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Abstract—The statistical mechanical interpretation of algorith-
mic information theory (AIT, for short) was introduced and
developed by our former works [K. Tadaki, Local Proceedings
of CiE 2008, pp. 425–434, 2008] and [K. Tadaki, Proceedings of
LFCS’09, Springer’s LNCS, vol. 5407, pp. 422–440, 2009], where
we introduced the notion of thermodynamic quantities, such
as partition function Z(T ), free energy F (T ), energy E(T ),
and statistical mechanical entropy S(T ), into AIT. We then
discovered that, in the interpretation, the temperature T equals to
the partial randomness of the values of all these thermodynamic
quantities, where the notion of partial randomness is a stronger
representation of the compression rate by means of program-size
complexity. Furthermore, we showed that this situation holds for
the temperature itself as a thermodynamic quantity, namely, for
each of all the thermodynamic quantities above, the computabil-
ity of its value at temperature T gives a sufficient condition
for T 2 (0; 1) to be a fixed point on partial randomness. In
this paper, we develop the statistical mechanical interpretation
of AIT further and pursue its formal correspondence to normal
statistical mechanics. The thermodynamic quantities in AIT are
defined based on the halting set of an optimal computer, which
is a universal decoding algorithm used to define the notion of
program-size complexity. We show that there are infinitely many
optimal computers which give completely different sufficient
conditions in each of the thermodynamic quantities in AIT. We
do this by introducing the notion of composition of computers to
AIT, which corresponds to the notion of composition of systems
in normal statistical mechanics.

I. INTRODUCTION

Algorithmic information theory (AIT, for short) is a frame-
work for applying information-theoretic and probabilistic ideas
to recursive function theory. One of the primary concepts of
AIT is the program-size complexity (or Kolmogorov complex-
ity) H(s) of a finite binary string s, which is defined as the
length of the shortest binary program for an optimal computer
U to output s. Here an optimal computer is a universal
decoding algorithm. By the definition, H(s) is thought to
represent the degree of randomness of a finite binary string
s. In particular, the notion of program-size complexity plays
a crucial role in characterizing the randomness of an infinite
binary string, or equivalently, a real.

In [14] we introduced and developed a statistical mechanical
interpretation of AIT. We there introduced the notion of

thermodynamic quantities, such as partition function Z(T ),
free energy F (T ), energy E(T ), and statistical mechanical
entropy S(T ), into AIT. These quantities are reals which
depend only on temperature T , any positive real. We then
proved that if the temperature T is a computable real with
0 < T < 1 then, for each of these thermodynamic quantities,
the partial randomness of its value equals to T , where the
notion of partial randomness is a stronger representation of the
compression rate by means of program-size complexity. Thus,
the temperature T plays a role as the partial randomness of
all the thermodynamic quantities in the statistical mechanical
interpretation of AIT. In [14] we further showed that the
temperature T plays a role as the partial randomness of the
temperature T itself, which is a thermodynamic quantity of
itself. Namely, we proved the fixed point theorem on partial
randomness,1 which states that, for every T ∈ (0, 1), if
the value of partition function Z(T ) at temperature T is a
computable real, then the partial randomness of T equals to
T , and therefore the compression rate of T equals to T , i.e.,
limn→∞H(Tn)/n = T , where Tn is the first n bits of the
base-two expansion of T .

In our second work [15] on this interpretation, we showed
that a fixed point theorem of the same form as for Z(T ) holds
also for each of free energy F (T ), energy E(T ), and statistical
mechanical entropy S(T ). Moreover, based on the statistical
mechanical relation F (T ) = −T log2 Z(T ), we showed that
the computability of F (T ) gives completely different fixed
points from the computability of Z(T ).

In this paper, we develop the statistical mechanical inter-
pretation of AIT further and pursue its formal correspondence
to normal statistical mechanics. As a result, we unlock the
properties of the sufficient conditions further. The thermody-
namic quantities in AIT are defined based on the halting set
of an optimal computer. In this paper, we show in Theorem 9
below that there are infinitely many optimal computers which
give completely different sufficient conditions in each of the
thermodynamic quantities in AIT. We do this by introducing

1The fixed point theorem on partial randomness is called a fixed point
theorem on compression rate in [14].



the notion of composition of computers to AIT, which cor-
responds to the notion of composition of systems in normal
statistical mechanics.

II. PRELIMINARIES

A. Basic notation

We start with some notation about numbers and strings
which will be used in this paper. N = {0, 1, 2, 3, . . . } is the set
of natural numbers, and N+ is the set of positive integers. Q
is the set of rationals, and Q+ is the set of positive rationals.
R is the set of reals. Let f : S → R with S ⊂ R. We say
that f is increasing (resp., decreasing) if f(x) < f(y) (resp.,
f(x) > f(y)) for all x, y ∈ S with x < y.

Normally, o(n) denotes any function f : N+ → R such that
limn→∞ f(n)/n = 0.
{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . . } is the set of

finite binary strings, where λ denotes the empty string. For
any s ∈ {0, 1}∗, |s| is the length of s. A subset S of {0, 1}∗
is called prefix-free if no string in S is a prefix of another string
in S. For any partial function f , the domain of definition of
f is denoted by dom f .

Let α be an arbitrary real. We denote by αn ∈ {0, 1}∗ the
first n bits of the base-two expansion of α−bαc with infinitely
many zeros, where bαc is the greatest integer less than or equal
to α. For example, in the case of α = 5/8, α6 = 101000.

We say that a real α is computable if there exists a total
recursive function f : N+ → Q such that |α− f(n)| < 1/n
for all n ∈ N+. See e.g. Weihrauch [17] for the detail of the
treatment of the computability of reals.

B. Algorithmic information theory

In the following we concisely review some definitions and
results of algorithmic information theory [4], [5], [7], [6]. A
computer is a partial recursive function C : {0, 1}∗ → {0, 1}∗
such that domC is a nonempty prefix-free set. For each
computer C and each s ∈ {0, 1}∗, HC(s) is defined by
HC(s) = min

{
|p|
∣∣ p ∈ {0, 1}∗ & C(p) = s

}
(may be ∞).

A computer U is said to be optimal if for each computer
C there exists d ∈ N with the following property; for every
p ∈ domC there exists q ∈ {0, 1}∗ for which U(q) = C(p)
and |q| ≤ |p| + d. It is easy to see that there exists an
optimal computer. We choose a particular optimal computer
U as the standard one for use, and define H(s) as HU (s),
which is referred to as the program-size complexity of s or
the Kolmogorov complexity of s. It follows that for every
computer C there exists d ∈ N such that, every s ∈ {0, 1}∗,
H(s) ≤ HC(s) + d.

For any α ∈ R, we say that α is weakly Chaitin random if
there exists c ∈ N such that n − c ≤ H(αn) for all n ∈ N+

[4], [5]. On the other hand, for any α ∈ R, we say that α is
Chaitin random if limn→∞H(αn)−n =∞ [4], [5]. It is then
shown that, for every α ∈ R, α is weakly Chaitin random if
and only if α is Chaitin random (see Chaitin [5] for the proof
and historical detail).

C. Partial randomness

In the works [11], [12], we generalized the notion of the
randomness of a real so that the degree of the randomness,
which is often referred to as the partial randomness recently
[2], [9], [3], can be characterized by a real T with 0 ≤ T ≤ 1
as follows.

Definition 1 (weak Chaitin T -randomness). Let T ∈ R with
T ≥ 0. For any α ∈ R, we say that α is weakly Chaitin T -
random if there exists c ∈ N such that Tn − c ≤ H(αn) for
all n ∈ N+.

Definition 2 (T -compressibility). Let T ∈ R with T ≥ 0.
For any α ∈ R, we say that α is T -compressible if H(αn) ≤
Tn+o(n), which is equivalent to lim supn→∞H(αn)/n ≤ T .

In the case of T = 1, the weak Chaitin T -randomness
results in the weak Chaitin randomness. For every T ∈ [0, 1]
and every α ∈ R, if α is weakly Chaitin T -random and T -
compressible, then

lim
n→∞

H(αn)
n

= T. (1)

The left-hand side of (1) is referred to as the compression
rate of a real α in general. Note, however, that (1) does not
necessarily imply that α is weakly Chaitin T -random. Thus,
the notion of partial randomness is a stronger representation
of compression rate.

Definition 3 (Chaitin T -randomness, Tadaki [11], [12]). Let
T ∈ R with T ≥ 0. For any α ∈ R, we say that α is Chaitin
T -random if limn→∞H(αn)− Tn =∞.

In the case of T = 1, the Chaitin T -randomness results in
the Chaitin randomness. Obviously, for every T ∈ [0, 1] and
every α ∈ R, if α is Chaitin T -random, then α is weakly
Chaitin T -random. However, in 2005 Reimann and Stephan
[9] showed that, in the case of T < 1, the converse does not
necessarily hold. This contrasts with the equivalence between
the weak Chaitin randomness and the Chaitin randomness,
each of which corresponds to the case of T = 1.

III. THE PREVIOUS RESULTS

In this section, we review some results of the statistical me-
chanical interpretation of AIT, developed by our former works
[14], [15]. We first introduce the notion of thermodynamic
quantities into AIT in the following manner.

In statistical mechanics, the partition function Zsm(T ),
free energy Fsm(T ), energy Esm(T ), and entropy Ssm(T ) at
temperature T are given as follows:

Zsm(T ) =
∑
x∈X

e
− Ex

kBT ,

Fsm(T ) = −kBT lnZsm(T ),

Esm(T ) =
1

Zsm(T )

∑
x∈X

Exe
− Ex

kBT ,

Ssm(T ) =
Esm(T )− Fsm(T )

T
,

(2)



where X is a complete set of energy eigenstates of a quantum
system and Ex is the energy of an energy eigenstate x. The
constant kB is called the Boltzmann Constant, and the ln
denotes the natural logarithm.2

Let C be an arbitrary computer. We introduce the notion
of thermodynamic quantities into AIT by performing Re-
placements 1 below for the thermodynamic quantities (2) in
statistical mechanics.

Replacements 1.
(i) Replace the complete set X of energy eigenstates x by

the set domC of all programs p for C.
(ii) Replace the energy Ex of an energy eigenstate x by the

length |p| of a program p.
(iii) Set the Boltzmann Constant kB to 1/ ln 2.

Thus, motivated by the formulae (2) and taking into account
Replacements 1, we introduce the notion of thermodynamic
quantities into AIT as follows.

Definition 4 (thermodynamic quantities in AIT, [14]). Let C
be any computer, and let T be any real with T > 0.

First consider the case where domC is an infinite set. In this
case, we choose a particular enumeration p1, p2, p3, p4, . . . of
the countably infinite set domC.3

(i) The partition function ZC(T ) at temperature T is de-
fined as limk→∞ Zk(T ) where

Zk(T ) =
k∑

i=1

2−
|pi|
T . (3)

(ii) The free energy FC(T ) at temperature T is defined as
limk→∞ Fk(T ) where

Fk(T ) = −T log2 Zk(T ). (4)

(iii) The energy EC(T ) at temperature T is defined as
limk→∞Ek(T ) where

Ek(T ) =
1

Zk(T )

k∑
i=1

|pi| 2−
|pi|
T . (5)

(iv) The statistical mechanical entropy SC(T ) at tempera-
ture T is defined as limk→∞ Sk(T ) where

Sk(T ) =
Ek(T )− Fk(T )

T
. (6)

In the case where domC is a nonempty finite set, the
quantities ZC(T ), FC(T ), EC(T ), and SC(T ) are just defined
as (3), (4), (5), and (6), respectively, where p1, . . . , pk is an
enumeration of the finite set domC.

2For the thermodynamic quantities in statistical mechanics, see e.g. Chapter
16 of [1] and Chapter 2 of [16]. To be precise, the partition function is not a
thermodynamic quantity but a statistical mechanical quantity.

3The enumeration {pi} can be chosen quite arbitrarily, and the results of
this paper are independent of the choice of {pi}. This is because the sum∑k

i=1
2−|pi|/T and

∑k

i=1
|pi| 2−|pi|/T in Definition 4 are positive term

series and converge as k →∞ for every T ∈ (0, 1).

Note that ZV (1) is precisely a Chaitin Ω number for every
optimal computer V . Then Theorems 5 and 6 below hold for
these thermodynamic quantities in AIT.

Theorem 5 (properties of Z(T ) and F (T ), [11], [12], [14]).
Let V be an optimal computer, and let T ∈ R.

(i) If 0 < T ≤ 1 and T is computable, then each of ZV (T )
and FV (T ) converges and is weakly Chaitin T -random
and T -compressible.

(ii) If 1 < T , then ZV (T ) and FV (T ) diverge to ∞ and
−∞, respectively.

Theorem 6 (properties of E(T ) and S(T ), [14]). Let V be
an optimal computer, and let T ∈ R.

(i) If 0 < T < 1 and T is computable, then each of EV (T )
and SV (T ) converges and is Chaitin T -random and T -
compressible.

(ii) If 1 ≤ T , then both EV (T ) and SV (T ) diverge to ∞.

The above two theorems show that if T is a computable
real with T ∈ (0, 1) then the temperature T equals to the
partial randomness (and therefore the compression rate) of the
values of all the thermodynamic quantities in Definition 4 for
an optimal computer.

These theorems also show that the values of all the thermo-
dynamic quantities diverge when the temperature T gets across
1. This phenomenon might be regarded as some sort of phase
transition in statistical mechanics. Note here that the weak
Chaitin T -randomness in Theorem 5 is replaced by the Chaitin
T -randomness in Theorem 6 in exchange for the divergence
at T = 1.

In statistical mechanics or thermodynamics, among all ther-
modynamic quantities one of the most typical thermodynamic
quantities is temperature itself. Theorem 7 below shows that
the partial randomness of the temperature T can equal to the
temperature T itself in the statistical mechanical interpretation
of AIT.

We denote by FPw the set of all real T ∈ (0, 1) such that T
is weakly Chaitin T -random and T -compressible, and denote
by FP the set of all real T ∈ (0, 1) such that T is Chaitin
T -random and T -compressible. Obviously, FP ⊂ FPw. Each
element T of FPw is a fixed point on partial randomness, i.e.,
satisfies the property that the partial randomness of T equals
to T itself, and therefore satisfies that limn→∞H(Tn)/n = T .
Let V be a computer. We define the sets Z(V ) by

Z(V ) = {T ∈ (0, 1) | ZV (T ) is computable }.

In the same manner, we define the sets F(V ), E(V ), and S(V )
based on the computability of FV (T ), EV (T ), and SV (T ),
respectively. Then we can show the following.

Theorem 7 (fixed points on partial randomness, [14], [15]).
Let V be an optimal computer. Then Z(V ) ∪ F(V ) ⊂ FPw

and E(V ) ∪ S(V ) ⊂ FP .

Theorem 7 is just a fixed point theorem on partial random-
ness, where the computability of each of the values ZV (T ),
FV (T ), EV (T ), and SV (T ) gives a sufficient condition for a



real T ∈ (0, 1) to be a fixed point on partial randomness. Thus,
by Theorem 7, the above observation that the temperature T
equals to the partial randomness of the values of the thermo-
dynamic quantities in the statistical mechanical interpretation
of AIT is further confirmed.

IV. THE MAIN RESULT

In this paper, we investigate the properties of the sufficient
conditions for T to be a fixed point on partial randomness in
Theorem 7. Using the monotonicity of the functions ZV (T )
and FV (T ) on temperature T and the statistical mechanical
relation FV (T ) = −T log2 ZV (T ), which holds from Defini-
tion 4, we can show the following theorem for the sufficient
conditions in Theorem 7.

Theorem 8 ([15]). Let V be an optimal computer. Then each
of the sets Z(V ) and F(V ) is dense in (0, 1) while Z(V ) ∩
F(V ) = ∅.

Thus, for every optimal computer V , the computability
of FV (T ) gives completely different fixed points from the
computability of ZV (T ). This implies also that Z(V ) $ FPw

and F(V ) $ FPw.
The aim of this paper is to investigate the structure of FPw

and FP in greater detail. Namely, we show in Theorem 9
below that there are infinitely many optimal computers which
give completely different sufficient conditions in each of the
thermodynamic quantities in AIT. We say that an infinite se-
quence V1, V2, V3, . . . of computers is recursive if there exists
a partial recursive function F : N+ × {0, 1}∗ → {0, 1}∗ such
that for each n ∈ N+ the following two hold: (i) p ∈ domVn

if and only if (n, p) ∈ domF , and (ii) Vn(p) = F (n, p) for
every p ∈ domVn. Then the main result of this paper is given
as follows.

Theorem 9 (main result). There exists a recursive infinite
sequence V1, V2, V3, . . . of optimal computers which satisfies
the following conditions:

(i) Z(Vi) ∩ Z(Vj) = F(Vi) ∩ F(Vj) = E(Vi) ∩ E(Vj) =
S(Vi) ∩ S(Vj) = ∅ for all i, j with i 6= j.

(ii)
⋃

iZ(Vi) ⊂ FPw and
⋃

i F(Vi) ⊂ FPw.
(iii)

⋃
i E(Vi) ⊂ FP and

⋃
i S(Vi) ⊂ FP .

In the subsequent sections we prove the above theorems by
introducing the notion of composition of computers to AIT,
which corresponds to the notion of composition of systems in
normal statistical mechanics.

V. COMPOSITION OF SYSTEMS

We first introduce the notion of composition of computers.

Definition 10 (composition of computers).
Let C1, C2, . . . , CN be computers. The composition C1�C2�
· · · �CN of C1, C2, . . . , and CN is defined as the computer
D such that (i) domD = {p1p2 . . . pN | p1 ∈ domC1 & p2 ∈
domC2 & · · · & pN ∈ domCN}, and (ii) D(p1p2 . . . pN ) =
C1(p1) for every p1 ∈ domC1, p2 ∈ domC2, . . . , and pN ∈
domCN .

Theorem 11. Let C1, C2, . . . , CN be computers. If C1 is
optimal then C1 � C2 � · · · � CN is also optimal.

Proof: We first choose particular strings r2, r3, . . . , rN
with r2 ∈ domC2, r3 ∈ domC3, . . . , and rN ∈ domCN .
Let C be an arbitrary computer. Then, by the definition of
the optimality of C1, there exists d ∈ N with the following
property; for every p ∈ domC there exists q ∈ {0, 1}∗ for
which C1(q) = C(p) and |q| ≤ |p| + d. It follows from the
definition of the composition C1 � C2 � · · · � CN that for
every p ∈ domC there exists q ∈ {0, 1}∗ for which (C1 �
C2 � · · · � CN )(qr2r3 . . . rN ) = C(p) and |qr2r3 . . . rN | ≤
|p|+ |r2r3 . . . rN |+d. Thus C1�C2�· · ·�CN is an optimal
computer.

In the same manner as in normal statistical mechanics, we
can prove Theorem 12 below for the thermodynamic quantities
in AIT. In particular, the equations (7), (8), and (9) correspond
to the fact that free energy, energy, and entropy are extensive
parameters in thermodynamics, respectively.

Theorem 12. Let C1, C2, . . . , CN be computers. Then the
following hold for every T ∈ (0, 1).

ZC1�···�CN
(T ) = ZC1(T ) · · ·ZCN

(T ),
FC1�···�CN

(T ) = FC1(T ) + · · ·+ FCN
(T ), (7)

EC1�···�CN
(T ) = EC1(T ) + · · ·+ ECN

(T ), (8)
SC1�···�CN

(T ) = SC1(T ) + · · ·+ SCN
(T ). (9)

For any computer C and any n ∈ N+, the computer
C � · · · � C︸ ︷︷ ︸

n

is denoted by C�n.

VI. THE PROOF OF THE MAIN RESULT

In order to prove the main result, Theorem 9, we next
introduce the notion of physically reasonable computer.

Definition 13 (physically reasonable computer). For any com-
puter C, we say that C is physically reasonable if there exist
p, q ∈ domC such that |p| 6= |q|.

Example 14. The following two computers are examples of
physically reasonable computers.
(i) Two level system: Let B be a particular computer for which
domB = {1, 01}. Then we see that, for every T > 0,

ZB(T ) = 2−1/T + 2−2/T ,

FB(T ) = −T log2 ZB(T ),

EB(T ) =
1

ZB(T )

(
2−1/T + 2 · 2−2/T

)
,

SB(T ) = (EB(T )− FB(T ))/T.

(ii) One dimensional harmonic oscillator: Let O be a par-
ticular computer for which domO = {0l1 | l ∈ N}. Then we



see that, for every T > 0,

ZO(T ) =
1

21/T − 1
,

FO(T ) = T log2

(
21/T − 1

)
,

EO(T ) =
21/T

21/T − 1
,

SO(T ) = (EO(T )− FO(T ))/T.

We can prove Theorem 15 below in a similar manner to
the proof of Theorem 7 of [15]. We can directly check that
Theorem 15 holds for the above two examples B and O of
physically reasonable computers.

Theorem 15. Let C be a computer. Suppose that C is
physically reasonable. Then each of the mapping (0, 1) 3 T 7→
ZC(T ), the mapping (0, 1) 3 T 7→ EC(T ), and the mapping
(0, 1) 3 T 7→ SC(T ) is an increasing real function. On the
other hand, the mapping (0, 1) 3 T 7→ FC(T ) is a decreasing
real function.

Based on Theorem 12 and the physically reasonable com-
puter given in Example 14, the main result is proved as
follows.

The proof of Theorem 9: Let O be the computer
considered in Example 14 (ii). For each n ∈ N+, we denote
the computer U � (O�n) by Vn. Recall here that U is the
optimal computer used to define H(s). Then, by Theorem 11,
we first see that Vn is optimal for every n ∈ N+. Furthermore,
it is easy to see that the infinite sequence V1, V2, V3, . . . of
computers is recursive. It follows from Theorem 12 that, for
every T ∈ (0, 1),

ZVn
(T ) = ZU (T )ZO(T )n,

FVn
(T ) = FU (T ) + nFO(T ),

EVn
(T ) = EU (T ) + nEO(T ),

SVn
(T ) = SU (T ) + nSO(T ).

(10)

Let m and n be arbitrary two positive integers with m > n.
Then it follows from the equations (10) that

ZVm(T ) = ZVn(T )ZO(T )m−n, (11)
FVm(T ) = FVn(T ) + (m− n)FO(T ), (12)
EVm(T ) = EVn(T ) + (m− n)EO(T ), (13)
SVm(T ) = SVn(T ) + (m− n)SO(T ) (14)

for every T ∈ (0, 1). In what follows, using (12) we show that
F(Vm)∩F(Vn) = ∅. In a similar manner, using (11), (13), and
(14) we can show that Z(Vm) ∩ Z(Vn) = E(Vm) ∩ E(Vn) =
S(Vm) ∩ S(Vn) = ∅ as well.

Now, let us assume contrarily that F(Vm) ∩ F(Vn) 6= ∅.
Then there exists Tc ∈ (0, 1) such that both FVm

(Tc) and
FVm

(Tc) are computable. It follows from (12) that

FO(Tc) =
1

m− n
(FVm

(Tc)− FVn
(Tc)) .

Thus, FO(Tc) is also computable. Hence, from the definition
of the computability of real, we can show that there exist
total recursive functions a : N+ → Q and b : N+ → Q such
that (i) a(n) ≤ FO(Tc) ≤ b(n) for all n ∈ N+ and (ii)
limn→∞ a(n) = limn→∞ b(n) = FO(Tc).

On the other hand, since FO(r) = r log2

(
21/r − 1

)
for

every r ∈ Q+, it is shown that there exist total recursive
functions c : N+ × Q+ → Q and d : N+ × Q+ → Q such
that (i) c(n, r) ≤ FO(r) ≤ d(n, r) for all n ∈ N+ and all
r ∈ Q+ and (ii) limn→∞ c(n, r) = limn→∞ d(n, r) = FO(r)
for all r ∈ Q+. Since the mapping (0, 1) 3 T 7→ FO(T ) is a
decreasing real function by Theorem 15, it is then easy to see
that, given k ∈ N+, one can find r1, r2 ∈ Q+ and n ∈ N+

such that (i) 0 < r1 < r2 < 1, (ii) |r2 − r1| < 1/k, (iii)
c(n, r1) ≥ b(n), and (iv) a(n) ≥ d(n, r2) by searching such
r1, r2 and n exhaustively. Since the mapping (0, 1) 3 T 7→
FO(T ) is a decreasing real function by Theorem 15 again, we
see that r1 ≤ Tc ≤ r2 and therefore |Tc − r1| < 1/k. Thus,
there exists a total recursive function f : N+ → Q such that
|Tc − f(k)| < 1/k for all k ∈ N+. Hence, Tc is computable.

Since Vm is optimal and Tc is computable, it follows from
Theorem 5 (i) that FVm(Tc) is weakly Chaitin Tc-random.
However, this contradicts the fact that FVm

(Tc) is computable.
Thus we have F(Vm)∩F(Vn) = ∅. This completes the proof
of Theorem 9 (i).

Theorem 9 (ii) and (iii) follow immediately from Theorem 7
and the fact that Vi is optimal for all i.

VII. CONCLUSION

As a sequel to our former works, in this work we devel-
oped the statistical mechanical interpretation of AIT further
and pursued its formal correspondence to normal statistical
mechanics. In particular, we investigated the structure of the
set of fixed points on partial randomness in greater detail by
introducing the notion of composition of computers to AIT,
which corresponds to the notion of composition of systems in
normal statistical mechanics.
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