in this set, one can obtain s ∈ {0, 1}∗ such that n < HV (s).

Hence, there exists a partial recursive function Ψ: N×N+ → {0, 1}∗ such that, for all n ≥ LM ,
n < HV (Ψ(TMn , n)). It follows from the optimality of V and (5) that n < H(TMn , n) +O(1) for all
n ≥ LM .

For each p ∈ domV , let T (p) be the running time of M on the input p. It follows from
Lemma A.1 that there exists d ∈ N such that, for every p ∈ domV , there exists q ∈ domV for
which |q| ≤ |p| + d and T (q) > T (p). By considering the following procedure, we next show that
H(TMn , n) ≤ H(TMn) +O(1) for all n ≥ LM .

Given TMn with n ≥ LM , one first simulates the computation of M with the input p until
at most TMn steps, one by one for each element p in {0, 1}∗, in the order defined on the ordered
set {0, 1}∗. Due to the definition of TMn , during the simulations one can eventually find the first
element p0 of {0, 1}∗ such that T (p0) = TMn . For this p0, |p0| ≤ n due to the definition of TMn ,
and there exists q ∈ domV for which |q| ≤ |p0| + d and T (q) > TMn . For this q, |q| > n due to
the definition of TMn again. Therefore d ≥ 1 and |p0| ≤ n < |p0| + d. Thus, there are still only d
possibilities of n, so that one needs only dlog2 de bits more in order to determine n.

Thus, there exists a partial recursive function Φ: N × {0, 1}∗ → N × N+ such that, for every
n ≥ LM , there exists s ∈ {0, 1}∗ with the properties that |s| = dlog2 de and Φ(TMn , s) = (TMn , n). It

15

follows from (5) and (3) that H(TMn , n) ≤ H(TMn)+max{H(s) | s ∈ {0, 1}∗ & |s| = dlog2 de}+O(1)
for all n ≥ LM .

Finally, we show that H(TMn) ≤ n+O(1) for all n ≥ LM . Let us consider the computer C such
that (i) domC = domV and (ii) for every p ∈ domV , C(p) = T (p). Obviously, such a computer
C exists. Then, by (3) we see that, for every p ∈ domV , H(T (p)) ≤ |p|+O(1). For each n ≥ LM ,
it follows from the definition of TMn that there exists r ∈ domV such that |r| ≤ n and T (r) = TMn .
Hence, H(TMn) = H(T (r)) ≤ |r|+O(1) ≤ n+O(1). This completes the proof.

B The proof of Lemma 4.5

Lemma 4.5 is proved as follows.

Proof of Lemma 4.5. Contrarily, assume that there exists c ∈ N+ such that, for every n ≥ c,
f(n) < H(n). Then, since f is not bounded to the above, it is easy to see that there exists a total
recursive function Ψ: N+ → N+ such that, for every k ∈ N+, k < H(Ψ(k)). Thus, using (5) we see
that k < H(k) +O(1) for all k ∈ N+. On the other hand, using (4) we have H(k) ≤ 2 log2 k+O(1)
for all k ∈ N+. Therefore k < 2 log2 k +O(1) for all k ∈ N+. However, we have a contradiction on
letting k →∞ in this inequality, and the result follows.

C The proof of Theorem 5.3

In what follows, we prove Theorem 5.3 in a direct manner without using Corollary 3.8.

Proof of Theorem 5.3. In the case where domC is a finite set, the result is obvious. Thus, in what
follows, we assume that domC is an infinite set.

Let p0, p1, p2, p3, . . . be a particular recursive enumeration of domC, and let D be a computer
such that domD = domC and D(pi) = i for all i ∈ N. Recall here that we identify {0, 1}∗ with
N. It is also easy to see that such a computer D exists. Since V is an optimal computer, from the
definition of optimality of a computer there exists d ∈ N such that, for every i ∈ N, there exists
q ∈ {0, 1}∗ for which V (q) = i and |q| ≤ |pi|+ d. Thus, HV (i) ≤ |pi|+ d for every i ∈ N. For each
s ∈ {0, 1}∗, we define PV (s) as

∑
V (p)=s 2−|p|. Then, for each i ∈ N,

PV (i) ≥ 2−HV (i) ≥ 2−|pi|−d. (18)

Then, by the following procedure, we see that there exists an oracle deterministic Turing machine
M such that, for all n ∈ N+, M{ΩV —n+d}(n) = domC�n.

Given n and ΩV �n+d, one can find ke ∈ N such that
∑ke

i=0 PV (i) > 0.(ΩV �n+d). This is possible
because 0.(ΩV �n+d) < ΩV and limk→∞

∑k
i=0 PV (i) = ΩV . It follows that

∞∑
i=ke+1

PV (i) = ΩV −
ke∑
i=0

PV (i) < ΩV − 0.(ΩV �n+d) < 2−n−d.

Therefore, by (18),
∞∑

i=ke+1

2−|pi| ≤ 2d
∞∑

i=ke+1

PV (i) < 2−n.

16

It follows that, for every i > ke, 2−|pi| < 2−n and therefore n < |pi|. Hence,

domC�n= { p ∈ domC | |p| ≤ n } = { pi | i ≤ ke & |pi| ≤ n }.

Thus, by calculating the finite set { pi | i ≤ ke & |pi| ≤ n }, one can obtain the set domC�n.

17

