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Abstract

Two novel computing models based on an infinite tesselation of space-time are introduced. They

consist of recursively coupled primitive building blocks. The first model is a scale-invariant gener-

alization of cellular automata, whereas the second one utilizes Petri net transitions. Both models

are capable of hypercomputations and can, for instance, “solve” the halting problem for Turing

machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite

computations. On the other hand, they differ greatly for infinite computations: the first one shows

indeterministic behavior whereas the second one halts. Both models are capable of challenging our

understanding of computability, causality, and space-time.

PACS numbers: 05.90.+m,02.90.+p,47.54.-r

Keywords: Cellular Automata, pattern formation

∗Electronic address: martin_schaller@acm.org
†Electronic address: svozil@tuwien.ac.at; URL: http://tph.tuwien.ac.at/~svozil

1



I. INTRODUCTION

Every physically relevant computational model must be mapped into physical space-

time and vice versa [1–3]. In this line of thought, Von Neumann’s self-reproducing Cellular

Automata [4] have been envisioned by Zuse [5–8] and other researchers [9–11] as “calculating

space;” i.e., as a locally connected grid of finite automata [12] capable of universal algorithmic

tasks, in which intrinsic [13] observers are embedded [14]. This model is conceptually discreet

and noncontinuous and resolves the eleatic “arrow” antinomy [15–18] against motion in

discrete space by introducing the concept of information about the state of motion in between

time steps.

Alas, there is no direct physical evidence supporting the assumption of a tesselation of

configuration space or time. Given enough energy, and without the possible bound at the

Planck length of about 10−35m, physical configuration space seems to be potentially infinitely

divisible.

Indeed, infinite divisibility of space-time has been utilized for proposals of a kind of “Zeno

oracle” [19], a progressively accelerated Turing machine [20–24] capable of hypercomputa-

tion [25–27]. Such accelerated Turing machines have also been discussed in the relativistic

context [28–35].

The following models unify the conceptional clarity of von Neumann’s Cellular Automa-

ton model with the requirement of infinite divisibility of cell space.

II. SCALE-INVARIANT CELLULAR AUTOMATA

Cellular automata are dynamical systems in which space and time are discreet. The states

of cells in a regular lattice are updated synchronously according to a local deterministic

interaction rule. The rule gives the new state of each cell as a function of the old states

of some “nearby” states of its neighbor cells. Each cell obeys the same rule, and has a

finite (usually small) number of states. For a more comprehensive introduction to cellular

automata, we refer to Refs. [4, 11, 36–38].

A scale-invariant cellular automaton (SCA) operates like an ordinary cellular automaton

(CA) on a cellular space, consisting of a regular arrangement of cells, whereby each cell can

hold a value from a set of discrete states. Whereas the cellular space of a CA consists of a
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FIG. 1: Space and topological structure of an SCA.

regular one- or higher dimensional lattice, an SCA operates on a cellular space of recursively

nested lattices which can be embedded in some Euclidean space as well.

The time behavior of an SCA differs from the time behavior of CA: Cells in the same

lattice synchronously change their state [39], but as cells are getting smaller in deeper nested

lattices, the time steps between state changes in the same lattice are assumed to decrease and

approach zero in the limit. Thereby, a finite speed of signal propagation between adjacent

cells is always maintained. The SCA model gains its computing capabilities by introducing

a local rule that allows for interaction between adjacent lattices [40]. We will introduce

the SCA model for the one-dimensional case, the extension to higher dimensions [41] is

straightforward.

An SCA, like a CA, is defined by a cellular space, a topology that defines the neighborhood

of a cell, a finite set of states a cell can be in, a time model that determines when a cell is

updated, and a local rule that maps states of neighborhood cells to a state. We first define

the cellular space of an SCA. To this end, we make use of the standard interval arithmetic.

For a scalar λ ∈ R and a (half-open) interval [x, y) ⊂ R set: λ + [x, y) = [λ + x, λ + y)

and λ[x, y) = [λx, λy). We denote the unit interval [0, 1) by 1. Let Lk be the lattice

that partitions the real numbers in half-open intervals of length 2k, where k is an integer:

Lk = {2k(i + 1)|i ∈ Z}. The cellular space C, the set of all cells of the SCA, is the union of

all lattices Lk: C =
⋃

k∈Z Lk = {2k(i + 1)|i, k ∈ Z}.
Next, we define the neighborhood of a cell by a set of operators op : C → C. For a

cell c = 2k(i + 1) in C let c← = 2k(i − 1 + 1) be the left neighbor, c→ = 2k(i + 1 + 1)

the right neighbor, c↑ = 2k+1(b i
2
c + 1) the parent, c↙ = 2k−1(2i + 1) the left child, and

c↘ = 2k−1(2i+1+1) the right child of c. This topology is depicted in Fig. 1. The predicate

left(c) is true if and only if the cell c is the left child of its parent. Analogously, right(c) is
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FIG. 2: Temporal dependencies of an SCA.

true if and only if the cell c is the right child of its parent. Obviously, for all cells c either

left(c) or right(c) is true.

All cells in lattice Lk are updated synchronously at time instances 2ki where i is an integer.

The time interval between two cell updates in lattice Lk is again a half-open interval 2k(i+1)

and the cycle time, that is the time between two updates of the cell, is therefore 2k. A simple

consequence of this time model is that child cells cycle twice as fast and the parent cell cycle

half as fast as the cell itself. The time space T is the set of all possible time intervals, which

is in the one-dimensional case equal to the set C: T = {2k(i + 1)|i, k ∈ Z}.
Analogously to the neighborhood operators of the cellular space we define temporal oper-

ators which express the temporal dependencies of a cell update. The usage of time intervals

instead of time instances, has the advantage that a time interval uniquely identifies the

lattice where the update occurs. Each time operator is a mapping op : T → T . For a time

inverval t = 2k(i+1) let t← = 2k(i−1+1), t↑ = 2k+1(b i−1
2
c+1), t↙ = 2k−1(2i−2+1), and

t↘ = 2k−1(2i−1+1). These time operators express the temporal dependencies of a cell up-

date. The predicate sync(t) is true if and only if i is even. If sync(t) is true, the state change

of a cell in Lk at the beginning of t occurs synchronous with the state change of its parent

cell, otherwise asynchronous, which is expressed by the predicate async(t) = ¬sync(t). Fig. 2

depicts the temporal dependencies of a cell: to the left it shows a synchronous state change,

to the right an asynchronous one. We remark that we denoted space and time operators by

the same symbols, even if their mapping is different. In applying these operators, we take in

the remainder of this paper care, that the context of the operator is always clearly defined.

At any time, each cell is in one state from a finite state set Z. The cell state in a given time

interval is described by the state function s(c, t), which maps cells and time intervals to the

state set. The space-time S of the SCA describes the combinations of allowed combinations
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of cells and time intervals: S = {(c, t)|c ∈ C, t ∈ T and |c| = |t|}. Then, the state function s

can be expressed as a mapping s : S → Z. The local rule describes the evolution of the state

function. It consists of four functions, whereby for a given cell and time interval only one

function is applicable, depending whether the cell is the left or the right child of its parent

cell and whether the state change is synchronous or asynchronous to the state change of its

parent cell. For a cell c and a time interval t, where (c, t) is in S, the evolution of the state

is given by the local rule of the SCA

s(c, t) =





fLA(s(c↑, t↑), s(c←, t←), s(c, t←), s(c→, t←), s(c↙, t↙), s(c↘, t↙), s(c↙, t↘), s(c↘, t↘))

if left(c) and async(t);

fLS(s(c↑, t↑), s(c←, t←), s(c, t←), s(c→, t←), s(c↙, t↙), s(c↘, t↙), s(c↙, t↘), s(c↘, t↘))

if left(c) and sync(t);

fRA(s(c↑, t↑), s(c←, t←), s(c, t←), s(c→, t←), s(c↙, t↙), s(c↘, t↙), s(c↙, t↘), s(c↘, t↘))

if right(c) and async(t);

fRS(s(c↑, t↑), s(c←, t←), s(c, t←), s(c→, t←), s(c↙, t↙), s(c↘, t↙), s(c↙, t↘), s(c↘, t↘))

if right(c) and sync(t).

(1)

Formally, an SCA A is denoted by the tuple A = (Z, fLA, fLS, fRA, fRS). We remark that

the application of the local rule in its general form might lead to indeterministic behaviour.

We will give an analysis of this phenomenon and a resolution later on. A special case of the

local rule is a rule of the form f(s(c←, t←), s(c, t←), s(c→, t←)), which is the constituting rule

of a one-dimensional 3-neighborhood CA. In this case, the SCA splits up in a sequence of

infinitly many nonconnected CAs. This shows that the SCA model is truly an extension of

the CA model and allows us to view an SCA as an infinite sequence of interconnected CAs.

We now examine the signal speed that is required to communicate state changes between

neighbor cells. To this end, we select the middle point of a cell as the source and the target

of a signal that propagates the state change of a cell to one of its neighbor cells. A simple

consideration shows that the most restricting cases are the paths from the space time points

(c←, t←), (c↑, t↑), (c↙, t↘) to (c, t) for async(t). The simple calculation delivers the results

1, 1, and 1
2
, respectively, hence a signal speed of 1 is sufficient to deliver the updates in the

given timeframe. A more general examination takes also the processing time of a cell into

account. If a cell in Lk takes time 2kp and we assume a finite signal speed of v, the cycle

5



time of a cell in Lk must be at least 2k(p + v). In sum, as long as the processing time is

proportional to the diameter of a cell, we can always find a scaling factor t → λt, such that

the SCA has cycle times that conform to the time space T .

The construction of a hypercomputer in section III makes use of a simplified version

of an SCA, which we call a Recursive Cellular Automaton (RCA). The cellular space of a

RCA is the set C = {2k1|k ∈ Z}. The time space T of a RCA is the same as for an SCA:

T = {2k(i + 1)|i, k ∈ Z}. The neighborhood operators c↑ and c↙ can still be applied as

well as all time operators. The state set Z is again a finite set. The space-time of a RCA is

the set S = {(c, t)|c ∈ C, t ∈ T and |c| = |t|}. The RCA has the following local rule: for all

(c, t) ∈ S

s(c, t) =





fA(s(c↑, t↑), s(c, t←), s(c↙, t↙), s(c↙, t↘)) if async(t);

fS(s(c↑, t↑), s(c, t←), s(c↙, t↙)s(c↙, t↘)) if sync(t).
(2)

Formally, a RCA A is denoted by a tuple A = (Z, fA, fS). By restricting the local rule of

an SCA, a RCA can also be constructed from an SCA. Consider an SCA, whose local rule

does not depend on the cell neighbors c←, c→, and c↘. Then, the resulting SCA contains

the RCA as subautomaton.

For convenience we introduce the following notation for RCAs. We index a cell [0, 2k) by

the integer −k, that is a cell with index k has a cyle time of 2−k. We call the cell k − 1

the upper neighbor and the cell k + 1 the lower neighbor of cell k. Time instances can be

conveniently expressed as a binary number. If not other said, we use the cycle time of cell

0 as time unit.

We noted before that the evolution of an SCA might lead to indeterministic behavior.

This holds also for RCAs, which we will use to analyze this phenomenon. Consider an initial

configuration of a RCA at time 0. That is, the state of a cell k is defined for the half-open

time interval [0, 2−k). We want to calculate the state of cell 0 at time 1. To apply the local

rule on cell 0 we have to know the state of cell 1 at time 0.12. The state of cell 1 at time

0.12 depends on the state of cell 2 at time 0.012. In general the state of cell i at time 2−i

depends on the state of cell i + 1 at time 2−(i+1). This is an infinite regress that leads us

to the conclusion that in the general case the state of cell 0 at time 1 does not depend on

the initial configuration and therefore the state of a cell k at time 2−k is indeterministic. A

similar paradox arises, if the state change of cell i at time t depends on the state of cell i+1
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at time t↙, but does not dependent on the state at time t↘. The first evolution of cell 0

will be deterministic, but the next time step would again lead to an indeterministic value of

cell 0. We will come back to this problem and view it from a different perspective in section

IV. For now, we offer the following two solutions to this problem, both based on a quiescent

state q.

1. (Short-circuit evaluation) Let q in Z be the quiescent state with the following seman-

tics. Whenever a cell is in state q, the cell does not evaluate its lower neighbor. The

cell remains as long in the quiescent state as long as the upper neighbor is in the qui-

escent state, too, that is fA(q, q, ?, ?) = fS(q, q, ?, ?) = q, where the question mark ?

represents an arbitrary state. This modus of operandi corresponds to the short-circuit

evaluation of logical expressions in programming languages like C or Java. If the RCA

starts now with an initial configuration of the form z0z1 . . . znqqq . . ., starting at cell

0, the infinite regress is interrupted, since cell n + 2 evaluates to q without being

dependent on cell n + 3.

2. (Dynamically growing RCA) The second alternative consists of a RCA that starts

initially with the finite set of cells 0, . . . , n and the following boundary condition.

Whenever cell 0 or the cell with the highest index k is evaluated, the state of the

missing neighbor cell is assumed to be q. The RCA dynamically appends cells to the

lower end when needed: whenever the cell with the highest index k enters a state that

is different from the quiescent state, a new cell k+1 is appended, initialized with state

q, and connected to the cell k. To be more specific: If k is the highest index, and cell

k evaluates at time 2−ki to state z 6= q, a new cell k + 1 in state q is appended. The

cell performs its first transition at time 2−k(i + 1
2
), assuming state q for its missing

lower neighbor cell. We note that the same technique could also be applied to append

upper cells to the RCA, although in the remainder of this paper, we deal only with

RCAs that are growing to the bottom.

Both enhancements ensure a deterministic evaluation either for a configuration where

only a finite number of cells is in a nonquiescent state or for a finite number of cells.
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III. CONSTRUCTING A HYPERCOMPUTER

In this section, we construct an accelerated Turing machine from a RCA. The RCA will

simultaneously simulate the Turing machine and shift the tape content down to faster cycling

cells.

We use the following model of a Turing machine (TM) [12]. Formally, a Turing machine

is a tuple M = (Q, Σ, Γ, δ, q0, B, F ), where Q is the finite set of states, Γ is the finite set of

tape symbols, Σ ⊂ Γ is the set of input symbols, q0 ∈ Q is the start state, B ∈ Γ\Σ is the

blank, and F ⊂ Q is the set of final states. The next move function or transition function δ

is a mapping from Q× Γ to Q× Γ× {L,R}, which may be undefined for some arguments.

The TM M works on a tape divided into cells that has a leftmost cell but is infinite to

the right. Let δ(q, a) = (p, b, D). One step (or move) of M in state q and the head of M

positioned over input symbol a consists of the following actions: scanning input symbol a,

replacing symbol a by b, entering state p and moving the head one cell either to the left

(D = L) or to the right (D = R). In the beginning M starts in state q0 with a tape that

is initialized with an input word w ∈ Σ∗, starting at the leftmost cell, all other cells blank,

and the head of M positioned over the first symbol of w. We need sometimes the function

δ split up into three separate functions: δ(q, a) = (δQ(q, a), δΓ(q, a), δD(q, a)).

The configuration of a TM M is denoted by an instantaneous description (ID) of the form

α1qα2, where q ∈ Q and α1, α2 ∈ Γ∗. Here q is the current state of M , α1 is the tape content

to the left, and α2 the tape content to the right of the head including the symbol that is

scanned next. Leading and trailing blanks will be omitted, except the head has moved to

the left or to the right of the non-blank content.

Let α1qα2 and α′1pα
′
2 be two IDs of M . The relation α1qα2 `M α′1pα

′
2 states that M

with ID α1qα2 changes in one step to ID α′1pα
′
2. The relation `∗M denotes the reflexive and

transitive closure of `M .

Let M = (Q, Σ, Γ, δ, q0, B, F ) be an arbitrary Turing machine. We construct a RCA

AM = (Z, fS, fA) that simulates M as follows. First, we do not need the dependency t↙,

therefore we simplify the local rule to

s(c, t) =





fa(s(c↑, t↑), s(c, t←), s(c↙, t↘)) if async(t);

fs(s(c↑, t↑), s(c, t←), s(c↙, t↘)) if sync(t).
(3)
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The state set Z is given by

Z = Γ ∪ (Γ× {→}) ∪ (Q× Γ) ∪ (Q× Γ× {→}) ∪ {¤,J,C, ~C, B, BB,BJ}.

We write−→a for an element (a,→) in Γ×{→} and
−−−→〈q, a〉 for an element 〈q, a,→〉 in Q×Γ×{→

}. To simulate M on the input w = a1 . . . an in Σ∗, n ≥ 1, AM is initialized with the sequence
−→C〈q0, a1〉a2a3 . . . anB starting at cell 0, all other cells shall be in the quiescent state ¤. If

w = a1, AM is initialized with the sequence
−→C〈q0, a1〉BB, and if w = ε, the empty word, AM

is initialized with the sequence
−→C〈q0, B〉BB. We denote the initial configuration by C0, or

by C0(w) if we want to emphasize the dependency on the input word w. The computation

is started at time 0, i.e. the first state change of cell k occurs at time 2−k.

The elements 〈q, a〉 and
−−−→〈q, a〉 act as head of the Turing Machine including the input

symbol of the Turing Machine that is scanned next. To accelerate the TM, we have to

shift down the tape content to faster cycling cells of the RCA, thereby taking care that

the symbols that represent the non-blank content of the TM tape are kept together. We

achieve this by sending a pulse from the left delimiter C to the right delimiter B and back.

Each zigzag of the pulse moves the tape content one cell downwards and triggers at least

one move of the TM. Furthermore a blank is inserted to the right of the simulated head

if necessary. The pulse that goes down is represented by exactly one element of the form
−→C ,−→a ,

−−−→〈q, a〉,BB, or BJ, the upgoing pulse is represented by the element J.

The specification of the values for the functions fA and fS for all possible triples of

cell states is tedious, therefore we use the following approach. A synchronous transition of

two neighbor cells can perform a simultaneous state change of the two cells. If the state

change of these two neighbor cells is independent of their other neighbors, we can specify

the state change as a transformation of a state pair into another one. Let z1, z2, z
′
1, z

′
2 be

elements in Z. The block transformation z1 z2 7→ z′1 z′2 defines a function mapping of the

form fA(x, z1, z2) = fS(x, z1, z2) = z′1 and fS(z1, z2, y) = z′2 for all x, y in Z. Furthermore,

we will also allow block transformations that might be ambigious for certain configurations.

Consider the block transformations z1 z2 7→ z′1 z′2 and z2 z3 7→ z′′2 z′3 that might lead to an

ambiguity for a configuration that contains z1z2z3. Instead of resolving these ambiguities in

a formal way, we will restrict our consideration to configurations that are unambiguous.

The evolution of the RCA AM is governed by the following block transformations:
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1. Pulse moves downwards. Set

−→C 〈q, a〉 7→ C
−−−→〈q, a〉; (4)

−→a b 7→ a
−→
b ; (5)

−→C a 7→ C−→a . (6)

If δ(q, a) = (p, c, R) set
−→
b 〈q, a〉 7→ b

−−−→〈q, a〉; (7)

−−−→〈q, a〉 b 7→ c
−−−→〈p, b〉; (8)

−−−→〈q, a〉B 7→ 〈q, a〉 BB . (9)

If δ(q, a) = (p, c, L) set
−→
b 〈q, a〉 7→ 〈p, b〉 −→c ; (10)

−−−→〈q, a〉 b 7→ 〈q, a〉 −→b ; (11)

−−−→〈q, a〉B 7→ 〈q, a〉 BJ . (12)

Set

−→a B 7→ a BJ; (13)

BB ¤ 7→ B BJ; (14)

BJ ¤ 7→J B. (15)

2. Pulse moves upwards. Set

a J 7→J a; (16)

〈q, a〉 J 7→J 〈q, a〉; (17)

C J 7→ ¤−→C . (18)

If to a certain cell no block transformation is applicable the cell shall remain in its previous

state. Furthermore, we assume a short-circuit evaluation with regard to the quiescent state:

fA(¤, ¤, ?) = fS(¤, ¤, ?) = ¤, whereby the lower neighbor cell is not evaluated.

We illustrate the working of AM by a simple example. Let L be the formal language

consisting of strings with n 0’s, followed by n 1’s: L = {0n1n|n ≥ 1}. A TM that accepts

this language is given by M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1, X, Y, B}, δ, q0, B, {q4}) [12]
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Symbol
State 0 1 X Y B

q0 (q1, X, R) — — (q3, Y, R) —
q1 (q1, 0, R) (q2, Y, L) — (q1, Y, R) —
q2 (q2, 0, L) — (q0, X, R) (q2, Y, L) —
q3 — — — (q3, Y, R) (q4, B, R)
q4 — — — — —

FIG. 3: The function δ.

with the transition function depicted in Fig. 3. The computation of M on input 01 is given

below:

q001 ` Xq11 ` q2XY ` Xq0Y ` XY q3 ` XY Bq4.

Fig. 4 depicts the computation of AM on the TM input 01. The first column of the table

specifies the time in binary base. AM performs 4 complete pulse zigzags and enters a final

configuration in the 5th one after the TM simulation has reached the final state q4. Fig. 5

depicts the space-time diagram of the computation. It shows the position of the left and

right delimiter (gray) and the position of the pulse (black).

We split the proof that AM is a hypercomputer into several steps. We first show that the

block transformations are well-defined and the pulse is preserved during evolution. After-

wards we will prove that AM simulates M correctly and we will show that AM represents

an accelerating TM.

A configuration of the RCA AM is called finite if only a finite number of cells is different

from the quiescent state ¤. Let C be a finite configuration and C ′ the next configuration in

the evolution of AM that is different to C. C ′ is again finite. We denote this relationship by

C `AM
C ′. The relation `∗AM

is again the reflexive and transitive closure of `AM
. A RCA as

an SCA can by definition not halt and runs forever without stopping. The closest analogue

to the TM halting occurs, when the configuration stays constant during evolution. Such a

configuration that does not change anymore is called final.

Let D = {~C,BB, BJ,−→a ,
−−−→〈q, a〉} be the set of elements that represent the downgoing pulse,

U = {J} be the singleton that contains the upgoing pulse, P = D ∪ U , and R = Z\P the

remaining elements. The following lemma states the block transformations are unambiguous

for the set of configurations we consider and that the pulse is preserved during evolution.

Lemma 1. If the finite configuration C contains exactly one element of P then the applica-
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0 1 2 3 4 5 6 7 8 9

0.000000002
−→C 〈q0, 0〉 1 B ¤ ¤ ¤ ¤ ¤ ¤

1.000000002 C −−−→〈q0, 0〉 1 B ¤ ¤ ¤ ¤ ¤ ¤
1.100000002 C X

−−−→〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤ ¤
1.110000002 C X 〈q1, 1〉 BJ ¤ ¤ ¤ ¤ ¤ ¤
1.111000002 C X 〈q1, 1〉 J B ¤ ¤ ¤ ¤ ¤

10.000000002 C X J 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
10.100000002 C J X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.000000002 ¤ −→C X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.100000002 ¤ C −→

X 〈q1, 1〉 B ¤ ¤ ¤ ¤ ¤
11.110000002 ¤ C 〈q2, X〉 −→

Y B ¤ ¤ ¤ ¤ ¤
11.111000002 ¤ C 〈q2, X〉 Y BJ ¤ ¤ ¤ ¤ ¤
11.111100002 ¤ C 〈q2, X〉 Y J B ¤ ¤ ¤ ¤

100.000000002 ¤ C 〈q2, X〉 J Y B ¤ ¤ ¤ ¤
100.010000002 ¤ C J 〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.100000002 ¤ ¤ −→C 〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.110000002 ¤ ¤ C −−−−→〈q2, X〉 Y B ¤ ¤ ¤ ¤
100.111000002 ¤ ¤ C X

−−−−→〈q0, Y 〉 B ¤ ¤ ¤ ¤
100.111100002 ¤ ¤ C X 〈q0, Y 〉 BB ¤ ¤ ¤ ¤
100.111110002 ¤ ¤ C X 〈q0, Y 〉 B BJ ¤ ¤ ¤
100.111111002 ¤ ¤ C X 〈q0, Y 〉 B J B ¤ ¤
101.000000002 ¤ ¤ C X 〈q0, Y 〉 J B B ¤ ¤
101.000100002 ¤ ¤ C X J 〈q0, Y 〉 B B ¤ ¤
101.001000002 ¤ ¤ C J X 〈q0, Y 〉 B B ¤ ¤
101.010000002 ¤ ¤ ¤ −→C X 〈q0, Y 〉 B B ¤ ¤
101.011000002 ¤ ¤ ¤ C −→

X 〈q0, Y 〉 B B ¤ ¤
101.011100002 ¤ ¤ ¤ C X

−−−−→〈q0, Y 〉 B B ¤ ¤
101.011110002 ¤ ¤ ¤ C X Y

−−−−→〈q3, B〉 B ¤ ¤
101.011111002 ¤ ¤ ¤ C X Y 〈q3, B〉 BB ¤ ¤
101.011111102 ¤ ¤ ¤ C X Y 〈q3, B〉 B BJ ¤
101.011111112 ¤ ¤ ¤ C X Y 〈q3, B〉 B J B
101.100000002 ¤ ¤ ¤ C X Y 〈q3, B〉 J B B
101.100001002 ¤ ¤ ¤ C X Y J 〈q3, B〉 B B
101.100010002 ¤ ¤ ¤ C X J Y 〈q3, B〉 B B
101.100100002 ¤ ¤ ¤ C J X Y 〈q3, B〉 B B
101.101000002 ¤ ¤ ¤ ¤ −→C X Y 〈q3, B〉 B B
101.101100002 ¤ ¤ ¤ ¤ C −→

X Y 〈q3, B〉 B B
101.101110002 ¤ ¤ ¤ ¤ C X

−→
Y 〈q3, B〉 B B

101.101111002 ¤ ¤ ¤ ¤ C X Y
−−−−→〈q3, B〉 B B

101.101111102 ¤ ¤ ¤ ¤ C X Y B
−−−−→〈q4, B〉 B

FIG. 4: A computation of AM on input 01.

tion of the block transformations 4 – 18 is unambigious and at most one block transformation

is applicable. If a configuration C ′ with C `AM
C ′ exists, then C ′ contains exactly one ele-

ment of P as well.

Proof. Note that the domains of all block transformations are pairwise disjoint. This ensures
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FIG. 5: Space-time diagram of the computation of AM on input 01.

that for all pairs z1z2 in Z × Z at most one block transformation is applicable. Block

transformations 4 – 14 are all subsets or elements of (D×R)×(R×D), block transformation

15 is element of (D × R) × (U × R), block transformations 16 and 17 are subsets of (R ×
U)× (U×R), and finally block transformation 18 is element of (R×U)× (R×D). Since the

domain is either a subset of D × R or R × U the block transformations are unambigious if

C contains at most one element of P . A configuration C ′ with C `AM
C ′ must be the result

of the application of exactly one block transformation. Since each block transformation

preserves the pulse, C ′ contains one pulse if and only if C contains one.

We introduce a mapping id with the intention that finite configurations that are reached

from the initial configuration of AM are mapped to IDs of M . Let C be a finite configuration.

Then idC) is the string in (Γ ∪Q)∗ that is formed of C as following:

1. All elements in {¤,J,C, ~C,B,BB,BJ} are omitted.

2. All elements of the form −→a are replaced by a and all elements of the form 〈q, a〉 or
−−−→〈q, a〉 are replaced by the two symbols q and a.

3. All other elements of the form a are added as they are.

4. Leading or trailing blanks of the resulting string are omitted.

The following lemma states that AM correctly simulates M .

Lemma 2. Let i1, i2 be IDs of M . If i1 `∗M i2, then there exist two finite configurations

C1, C2 of AM such that id(C1) = i1, id(C2) = i2, and C1 `∗AM
C2. Especially if the initial

condition C0 of AM satisfies id(C0) = i1, then there exists a finite configuration C2 of AM ,

such that id(C2) = i2 and C0 `∗AM
C2.

13



Proof. If i1 has the form a1 . . . anq we consider without loss of generality a1 . . . anqB. There-

fore let i1 = a1 . . . ai−1qai . . . an. If i < n or i = n and δD(q, an) = L we choose

C1 =
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. If i = n and δD(q, an) = R we insert an additional

blank: C1 =
−→Ca1 . . . an−1〈q, an〉BB. In any case id(C1) = i1 holds. We show the correctness

of the simulation by calculating a complete zigzag of the pulse for the start configuration:
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. The number of the block transformation that is applied, is

written above the derivation symbol. We split the zigzag up into three phases.

1. Pulse moves down from the left delimiter to the left neighbor cell of the simulated

head.

For i > 1 we obtain

−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB
(6)

`AM
C−→a1 . . . ai−1〈q, ai〉ai+1 . . . anB

(5)

`AM

Ca1
−→a2 . . . ai−1〈q, ai〉ai+1 . . . anB

(5)

`AM
. . .

(5)

`AM
Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . an B .

(19)

If i = 1 the pulse piggybacked by the left delimiter
−→C is already in the left neighbor

cell of the head and this phase is omitted.

2. Downgoing pulse passes the head.

If in the beginning of the zigzag the head was to the right of the left delimiter then

−→C〈q, a1〉a2 . . . anB
(4)

`AM
C
−−−→〈q, a1〉a2 . . . anB (20)

If δD(q, a1) = L no further block transformation is applicable and the configuration

is final. The case δD(q, a1) = R will be handled later on. We now continue the

derivation 19. If δ(q, ai) = (p, b, L) then

Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . anB
(10)

`AM
Ca1 . . . 〈p, ai−1〉−→b ai+1 . . . an B . (21)

If δ(q, ai) = (p, b, R) then

Ca1 . . .−−→ai−1〈q, ai〉ai+1 . . . anB
(7)

`AM
Ca1 . . . ai−1

−−−→〈q, ai〉ai+1 . . . an B . (22)

We distinguish two cases: i < n and i = n. If i < n then

Ca1 . . . ai−1

−−−→〈q, ai〉ai+1 . . . anB
(8)

`AM
Ca1 . . . ai−1b

−−−−−→〈p, ai+1〉ai+2 . . . an B . (23)

14



If the next steps of M are moving the head again to the right, block transformation

8 will repeatedly applied, till the head changes its direction or till the head is left of

the right delimiter B. If the TM M changes its direction before the right delimiter is

reached, we obtain

Ca1 . . . ai−1b1 . . . bj

−−−→〈r, ak〉ak+1 . . . anB
(11)

`AM
Ca1 . . . ai−1b1 . . . bj〈r, ak〉−−→ak+1 . . . anB (24)

or if the direction change happens just before the right delimiter then

Ca1 . . . ai−1b1 . . . bj

−−−→〈r, an〉B
(12)

`AM
Ca1 . . . ai−1b1 . . . bj〈r, an〉BJ . (25)

If i = n or if the right-moving head hits the right delimiter the derivation has the

following form

Ca1 . . . an−1

−−−−→〈q, an〉B
(9)

`AM
Ca1 . . . an−1〈q, an〉BB

(14)

`AM
Ca1 . . . an−1〈q, an〉BBJ, (26)

which inserts a blank to the right of the simulated head.

3. Downgoing pulse is reflected and moves up.

We proceed from configurations of the form Cc1 . . . ci−1〈p, ci〉−−→ci+1 . . . cnB. Then

Cc1 . . . ci−1〈p, ci〉−−→ci+1 . . . cnB
(5)

`AM
. . .

(5)

`AM
Cc1 . . . ci−1〈p, ci〉ci+1 . . .−→cnB

(13)

`AM

Cc1 . . . ci−1〈p, ci〉ci+1 . . . cnBJ
(15)

`AM
Cc1 . . . ci−1〈p, ci〉ci+1 . . . cn J B

(16)

`AM
. . .

(16)

`AM

Cc1 . . . ci−1〈p, ci〉 J ci+1 . . . cnB
(17)

`AM
Cc1 . . . ci−1 J 〈p, ci〉ci+1 . . . cnB

(16)

`AM
. . .

(16)

`AM

C J c1 . . . ci−1〈p, ci〉ci+1 . . . cnB
(18)

`AM

−→Cc1 . . . ci−1〈p, ci〉ci+1 . . . cnB,

(27)

which finishes the zigzag. Note that the continuation of derivations 25 and 26 is

handled by the later part of derivation 27. We also remark that the zigzag has shifted

the whole configuration one cell downwards.

All block transformations except transformations 8 and 10 keep the id -value of the con-

figuration unchanged. Block transformations 8 and 10 correctly simulate one step in the

calculation of the TM M : if C
(8)or(10)

`AM
C ′, id(C) = i, and id(C ′) = i′ then i `M i′. Let

C ′
1 be the resulting configuration of the zigzag. We conclude that id(C1) `∗M id(C ′

1) holds.

We have chosen C1 in such a way that at least one step of M is performed, if M does not
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halt, either by block transformation 8 or 10. If M does not halt the configuration after the

zigzag is again of the form
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB. The case i = n and δD(q, an) = R

is excluded by derivation 26, which inserts a blank to the right of the head, if δD(q, an) = R

. This means that C ′
1 has the same form as C1 and that any subsequent zigzag will per-

form at least one step of M as well if M does not halt. In summary, we conclude that AM

reaches after a finite number of zigzags a configuration C2 such that id(C2) = i2. On the

other hand, if M halts, AM enters a final configuration since derivations 21 or 23 are not

applicable anymore and the pulse cannot cross the simulated head. Since we have chosen

C0 to be of the same form as C1 in the beginning of the proof, the addendum of the lemma

regarding the initial configuration is true.

Next, the time behavior of the RCA AM will be investigated.

Lemma 3. Let C =
−→Ca1 . . . ai−1〈q, ai〉ai+1 . . . anB be a finite configuration of AM that

starts in cell k. If M does not halt, the zigzag of the pulse takes 3 cycles of cell k and AM

is afterwards in a finite configuration C ′ =
−→Cb1 . . . bj−1〈p, bj〉bj+1 . . . bmB that starts in cell

k + 1.

Proof. Without loss of generality, we assume that the finite configuration starts in cell 0.

We follow the zigzag of the pulse, thereby tracking all times, compare with Fig. 4 and Fig. 5.

The pulse reaches at time 1 cell 1, and at time
∑1

i=0 2−i cell 2. In general, the downgoing

pulse reaches cell r in time
∑r−1

i=0 2−i. At time
∑n+1

i=0 2−i the cell n + 2 changes to BJ which

marks the reversal of direction of the pulse. The next configuration change (BJ¤ 7→J B)

occurs at
∑n+1

i=0 2−i + 2−(n+1) = 2. The pulse J reaches cell n + 1 in time 2 + 2−(n+1) and

in general cell r in time 2 + 2−r. The final configuration change of the zigzag (C J 7→ ¤−→C)

that marks also the beginning of a new pulse zigzag occurs synchronously in cell 0 and cell

1 at time 3. We remark that the overall time of the pulse zigzag remains unchanged if the

simulated head inserts a blank between the two delimiters.

Theorem 1. If M halts on w and AM is initialized with C0(w) then AM enters a final

configuration in a time less than 6 cycles of cell 0, containing the result of the calculation

between the left and right delimiter. If M does not halt, AM enters after 6 cycles of cell 0

the final configuration that consists of an infinite string of the quiescent element: ¤∞.

Proof. AM needs 3 cycles of cell 0 to perform the first zigzag of the pulse. After the 3 cycles

the configuration is shifted one cell downwards, starting now in cell 1. The next zigzag takes
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3 cycles of cell 1 which are 3/2 cyles of cell 0, and so on. Each zigzags performs at least

one step of the TM M , if M does not halt. We conclude that if M halts, A enters a final

configuration in a time less than
∑∞

i=0 3/2i = 6 cycles of cell 0. If M does not halt, the

zigzag disappears in infinity after 6 cycles of cell 0 leaving a trail of ¤’s behind.

If M is a universal TM, we immediately obtain the following result, which proves that

AM is a hypercomputer for certain TMs M .

Corollary 1. Let MU be a universal TM. Then AMU
solves the halting problem for TMs.

Proof. Initialize AMU
with an encoded TM M and an input word w. Then AM enters a

final configuration with the result of M on w in less than 6 cycles of cell 0 if and only if M

halts.

In the current form of TM simulation the operator has to scan a potentially unlimited

number of cells to determine whether the M has halted or not, which limits its practical

value. If M has halted, we would like to propagate at least this fact back to the upper cells.

The following obvious strategy fails in a subtle way. Add a rule to AM that whenever 〈q, a〉
has no next move, replaces it by the new symbol H. Add the rules fS(?, ?, H) = fA(?, ?, H) =

H to AM that propagate H upwards to cell 0. The propagation upwards is only possible if we

change also the block transformation 18 to C J 7→ ♦−→C , thereby introducing a new symbol ♦
that is not subject of the short-circuit evaluation. The last point, even if necessary, causes

the strategy to fail, since if AM does not halt, AM is after 6 cycles in the configuration ♦∞

that leads to indeterministic behavior of AM . This is in so far problematic, since we can

not be sure whether a state H in cell 0 is really the outcome of a halting TM or the result

of indeterministic behavior. Instead of enhancing the RCA model, we will introduce in the

next section a computing model that is computational equivalent for finite computations,

but avoids indeterminism for infinite computations.

IV. RECURSIVE PETRI NETS

Time plays a crucial rôle in the operation of an SCA or RCA. Failing to update the states

at the required times will break the correct operation of the automaton. This is a demanding

requirement, since time intervals become arbitrarily small and state changes have to occur
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FIG. 6: The underlying graph of a RPN.

globally in a certain time window, otherwise neighbor cells will get from synchronization

which leads to a malfunction of the whole automaton. In this section, an alternative model

based on Petri nets but similar to SCAs will be introduced. The alternative model neither

requires a global clock nor a simultaneous state change of neighbor cells. It has the further

property that it is not subject to indeterminism.

In what follows, we give a brief introduction to Petri nets to define the terminology. For

a more comprehensive treatment we refer to the literature; e.g., to Ref. [42]. A Petri net

is a directed, weighted, bipartite graph consisting of two kinds of nodes, called places and

transitions. In graphical representation, places are drawn as circles and transitions as boxes.

The weight w(p, t) is the weight of the arc from place p to transition t, w(t, p) is the weight

of the arc from transition t to place p. A marking assigns to place p a nonnegative integer

k, we say that p is marked with k tokens. If a place p is connected with a transition t by an

arc that goes from p to t, p is an input place of t, if the arc goes from t to p, p is an output

place. A Petri net is changed according to the following transition (firing) rule:

1. A transition t fires if each input place p of t is marked with at least w(p, t) tokens.

2. A firing of an enabled transition t removes w(p, t) tokens from each input place p of t,

and adds w(t, p) tokens to each output place p of t.

Formally, a Petri net N is a tuple N = (P, T, F,W,M0) where P is the set of places, T

is the set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the set of arcs, W : F → N is the

weight function, and M0 : P → N is the initial marking. There are many extensions to Petri

nets, one of them are the class of colored Petri nets: In a standard Petri net, tokens are

indistinguishable, whereas in a colored Petri net, every token has a value.

A Recursive Petri Net (RPN) is a colored Petri net with some extensions. The RPN

has the underlying graph partitioned into cells that is depicted in Fig. 6. We denote the
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transition of cell n by t(n), the place to the left of the transition by pu(n), the place right

of the transition by pd(n) and the place above the transition by pc(n). Let Z be a finite set,

the state set, q ∈ Z be the quiescent state, and fA, fS be (partial) functions Z4 → Z. The

set V = Z ∪ ({1, 2} × Z) is the value set of the tokens. Tokens are added to a place and

consumed from the place according to a first-in first-out order. Initially, the RPN starts

with a finite number of cells 0, 1, . . . , n, and is allowed to grow to the right. The notation

p ← z defines the following action: create a token with value z and add it to place p. The

firing rule for a transition in cell n of a RPN extends the firing rule of a standard Petri net

in the following way:

1. If the transition t(n) is enabled, the transition removes token Tku from place pu(n),

token Tk c from pc(n) and tokens Tkd1,Tkd2 from pd(n). The value of token Tku shall

be of the form (i, zu) in V = {1, 2}×Z, the other token values zc, zd1 and zd2 shall be

in Z. If the tokens do not conform, the behavior of the transition is undefined.

2. If i = 1 then let f = fA else if i = 2 then let f = fS. The transition calculates

z = f(zu, zc, zd1, zd2).

3. (Left boundary cell) If n = 0 then pu(0) ← (3 − i, q), pc(0) ← z, pu(1) ← (1, z),

pu(1) ← (2, z).

4. (Inner cell) If n > 0 and n is not the highest index, then: pd(n− 1) ← z, pc(n) ← z,

pu(n + 1) ← (1, z), pu(n + 1) ← (2, z).

5. (Right boundary cell) If n is the highest index then:

(a) (Quiescent state) If z = q then pd(n− 1) ← q, pc(n) ← q, pd(n) ← q, pd(n) ← q

(b) (New cell allocation) If z 6= q then a new cell n + 1 is created and connected to

cell n. Furthermore: pd(n − 1) ← z, pc(n) ← z, pd(n) ← q, pu(n + 1) ← (1, z),

pu(n + 1) ← (2, z), pc(n + 1) ← q, pd(n + 1) ← q, pd(n + 1) ← q.

Formally, we denote the RPN by a tuple N = (Z, fA, fS). Let a0a1 . . . am be an input word

in Zm+1 and let N be a RPN with n cells, whereby n > m + 1. The initial markup of the

Petri net is as follows:

• pu(0) ← (1, q), (pu(i) ← (1, ai−1), pu(i) ← (2, ai−1)) for 0 < i ≤ m + 1, (pu(i) ← (1, q),

pu(i) ← (2, q)) for i > m + 1
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FIG. 7: Token flow in a RPN.

• pc(i) ← ai for i ≤ m, pc(i) ← q for i > m,

• pd(i) ← ai+1 for i < m, pd(i) ← q for i ≥ m, and pd(n) ← q.

Note that the place pd(n) is initialized with two tokens. We identify the state of a cell with

the value of its pc-token. If pc is empty, because the transition is in the process of firing, the

state shall be the value of the last consumed token of pc.

Fig. 7 depicts the token flow of a RPN net consisting of 4 cells under the assumption

that the RPN does not grow. Tokens that are created and consumed by the same cell are

not shown. The numbers indicate whether the firing is asynchronous (1) or synchronous

(2). The only transition that is enabled in the begin is t(3), since pd(3) was initialized with

2 tokens. The firing of t(3) bootstrap the RPN by adding a second token to pd(2), thereby

enabling t(2), and so on, till are transitions have fired, and the token flow enters periodic

behavior.

We now compare RPNs with RCAs. We call a computation finite, if it involves either

only a finite number of state updates of a RCA, or a finite number of transition firings of a

RPN, respectively.

Lemma 4. For a finite computation, a dynamically growing RCA A = (Z, fA, fS) and a

RPN N = (Z, fA, fS) are computationally equivalent on a step-by-step basis if the start with

the same number of cells and the same initial configuration.

Proof. Let N be a RPN that has initially n cells. For the purpose of the proof consider an

enhanced RPN N ′ that is able to timestamp its token. A token Tk of N ′ does not hold only

a value, but also a time interval. We refer to the time interval of Tk by Tk .t and to the value

of Tk by Tk .v. We remark that the timestamps serve only to compare the computations of
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a RCA and a RPN and do not imply any time behaviour of the RPN. The firing rule of N ′

works as for N , but has an additional pre- and postprocessing step:

• (Preprocessing) Let Tk c, Tku, Tkd1, and Tkd2 be the consumed token, where the

alphabetical subscript denotes the input place and the numerical subscript the order

in which the tokens were consumed. Calculate t = (Tk c.t)→, where → is the inverse

time operator of ←. If Tkd1.t 6= t↙ or Tkd2.t 6= t↘ or Tku.t 6= t↑ the firing fails and

the transition becomes permanently disabled.

• (Postprocessing) For each created token Tk , set Tk .t = t.

The initial marking must set the t-field, otherwise the first transitions will fail. For the

initial tokens in cell k, set Tku.t = 2−k+11 for both tokens in place pu, Tk c.t = 2−k1, and

Tkd.t = 2−k−11. Set Tkd.t = 2−n−1(1 + 1) for the second token in pd(n). The firings of cell

k add tokens with timestamps 2−k1, 2−k(2 + 1), 2−k(3 + 1) . . . to the output place pc(k). If

transition t(k) does not fail, the state function for the arguments c = 2−k1 and t = 2−k(i+1)

is well-defined: s′(c, t) = z if cell k has produced or was initialized in place pd with a token

Tk with Tk .t = t and Tk .v = z. Let s(c, t) be the state function of the SCA A. Due to the

initialization, the two state functions are defined for the first n cells and first time intervals

2−k1. Assume that the values of s and s′ differ for some argument or that their domains are

different. Consider the first time interval t1 where the difference occurs: s(c, t1) 6= s′(c, t1), or

exactly one of s(c, t1) or s′(c, t1) is undefined. If there is more than one time interval choose

an arbitrary one of these. Since t1 was the first time interval where the state functions

differ, we know that s(c↑, t1↑) = s′(c↑, t1↑), s(c, t1←) = s′(c, t1←), s(c↙, t1↙) = s′(c↙, t1↙),

and s(c↙, t1↘) = s′(c↙, t1↘). We handle the case that the values of the state functions are

different or that s′ is undefined for (c, t1) whereas s is. The other case (s′ defined, but not

s) can be handled analogously. If c = 2−k1, we conclude that tokens with timestamps t1↑,

t1←, t1↙, t1↘ were sent to cell k, and no other tokens were sent afterwards to cell k, since

the timestamps are created in chronological order. Hence, the precondition of the firing rule

is satisfied and we conclude that s(c, t1) = s′(c, t1), which contradicts our assumption. The

allocation of new cells introduces some technicalities, but the overall strategy of going back

in time and concluding that the conditions for a state change or cell allocation were the

same in both models works here also. We complete the proof, by the simple observation

that N and N ′ perform the same computation.
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The proof can be simplified using the following more abstract argumentation. A compar-

ison of Fig. 7 with Fig. 2 shows that each computation step has in both models the same

causal dependencies. Since both computers use the same rule to calculate the value of a cell,

respectively the value of a token, we conclude that the causal nets [43] of both computations

are the same for a finite computation, and therefore both computers yield the same output,

in case the computation is finite.

Till now, the RPN model is purely computational. We use the following mapping to

space-time. The length of cell k is 2−k and the cells are arranged as the cells of a RCA .

Under the assumption of a constant token speed, a firing time that is proportional to the

cell length, and an appropriate unit of time we yield again cycle times of 2−k.

We now come back to the simulation of TMs and construct a hypercomputing RPN,

analogous to the hypercomputing RCA in section III. Let M = (Q, Σ, Γ, δ, q0, B, F ) be an

arbitrary TM. Let Z be the state set that we used in the simulation of a TM by a RCA, and

let fA, fS the functions that are defined by the block transformations 4 - 18, without the

short-circuit evaluation. By Lemma 4 we know that the RPN NM = (Z, fA, fS) simulates

M correctly for a finite number of TM steps. Hence, if M halts on input w, NM enters a

final configuration in less than 6 cyles of cell 0. We examine now the case that M does not

halt. A pivotal difference between a RCA and a RPN is the ability of the latter one to halt

on a computation. This happens if all transitions of the RPN are disabled.

Lemma 5. Let M = (Q, Σ, Γ, δ, q0, B, F ) be an arbitrary TM and w an input word in Σ∗.

If M does not halt on w, the RPN NM halts on C0(w) after 6 cycles of cell 0.

Proof. As long as the number of cells is finite, the boundary condition 5a of the firing rule

adds by each firing two tokens to the pd-place of the rightmost cell that successively enable

all other transitions as well. This holds no longer for the infinite case. Let M be a TM, and

w an input word, such that M does not halt on w. We consider again the travel of the pulse

zigzags down to infinity for the RPN NM with initial configuration C0(w), thereby tracking

the marking of the pd-places for times after the zigzag has passed by. The first states of cell

0 are
−→C , C, C, and ¤, including the initial one. The state ¤ is the result of the firing at

time 3, exhausting thereby the tokens in place pd(0). At time 3 the left delimiter (
−→C) of the

pulse zigzag is now in cell 1. Cell 1 runs from time 3 on through the same state sequence
−→C , C, C, and ¤, thereby adding in summary 4 tokens to pd(0). After creating the token
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with value ¤, pd(1) is empty as well. We conclude that after the zigzag has passed by a cell,

the lower cell sends in summary 4 tokens to the upper cell, till the zigzag has left the lower

cell as well. For each cell k these four tokens in pd(k) enable two firings of cell k thereby

adding two tokens to pd(k− 1). These two tokens of pd(k− 1) enable again one firing of cell

k − 1 thereby adding one token to pd(k − 2). We conclude that each cell fires 3 times after

the zigzag has passed by and that the final marking of each pd is one. Hence, no pd has the

necessary two tokens that enable the transition, therefore all transitions are disabled and

NM halts at time 6.

Since NM halts for nonhalting TMs, there are no longer any obstacles that prevent the

construction of the proposed propagation of the halting state back to upper cells. We replace

block transformation 4 with the following two and add one new.

If δ(q, a) = (p, c, R) set
−→C 〈q, a〉 7→ C

−−−→〈q, a〉. (28)

If δ(q, a) = (p, c, L) or δ(q, a) is not defined set

−→C 〈q, a〉 7→ C H. (29)

If δ(q, a) is not defined set
−→
b 〈q, a〉 7→ b H. (30)

The following definition propagates the state H up to cell 0:

fA(?, ?, H) = fS(?, ?, H) = H. (31)

We denote the resulting RPN by NM . The following theorem makes use of the apparently

paradoxical fact, that NM halts if and only if the simulated TM does not halt.

Theorem 2. Let MU be a universal TM. Then NMU
solves the halting problem for TMs.

Proof. Consider a TM M and an input word w. Initialize NMU
with C0(〈M,w〉) where

〈M, w〉 is the encoding of M and w. If M does not halt on w, NMU
halts at time 6 by

Lemma 5. If M halts on w, then one cell of NMU
enters the state H by block transforma-

tion 29 or 30 according to Theorem 1 and Lemma 4 and taking the changes in fA and fS

into account. The mapping 31 propagates H up to cell 0. An easy calculation shows that

cell 0 is in state H, in time 7 or less.
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We have proven that NMU
is indeed a hypercomputer without the deficiencies of the SCA-

based hypercomputer. We end this section with two remarks. The RPN NM sends a flag

back to the upper cells, if the simulated TM halts. Strictly speaking, this is not necessary,

if the operator is able to recognize whether the RPN has halted or not. On the other hand,

a similar construction is essential, if the operator is interested in the final tape content of

the simulated TM. Transferring the whole tape content of the simulated TM upwards, could

be achieved by implementing a second pulse that performs an upwards-moving zigzag. The

construction is even simpler as the described one, since the tape content of the TM becomes

static, as soon as the TM halts. The halting problem of TMs is not the only problem that

can be solved by RCAs or SCAs, but is unsolvable for TMs. A discussion of other problems

unsolvable by TMs and of techniques to solve them within infinite computing machines, can

be found in Davies [20].

V. SUMMARY

We have presented two new computing models that implement the potential infinite di-

visibility of physical configuration space. These models are purely information theoretic

and do not take into account kinetic and other effects. With these provisos, it is possible,

at least in principle, to use the potential infinite divisibility of space-time to perform hy-

percomputation, thereby extending the algorithmic domain to hitherto unsolvable decision

problems.

Both models are composed of elementary computation primitives. The two models are

closely related but are very different ontologically. A cellular automaton depends on an

extrinsic time requiring an external clock and a rigid synchronization of its computing cells,

whereas a Petri net implements a causal relationship leading to an intrinsic concept of time.

SCAs as well as RPNs are built the same way from their primitive building blocks.

Each unit is recursively coupled with a sized-down copy of itself, potentially leading to an

infinite sequence of ever decreasing units. Their close resemblance leads to a step-by-step

equivalence of finite computations, yet their ontological difference yields different behavior

for the infinite case: an SCA exhibits indeterministic behavior, whereas a RPN halts. Two

supertasks which operate identically in the finite case but differ in their limit is a puzzling

observation which might question our hitherto understanding of supertasks. This may be
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considered an analogy to a theorem [44] in recursive analysis about the existence of recursive

monotone bounded sequences of rational numbers whose limit is not a computable number.

One striking feature of both models is their scale-invariance. The computational behavior

of these models is therefore the first example for what might be called scale-invariant com-

puting, which might be characterized by the property that any computational space-time

pattern can be arbitrary squeezed to finer and finer regions of space and time.

Although the basic definitions have been given, and elementary properties of these new

models have been explored, a great number of questions remain open for future research.

The construction of a hypercomputer was a first demonstration of the extraordinary com-

putational capabilities of these models. Further investigations are necessary to determine

their limits, and to relate them with the emerging field of hypercomputation [25–27, 45, 46].

Another line of research would be the investigation of their phenomenological properties,

analogous to the statistical mechanics of cellular automata [11, 47].
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of the Kurt-Gödel-Society 4, 49–63 (1991).

[36] S. Wolfram, Theory and Application of Cellular Automata (World Scientific, Singapore, 1986).

[37] H. Gutowitz, “Cellular Automata: Theory and Experiment,” Physica D45, 3–483 (1990),

previous CA conference proceedings in International Journal of Theoretical Physics 21, 1982;

27



as well as in Physica, D10, 1984 and in Complex Systems 2, 1988.

[38] A. Ilachinski, Cellular Automata: A Discrete Universe (World Scientific Publishing Co., Inc.,

River Edge, NJ, USA, 2001).

[39] L. G. Morelli and D. H. Zanette, “Synchronization of stochastically coupled cellular au-

tomata,” Physical Review E 58, R8–R11 (1998).

http://dx.doi.org/10.1103/PhysRevE.58.R8

[40] B. Feng and M. Ding, “Block-analyzing method in cellular automata,” Physical Review E 52,

3566–3569 (1995).

http://dx.doi.org/10.1103/PhysRevE.52.3566
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