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A good proof is a proof that makes

us wiser. Manin [41, p. 209].

Abstract. Hilbert’s concept of formal proof is an ideal of rigour for
mathematics which has important applications in mathematical logic,
but seems irrelevant for the practice of mathematics. The advent, in the
last twenty years, of proof assistants was followed by an impressive record
of deep mathematical theorems formally proved. Formal proof is practi-
cally achievable. With formal proof, correctness reaches a standard that
no pen-and-paper proof can match, but an essential component of math-
ematics — the insight and understanding — seems to be in short supply.
So, what makes a proof understandable? To answer this question we first
suggest a list of symptoms of understanding. We then propose a vision of
an environment in which users can write and check formal proofs as well
as query them with reference to the symptoms of understanding. In this
way, the environment reconciles the main features of proof: correctness
and understanding.

1 Introduction

From Pythagoras and Euclid to Hilbert and Bourbaki, mathematical proofs were
essentially based on axiomatic-deductive reasoning. This view was repeatedly
expressed by the most prominent mathematicians. For Bourbaki [11], Depuis
les Grecs, qui dit Mathématique, dit démonstration, and for Mac Lane [37], If
a result has not yet been given valid proof, it isn’t yet mathematics: we should
strive to make it such.

A formal proof is written in a formal language consisting of certain strings
of symbols from a fixed alphabet. Formal proofs are precisely specified without
any ambiguity because all notions are explicitly defined, no steps (no matter
how small) are omitted, no appeal to any kind of intuition is made. They satisfy
Hilbert’s criterion of mechanical testing:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.



By making sure that every step is correct, one can tell once and for all whether
a proof is correct or not, i.e. whether a theorem has been proved.

Hilbert’s concept of formal proof is an ideal of rigour for mathematics which
has important applications in mathematical logic (computability theory and
proof theory), but seems irrelevant for the practice of mathematics.

An informal (pen-on-paper) proof is a rigorous argument expressed in a mix-
ture of natural language and formulae (for some mathematicians an equal mix-
ture is the best proportion) that is intended to convince a knowledgeable math-
ematician of the truth of a statement, the theorem. Routine logical inferences
are omitted. “Folklore” results are used without proof. Depending on the area,
arguments may rely on intuition. Informal proofs are the standard of presenta-
tion of mathematics in textbooks, journals, classrooms, and conferences. They
are the product of a social process.

In theory, each informal proof can be converted into a formal proof. How-
ever, this is rarely, almost never, done in practice3. Bourbaki, who came closer to
formal proving than most mathematicians, still declared that formalized math-
ematics cannot in practice be written down in full, a goal that is an absolutely
unrealizable program.

Gödel’s Incompleteness Theorem [25] shows that in every formal system sat-
isfying a modicum of natural assumptions certain statements are true but not
provable. In this sense, the formal approach to mathematics is not universal, not
everything can be formally proved. Still, no universal alternative is available. Al-
though a formal proof cannot guarantee 100% correctness because, for example,
one cannot prove the correctness of the formal prover itself (a well-known result
in computability theory, [24]) the certainty achieved is close to “certain”4.

The advent, in the last twenty years, of proof assistants was followed by
an impressive record of deep mathematical theorems formally proved. The list
includes Gödel Incompleteness Theorem (1986)5, the Fundamental Theorem of
Calculus (1996), the Fundamental Theorem of Algebra (2000), the Four Colour
Theorem (2004), Jordan’s Curve Theorem (2005), the Prime Number Theorem
(2008), see [32]. The December 2008 issue of the Notices of AMS includes four
papers on formal proof: three general overviews [32, 33, 66] and one study case,
the formal proof of the Four-Colour Theorem [29]. Hilbert’s standard of proof is
practicable, it’s becoming reality.

An automatic prover can be used not only to check the validity of a for-
malised proof of a known mathematical result (as in the list of famous theorems
enumerated above), but also to interactively help to “prove” new theorems. The
informal proof of the main result in [19] benefited substantially from the process

3 Russell and Whitehead 2,500-page opus Principia Mathematica [65] is a famous
exception: a fully formalised mathematical book. Russell believed that no human
being will ever read through it.

4 Not all agree. Practically, I am “certain” that the HW+OS+ML/Compiler/Runtime
+ Isabelle implementation is not fully trustable, [62].

5 It’s ironic to have this theorem — which limits the power of formal proving — as
the first formally proved important theorem.
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of formalisation in the interactive theorem prover Isabelle [48] of one of the key
results in algorithmic information theory, the Kraft-Chaitin Theorem.

The correctness achieved by formal proofs cannot be matched by pen-and-
paper proofs. However, an essential component of mathematics — the insight
and understanding — seems to be in short supply. So, what makes a proof
understandable? While correctness can be formally defined, understanding is
subjective, so much more difficult to pin down. Our solution is to suggest a list
of symptoms of understanding and, with reference to these symptoms, to propose
a framework that reconciles correctness and understanding.

The paper is organised as follows. In Section 2 we discuss a list of symptoms
of understanding. In Section 3 we present an envisioned environment that pro-
vides services regarding these symptoms. Section 4 concludes the paper with a
summary of services supporting symptoms and describes future work.

2 Understanding Mathematical Proof

The gap between correctness and understanding seems to be widening (see [15,
18, 16]). Should one abandon the axiomatic-deductive model, should one sacrifice
understanding for efficiency, should one try other avenues?

Although most mathematicians agree that understanding is paramount to
mathematics there is little consensus regarding the understanding of understand-
ing. Understanding in mathematics may mean many things, but, usually, math-
ematicians have no difficulties in recognising it. In contrast with correctness,
understanding is subjective and probably cannot be rigorously defined.

Inspired by the analysis in [8, p. 9–10] we propose a list of symptoms for
detecting the understanding of a proof. We use the term symptom in analogy with
its medical meaning. The list is not exhaustive, not all symptoms are necessary
to identify understanding, and some symptoms overlap. Not all symptoms are
equally important and ranking seems almost impossible. Many mathematicians
may argue that the first two symptoms are the most important ones. Symptoms
are discussed and illustrated sometimes with reference to the following lemma,
which is presented with three proofs, one informal and two formal ones. The
formal proofs were generated with Isabelle. The complete proof script, written
by N. Hay, appears in [34]; it is part of a more complex proof for the Kraft-Chaitin
Theorem [19]. The formal proof in Isar [64] was written by M. Wenzel [62].

Lemma 1. For all (binary) strings x, y, xy extends x.

Proof. (Informal) The relation ‘n extends v’ (written u ⊃ v) is defined by the following
two rules: a) for every string u, u ⊃ u, b) for every strings u,v, if u ⊃ v then ui ⊃ v, for
every i ∈ {0, 1}.

Take two strings x, y. If y is the empty string then xy = x ⊃ x by a). If xy ⊃ x and
i ∈ {0, 1}, then x(yi) = (xy)i ⊃ x by associativity of concatenation, hypothesis, and
b). ut

Proof. (Formal: Isabelle proof script using recursive definitions)
fun extends :: "’A list ⇒ ’A list ⇒ bool"

3



where
"extends [] [] = True"

| "extends [] (y#ys) = False"

| "extends x [] = True"

| "extends (x#xs) (y#ys) = ((x=y) & (extends xs ys))"

lemma extends1 : "extends A [] "

apply (induct A) apply(simp all)

done

lemma extends2 : "extends (A@B) A "

apply (induct A) apply(simp all) apply(simp only: extends1)

done

Proof. (Formal: Isar proof using Natural Deduction rules)

theory Extends

imports Main

begin

definition extends :: "’a list ⇒ ’a list ⇒ bool"

where "extends A B ←→ (∃ C. A = B @ C)"

lemma extendsI [intro]:

assumes "A = B @ C" shows "extends A B"

using assms unfolding extends_def by blast

lemma extendsE [elim]:

assumes "extends A B" obtains C where "A = B @ C"

using assms unfolding extends_def by blast

lemma extends0: "extends A A"

proof
show "A = A @ []" by simp

qed

lemma extends1: "extends A []"

proof
show "A = [] @ A" by simp

qed

lemma extends2: "extends (A @ B) A"

proof
show "A @ B = A @ B" by simp

qed

lemma extends3:

assumes "extends A’ A"

shows "extends (A’ @ B) A"

proof -

have "extends A’ A" by fact

then obtain C’ where "A’ = A @ C’" ..
then have "A’ @ B = A @ (C’ @ B)" by simp

then show ?thesis ..
qed

lemma "extends A A" by auto
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lemma "extends A []" by auto

lemma "extends (A @ B) A" by auto

end

ut
The following list describes symptoms of understanding a mathematical proof

as the ability to perform various tasks. These symptoms have been motivated
by the understanding of mathematics in general.

Symptom 1: Fill in simple details of the proof, like explication of notation and
definitions. Understanding implies the ability to answer questions about con-
cepts, their properties, and relations: What is the domain of variables x, y used
in the informal proof? What happens when x has a value outside its domain,
say x = 102, y = 10? For the first formal proof one can query: What is bool?
What is the relation between True or False or 0 or 1? What is list, @, [], etc.?
What is = and # and what properties do these two relations have?

The level of detail in definitions and concepts is different in the two proofs.
For example, one can query the definitions and properties of =, #, or lists in
the Isabelle formal proof, but hardly in the informal proof.

Symptom 2: Justify other results implicitly used in the proof and inferences. The
property of associativity and the proof by induction are assumed to be known
in the informal proof for Lemma 1 above.

Symptom 3: Give presentations of the proof for different audiences having vari-
ous degrees of expertise. Users can be experts in the subject, experts in the area
but not in the subject, professional mathematicians, graduate students, under-
graduate students, non-mathematicians with interest in the subject, readers of
a science magazine, etc. For example, for an expert the proof of Lemma 1 above
is too detailed, in fact the lemma itself may be omitted. For a beginner, the de-
tailed proof for the irrationality of

√
2 is suitable, see [30, p. 37]. A mathematical

theory is not to be considered complete until you have made it so clear that you
can explain it to the first man whom you meet on the street says Hilbert.

Symptom 4: Cast the proof in different terms. For example, by varying the
proportion of natural language and formulae, by varying the level of detail, or
by using the language of a different area of mathematics6. The irrationality of the
golden ratio can be presented from various perspectives, geometrical, algebraic,
[30, p. 41–45].

Symptom 5: Motivate the proof. Explain why certain notions/constructions are
natural, necessary, in contrast with other potential candidates. For example, one
may ask what is the natural representation of strings in Isabelle and what are
the basic operations with strings [19].

Symptom 6: Indicate key or novel points in the argument. The solution of Post’s
Problem [24, p.237] requires a new ingredient, the priority argument. The argu-

6 The word language does not only refer to the terminology and notation only, but to
the whole “spirit” of an area of mathematics.
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ment is highlighted several times in the proof of the Friedberg-Muchnik Theorem
presented in [24, p.238].

Symptom 7: Give natural examples and counter-examples for various notions
used in the proof. Follow the proof of Lemma 1 and justify why xy ⊃ x for various
groups of strings like x = 10111, y = 10 or x = 102, y = 10.

Symptom 8: Indicate where certain hypotheses are needed. The Banach-Tarski
Paradox shows how to cut a solid sphere into pieces and then reassemble them
without bending, stretching or distorting them to finally obtain two (or ten)
solid spheres equal in volume with the original one — the analog of the “Ponzi-
type” effect in economics. This is possible because by cutting the sphere into
non-measurable pieces one loses information about the initial volume. Is this
possible? Solovay [58] proved that if one doesn’t use the Axiom of Choice one
can construct a set theory in which the Banach-Tarski Paradox is impossible
because every set of reals is measurable. However, in the standard set theory
with the Axiom of Choice the answer is affirmative.

Symptom 9: View the proof in a broader context, for example, as a generalisation
or adaptation of another proof. Many results in different areas of mathematics,
from theoretical computer science to dynamics, can be seen as some kind of
fixed-point construction [31] and, as a consequence, their proof can be phrased
in this general type of argument.

Symptom 10: Discuss interesting generalisations of the proof. Category theory
is one of the important tools for generalisations. Goguen [28] showed that the
construction of the minimal Moore automaton can be lifted to a pair of adjunct
functors between the category of Moore automata and the category of their
behaviours, a more general/deep presentation of minimisation.

Symptom 11: Discuss interesting modifications of hypotheses and their corre-
sponding modifications of conclusions. Solovay’s result discussed above shows
the existence of two set theories, one in which there are non-measurable sets of
reals, and another one in which all sets of reals are measurable.

Symptom 12: Explore alternative proofs. One correct proof is enough to justify
a theorem, but different proofs illustrate the same mathematical phenomenon
from different angles. Pythagoras’ Theorem has at least 367 essential different
proofs [40], Pythagoras’ proof, Euclid’s proof, algebraic proof, various types of
geometric proof, proof by re-arrangement, proof using differential equations, even
a proof by an American President, James A. Garfield. There are four different
proofs for the completeness of the predicate calculus, leading to four techniques
to build models.

Symptom 13: Discuss analogies between notions involved in the proof, between
proofs, between theories, analogies between analogies. This symptom was dis-
cussed by many authors, see for example [51]. The notion of Hilbert space —
which evolved into a branch of mathematics [68] — appeared when David Hilbert
realised that some important mathematical proofs were structurally the same,
so at an appropriate level of generality they could be regarded as the same type
of argument. Algorithmic information theory shows that the quantity of infor-
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mation can be equally defined in complexity terms, without using Shannon’s
probabilistic approach [20, 14].
Symptom 14: Calculate a quantity used in the proof. Chaitin’s Omega number
is a well-defined mathematical real which is random, hence non-computable,
and, as a consequence, only finitely many digits of its binary expansion may be
calculated; in [17] exact values for the initial 40 bits of an Omega number have
been calculated offering a new understanding of its uncomputability.
Symptom 15: Provide an explicit description of an object whose existence is
guaranteed by the theorem. Chaitin’s Omega numbers are computably enumer-
able and (algorithmically) random, but are there other such reals? The answer
is negative, every computably enumerable random real is the Omega number
of a prefix-free Turing machine [14], a more “concrete” description of a general
notion.
Symptom 16: Provide a diagram or visual argument illustrating the proof. The
diagram used in in [30, p. 49] for illustrating a short proof of Pythagoras’ The-
orem is very useful in understanding the proof.
Symptom 17: Identify the main idea of the proof and use it in other contexts.
For example, the standard proof of the irrationality of

√
2, a widely discussed

proof, can be easily adapted for infinitely many other reals,
√

3,
√

5, etc., but it
fails for π (why?).
Symptom 18: Apply the theorem in different contexts. Solovay’s Theorem uses
“forcing” — a technique invented by Cohen [23] for proving consistency and
independence results in set theory — for a different type of problem. In fact,
the important results in mathematics re-appear in contexts different from the
original one. Group theory [55] sprang from number theory into the theory of al-
gebraic equations, and from geometry, developed as an abstract subject, and has
many applications not only in mathematics, but also in physics and chemistry,
even in image processing and arts.
Symptom 19: Recognise the constructive or non-constructive character of a
proof. A constructive proof gives more insight than a non-constructive argu-
ment [12]. To illustrate this delicate point we consider the following

Theorem 1. There exist two irrationals x, y > 0 such that xy is rational.

Proof. The proof indicates how to ‘construct’ the reals x and y subject to

the conditions of Theorem 1. We distinguish two cases: a) the real
√

2
√

2
is

irrational, b) the real
√

2
√

2
is rational.

In case a) we choose x =
√

2
√

2
, y =

√
2; in case b) we choose x = y =

√
2.

To verify that our choice is correct we proceed again by cases. In case a) x
is irrational by hypothesis, y =

√
2 is well known to be irrational and xy =

(
√

2
√

2
)
√

2 =
√

2
2

= 2. In case b) x = y =
√

2 are irrationals and xy =
√

2
√

2

is rational by hypothesis. ut

The proof depends on whether
√

2
√

2
is irrational or not, and for the time

being this is an open problem. This proof is not constructive as it doesn’t return
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values for the reals x, y: the proof produces two pairs of reals, exactly one satis-
fying the requirements of the theorem. The proof above is less non-constructive
than the following one [39]:

Proof. Take the equation xy = 2, and let x run through all irrational numbers
greater than 1. This gives uncountably many corresponding values of y, which
are all different (as x increases y decreases). The conclusion follows as it is not
possible for all these values of y to be rational because there are only countably
many rationals. ut

The second proof gives more information than the first one, as it shows that
there are infinitely many pairs satisfying the conditions of the theorem.

Symptom 20: Program (parts of) the proof in a programming language. Formal-
isation of a proof requires full understanding; once formalised, the correctness of
the proof can be verified and checked. In the process of formalisation, authors
can debug their proof, e.g. they can fix syntactical mistakes, check whether they
used the correct definition and description of all symbols, and whether all sym-
bols have been used correctly and consistently. To me, you understand something
only if you can program it. (You, not someone else!) . . . programming something
forces you to understand it better, it forces you to really understand it, since you
are explaining it to a machine says Chaitin [21, p. xiiii].

The symptoms discussed above are just illustrative for the diversity of mean-
ing of understanding of proof. Even by contrasting our extremely simple proofs
for Lemma 1 one can see that the informal proof is more intuitive while the
formal proofs are more rigorous. The first formal proof is more compact than
the second one, which is closer in spirit to the informal proof. For deeper proofs
this divide is sharper: see for example the informal proof of the Kraft-Chaitin
Theorem in [14] and the Isabelle proof in [34]. It is worth observing that the
Kraft-Chaitin Theorem has two “roles”: one to be executed as an algorithm, the
other to be analysed and validated. Previous formalisation efforts focused only
on the first part [20]; the work in [19] was directed towards the second.

Informal proofs have many problems (correctness, for example), but also
a glorious history of achievements. What are the problems with formal proofs?
Some may argue that there is no problem whatsoever. Nelson [46] makes a strong
point that syntax is all:

As to whether or not a string of formulas is a proof there is no dispute:
one simply checks the rules of formation. This is the syntax of mathe-
matics. Is that all there is to mathematics? Yes, and it is enough.

We believe that understanding of formal proofs is the main obstacle. Because
of high complexity, most formal proofs cannot be checked by humans, so we can
ask with Graham: If no human being can ever hope to check a proof, is it really
a proof? Bluntly, can we understand formal proofs to the extent they can be
used instead of pen-on-paper proofs in the practice of mathematics?
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3 An Environment for Correctness and Understanding

Our answer to the last question is emphatically affirmative and is described in
the form of an envisioned environment, called active proof environment (APE),
in which users can write and check formal proofs as well as query them with
reference to the symptoms of understanding. In particular, an APE supports
the following services:

– discover or verify a formal proof,
– query for theorems and their proofs,
– formalise informal proofs for verification and checking,
– explore proofs at different levels of abstraction and in various forms of pre-

sentation,
– support queries corresponding to our symptoms of understanding,
– publish mathematical results at an appropriate level of detail and formality.

Various technologies supporting the above services already exist, but no
unique system providing all services. An APE includes a proof assistant and
an intelligent interface

Much research is done in the field of proof assistants, such as Mizar [44],
Isabelle, Coq [10], or Ωmega [56], which include libraries of highly interlinked
formal proofs and theorems [44, 1], the backbone of our environment.

Fig. 1. An Active Proof Environment

Fig. 1 illustrates three alternative intelligent interfaces: proof assistant inter-
faces, web applications that are integrated with the proof assistant, and web ap-
plications that rely on a mathematical knowledge base that communicates with
a proof assistant. Proof assistant interface implement some features of an APE’s
intelligent interface: Isabelle uses the Proof General Emacs Interface [2] and the
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Intelligible semi-automated reasoning language (Isar) [64] producing structured
proof documents. Coq provides a TeXMacs [59] interface for authoring [3] and
a MathML integration for publishing mathematics on the web. The mediator
PlatΩ [6] connects TeXMacs with Ωmega and allows users to develop, publish,
formalise, and query mathematical proofs.

However, the list of symptoms discussed in the previous section shows the
necessity of enhancing existing interfaces to implement services for understand-
ing. Web application implement additional features that can support some of our
symptoms. Users of the vdash wiki [60] can collaboratively formalise mathemat-
ical proofs. Initial submissions can be verified or marked as sketches to be fully
formalised later. Other mathematical web applications, such as the semantic wiki
SWiM [38] and the document reader panta rhei [45], are not integrated with
proof assistants but work with a central repository of mathematical knowledge
represented in OpenMath [50] and OMDoc [35].

In the following we enumerate available services of proof assistants and pro-
pose new services, focusing on web-based technologies for OMDoc.
Service 1: Query different levels of details for a proof. (Symptom 1)
Authors of formal proofs write proof scripts, including instructions and defini-
tions, for the proof assistant with just enough information to generate a formal
proof for a given theorem. Users are usually presented with an extract of the
fully formalised proof, but can explore the proof on different levels of abstrac-
tions (e.g. see the proof plan data structure PDS [7, 22] in Ωmega [4, 56] or
high-level proofs in [13]), or request the system to print all steps, declarations,
and definitions.

OMDoc representations can include the fully formalised proof. Folding and
elisions of proofs allow one to hide and display different steps and to interactively
adapt the level of detail. SWiM includes static cross-links between OMDoc
and OpenMath representations of symbols and their definitions.
Service 2: Query for justification of proving steps. (Symptom 2)
Proof assistants can automatise the generation of justification for any proving
step. OMDoc uses a markup of informal justification that allows users to link
manually supplied justification with automatically generated inferences.
Service 3: Write the proof in different levels of expertise. (Symptom 3)
Isabelle/HOL generates formal representations of formal proofs for further com-
putation and export the proof into human-readable formats. Ωmega provides a
graphical map of the proof tree, a linearised presentation of the proof nodes with
their formulae and justifications, a term browser, and a natural language presen-
tation of the proof [26], [57, p. 370]. Furthermore, interactive natural language
explanation and justifications of proofs can be generated. PlatΩ supports the
presentations of proofs (generated in Ωmega) for different audiences and can
adapt the level of detail, the proportion of formal and natural languages, or the
mathematical notations [6, 54], as well as interactive stepwise explorations of
mathematical proofs [7, 6].
Service 4: Produce the proof in a specific natural language with different propor-
tions of text and formulae. (Symptoms 3, 4)
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Isabelle is a generic framework for human-readable formal proof documents gen-
erated by Isar [63]. PlatΩ supports automatic translations from programming
code to natural language [6, 54]. OMDoc includes a multilingual markup for
proofs [35]. The conversion from OMDoc to XHTML is based on a collection
of XSLT [36] stylesheets, which can be parametrised with the user’s preferred
language or level of formality.

Service 5: Query the motivation for the proof. (Symptom 5)
In OMDoc all fragments of a document are uniquely identified with an Uniform
Resource Identifier [9] and are classified and interlinked according to mathemat-
ical categories [35]. This system allows to interlink fragments of a proof with
complementary information, such as a motivation, and can answer correspond-
ing queries. For example, SWiM represents these categories and relations as
RDF triples [42] and uses SPARQL [52] to process the queries.

Service 6: Query novel points. (Symptom 6)
OMDoc can be extended by rhetorical markup for “novel points” or “obsta-
cle” [27, 35]; XSLT stylesheets can be extended with appropriate visual markers.

Service 7: Query examples and counter examples. (Symptom 7)
The Archive of Formal Proofs (AFP) [1] is a collection of proof libraries, includ-
ing examples, formally verified with Isabelle. Isabelle/HOL provides a counter-
example search based on Quickcheck [47] and Refute [61]. OMDoc supports
the annotation of proofs with examples and counter-examples. SWiM includes
static cross-links to examples and dynamically embeds a list of examples into a
page.

Service 8: Query why certain hypotheses are needed and explore consequences if
they are changed or omitted. (Symptoms 8, 11)
Isabelle can be used to experiment and explore consequences of changing various
hypotheses.

Service 9: Produce other proofs that relate to the proof and apply theorems in
different contexts. (Symptoms 9, 10, 18)
Proof assistants organise their mathematical theorems and proofs into contexts
(or mathematical theories) and morphisms, which are used to transfer entities
from one context to another. Isabelle theories are organised as a graph, so users
can apply a theorem in a new context and explore related theorems and proofs.

OMDoc uses the markup of mathematical theories and theory mor-
phisms [35, 53, 49]. Theories are interlinked via theory morphisms, supporting
the reuse of previously defined concepts. These logical dependencies build up a
theory graph from which one can infer relations between theorems, proofs, or
examples.

Service 10: Query for alternative proofs. (Symptom 12)
The formal proofs for Lemma 1 use different techniques: the first one recursion,
the second one natural deduction. Proof assistants can be used to discover or
verify alternative proofs. In OMDoc requests such as “retrieve all proofs for
lemma X” can be processed (Service 6).
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Service 11: Query for analogies. (Symptom 13)
Analogies are very important in mathematics and more work, such as [43], has
to be invested to deliver them in APE.
Service 12: Query for calculations. (Symptom 14)
Ωmega integrates external systems such as computer algebra systems (CAS) for
symbolic computation; see [5] for an overview of further technologies.
Service 13: Produce visual illustrations. (Symptom 16)
Some proof assistant generate diagrams and other visual illustrations [67].
Service 14: Query for the main idea. (Symptom 17)
For OMDoc, [27] proposes the markup of “nucleus”, a compact presentation of
the proof from which the full argument can be easily reconstructed. For example,
the nucleus of the second proof of Theorem 1 is “examine the cardinality of the
solutions of the equation xy = 2, when x runs through all irrational positive
numbers greater than one”.
Service 15: Query whether a proof is constructive or not. (Symptom 19)
For Coq, which uses constructive logic, this query is easy to answer. In gen-
eral, partial answers can be obtained by identifying non-constructive rules of
inference.
Service 16: Program parts of the proof. (Symptom 20)
This symptom is automatically satisfied by formal proofs.

4 Conclusion

The main features of mathematical proof are correctness and understanding.
Correctness is easy to define, but there is little consensus regarding the under-
standing of understanding. To address this, we have proposed a list of symptoms
for detecting the understanding of proofs. We have presented a vision of an en-
vironment that provides services addressing the symptoms of understanding, in
which users can write, check, an query formal proofs. In such an environment,
formal proofs are not only theoretical concepts. Because they guarantee a high
level of certainty and provide understanding, formal proofs can become the stan-
dard of mathematical proof.

In the table below we summarise the technologies that support understand-
ing of formal proofs, which should be integrated into a unique system. The pro-
posal is preliminary and needs more extensive experimentation, implementation,
and evaluation. Our analysis mainly refers to the proof assistants Isabelle and
Ωmega, and the OMDoc projects. Our choice doesn’t imply any value judge-
ment on technologies.

The second author is developing an active document environment [45] in
which users can produce, edit, query their documents, and use the following
services:

– configurable layouts and output formats,
– presentations with varying level of detail, expertise, or formality, including

multilingual presentations and consistent use of mathematical notations,

12



Symptom Services Symptom Services

1 PDS/ Ωmega, High-level
proofs, OMDoc

2 proof assistants, OMDoc
3 Isabelle/HOL, PlatΩ/Ωmega
4 Isabelle/Isar, PlatΩ/Ωmega,

OMDoc/ XSLT
5 OMDoc/ SWiM/ RDF/

SparQL
6 extension of OMDoc
7 AFP, Isabelle/HOL, OMDoc/

SWiM
8 Isabelle

9 Isabelle, OMDoc
10 Isabelle, OMDoc
11 Isabelle
12 proof assistants, OMDoc

(RDF/SparQL)
13 [43]
14 CAS
16 [67]
17 OMDoc
18 Isabelle, OMDoc
19 Coq
20 formal proofs

– enrichment of the documents with definitions, motivations, examples, or jus-
tifications and clarification of novel points and main ideas.
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