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The quantum correlations of two or more entangled particles present the possibility of

stronger-than-classical outcome coincidences. We review the standard cases of two and

four two-state particles. We also investigate two-partite correlations of spin one and spin

three-half quanta in a state satisfying a uniqueness property in the sense that knowledge

of an outcome of one particle observable entails the certainty that, if this observable were
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I. INTRODUCTION

The possibility of a peculiar and “mindboggling” type of connectedness between two or more

spatially separated particles beyond classical expectations surprised the quantum pioneers in their

early exploration of quanta. Already Schrödinger [1] noted that a state of several quantized par-

ticles or quanta could be entangled (in Schrödinger’s own German terminology “verschränkt”)

in the sense that it cannot be represented as the product of the isolated, individual quanta, but is

rather defined by the joint or relative properties of the quanta involved [2, 3]. Typical examples

of such joint properties of entangled states are the propositions, “when measured along two or

more different directions, two spin one-half particles have opposite spin” (defining the Bell singlet

state), or “when measured along a particular direction, three spin one-half particles have identical

spin” (one of the three defining properties of the Greenberger-Horne-Zeilinger-Mermin state).

With respect to the outcome of certain measurements on the individual particles in an entan-

gled state, the observation of stronger-than-classical correlations even for nonlocal, i.e., spatially

and even causally separated, quanta in “delayed choice” measurements has been experimentally

verified [4]. A typical phenomenologic criterion of such correlations it the increased of decreased

frequency of the occurrence of certain coincidences of outcomes, such as the more- or less-often-

than-classically expected recordings of joint spin up and down measurements labelled by “++,”

“+−,” “−+” or “−−,” respectively.

Entanglement or multipartite connectedness is no phenomenon associated with only a small

number of quanta, but could in principle extend to any macroscopic size; a typical example being

the spatially extended states of Cooper pairs in phonon mediated superconductors [5] and of other

many-body systems [6].

What is the physical meaning of statements referring to stronger-than-classical quantum corre-

lations? First, as has been already mentioned, there is a direct, operational meaning: certain joint

outcomes of single particle measurements, when collected and compared to each other, appear to

occur more or less often than could be expected classically. Second, the resulting frequencies,

as well as the quantum theoretical probabilities and expectations derived from the Born rule or

Gleason’s theorem, seem to contradict the “conditions of possible experience” investigated by

Boole [7, 8] and in later times by Bell and others [9–11]. Third, the quantum correlations indicate

that quantum probabilities cannot be based upon the convex sum of classical two-valued measures,

because there are no two-valued measures (interpretable as classical global truth assignments) for
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quantized systems with more than two mutually exclusive outcomes [12–20].

Stated pointedly, the “magic” behind the quantum correlations as compared to classical cor-

relations resides in the fact that, for allmost all measurement directions (despite collinear or or-

thogonal ones), an observer “Alice,” when recording some outcome of a measurement, can be

sure that her partner “Bob,” although spatially and causally disconnected from her, is either more

or less likely to record a particular measurement outcome on his side. However, because of the

randomness [21] and uncontrollability [22] of the individual events, and because of the no-cloning

theorem [23, pp. 39-40], no classically useful information can be transferred from Alice to Bob, or

vice versa: The parameter independence [24, 25] and outcome dependence of otherwise random

events ensures that the nonlocal correlations among quanta cannot be directly used to communicate

classical information. The expectations of the joint outcomes on Alice’s and Bob’s sides can only

be verified by collecting all the different outcomes ex post facto, recombining joint events one-by

one [26]. Nevertheless, there are hopes and visions to utilize nonlocal quantum correlations for a

wide range of explanations and applications; for instance in quantum information theory [27] and

life sciences [28].

In what follows a few known and novel quantum correlations will be systematically enumer-

ated. We shall derive the correlations between two and four two-state particles in singlet states.

We also derive the correlations of two three-, four- and general d-state particles in a singlet state.

Singlets are states of two or more quantum particles whose total angular momentum is zero,

although the angular momenta of the constituents are not. They have the advantage that they are

form invariant with respect to directional changes; i.e., they “look the same,” regardless of the

measurement direction. Singlet states of two particles have the additional advantage that they

satisfy a uniqueness property [29] in the sense that knowledge of an outcome of one particle ob-

servable entails the certainty that, if this observable were measured on the other particle(s) as

well, the outcome of the measurement would be a unique function of the outcome of the measure-

ment performed. A counterfactual argument [12, p. 243] envisioned by Einstein-Podolsky-Rosen

(EPR) [30] claims to measure and infer with certainty two nonco-measurable, incompatible ob-

servables associated with noncommuting operators counterfactually. One context is measured on

one side of the EPR setup, the other context on the other side of it. By the uniqueness property

of certain two-particle states, knowledge of a property of one particle entails the certainty that, if

this property were measured on the other particle as well, the outcome of the measurement would

be a unique function of the outcome of the measurement performed. This makes possible the
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FIG. 1 Coordinate system for measurements of particles travelling along 0Z

measurement of one observable, as well as the simultaneous counterfactual inference of another

incompatible observable. Because, one could argue, that although one has actually measured on

one side a different, incompatible observable compared to the observable measured on the other

side, if on both sides the same observable would be measured, the outcomes on both sides would be

uniquely correlated. Hence measurement of one observable per side is sufficient, for the outcome

could be counterfactually inferred from the measurements on the other side.

II. TWO PARTICLE CORRELATIONS

In what follows, spin state measurements along certain directions or angles in spherical coor-

dinates will be considered. Let us, for the sake of clarity, first specify and make precise what we

mean by “direction of measurement.” Following, e.g., Ref. [31, p. 1, Fig. 1], and Fig. 1, when

not specified otherwise, we consider a particle travelling along the positive z-axis; i.e., along 0Z,

which is taken to be horizontal. The x-axis along 0X is also taken to be horizontal. The remain-

ing y-axis is taken vertically along 0Y . The three axes together form a right-handed system of

coordinates.

The Cartesian (x,y,z)–coordinates can be translated into spherical coordinates (r,θ,ϕ) via x =

r sinθcosϕ, y = r sinθsinϕ, z = r cosθ, whereby θ is the polar angle in the x–z-plane measured

from the z-axis, with 0≤ θ≤ π, and ϕ is the azimuthal angle in the x–y-plane, measured from the

x-axis with 0 ≤ ϕ < 2π. We shall only consider directions taken from the origin 0, characterized

4



by the angles θ and ϕ, assuming a unit radius r = 1.

Consider two particles or quanta. On each one of the two quanta, certain measurements (such

as the spin state or polarization) of (dichotomic) observables O(a) and O(b) along the directions a

and b, respectively, are performed. The individual outcomes are encoded or labeled by the symbols

“−” and “+,” or values “-1” and “+1” are recorded along the directions a for the first particle,

and b for the second particle, respectively. (Suppose that the measurement direction a at “Alice’s

location” is unknown to an observer “Bob” measuring b and vice versa.) A two-particle correlation

function E(a,b) is defined by averaging over the product of the outcomes O(a)i,O(b)i ∈ {−1,1}
in the ith experiment for a total of N experiments; i.e.,

E(a,b) =
1
N

N

∑
i=1

O(a)iO(b)i. (1)

Quantum mechanically, we shall follow a standard procedure for obtaining the probabilities

upon which the expectation functions are based. We shall start from the angular momentum

operators, as for instance defined in Schiff’s “Quantum Mechanics” [32, Chap. VI, Sec.24] in

arbitrary directions, given by the spherical angular momentum co-ordinates θ and ϕ, as defined

above. Then, the projection operators corresponding to the eigenstates associated with the differ-

ent eigenvalues are derived from the dyadic (tensor) product of the normalized eigenvectors. In

Hilbert space based [33] quantum logic [34], every projector corresponds to a proposition that the

system is in a state corresponding to that observable. The quantum probabilities associated with

these eigenstates are derived from the Born rule, assuming singlet states for the physical reasons

discussed above. These probabilities contribute to the correlation and expectation functions.

A. Two-state particles

1. Classical case

For the two-outcome (e.g., spin one-half case of photon polarization) case, it is quite easy

to demonstrate that the classical expectation function in the plane perpendicular to the direction

connecting the two particles is a linear function of the azimuthal measurement angle. Assume

uniform distribution of (opposite but otherwise) identical “angular momenta” shared by the two

particles and lying on the circumference of the unit circle in the plane spanned by 0X and 0Y , as

depicted in Figs. 1 and 2.
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FIG. 2 Planar geometry demonstrating the classical two two-state particles correlation.

By considering the length A+(a,b) and A−(a,b) of the positive and negative contributions to

expectation function, one obtains for 0≤ θ = |a−b| ≤ π,

Ecl,2,2(θ) = Ecl,2,2(a,b) = 1
2π [A+(a,b)−A−(a,b)]

= 1
2π [2A+(a,b)−2π] = 2

π |a−b|−1 = 2θ
π −1,

(2)

where the subscripts stand for the number of mutually exclusive measurement outcomes per parti-

cle, and for the number of particles, respectively. Note that A+(a,b)+A−(a,b) = 2π.

The exchange of a single bit between particles results in classical correlations of the form [35]

Ecl, 1 bit exchange,2,2 (θ) = H
(

θ− 3π
4

)
−H

(π
4
−θ

)
−2

(
1− 2

π
θ
)

H
(

θ− π
4

)
H

(
3π
4
−θ

)
, (3)

where H stands for the Heaviside (unit) step function. The bit exchange “enhances” the classical

correlation Ecl,2,2(θ) without a bit exchange to the extend that they violate certain “conditions of

possible experience;” in particular the Clauser-Horne-Shimony-Halt inequalities, maximally [36].

2. Quantum case

The two spin one-half particle case is one of the standard quantum mechanical exercises, al-

though it is seldomly computed explicitly. For the sake of completeness and with the prospect to

generalize the results to more particles of higher spin, this case will be enumerated explicitly. In

what follows, we shall use the following notation: Let |+〉 denote the pure state corresponding to

ê1 = (0,1), and |−〉 denote the orthogonal pure state corresponding to ê2 = (1,0). The superscript

“T ,” “∗” and “†” stand for transposition, complex and hermitian conjugation, respectively.

In finite-dimensional Hilbert space, the matrix representation of projectors Ea from normalized

vectors a = (a1,a2, . . . ,an)T with respect to some basis of n-dimensional Hilbert space is obtained
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by taking the dyadic product; i.e., by

Ea =
[
a,a†

]
=

[
a,(a∗)T ]

= a⊗a† =




a1a†

a2a†

. . .

ana†




=




a1a∗1 a1a∗2 . . . a1a∗n
a2a∗1 a2a∗2 . . . a2a∗n
. . . . . . . . . . . .

ana∗1 ana∗2 . . . ana∗n




. (4)

The tensor or Kronecker product of two vectors a and b = (b1,b2, . . . ,bm)T can be represented by

a⊗b = (a1b,a2b, . . . ,anb)T = (a1b1,a1b2, . . . ,anbm)T (5)

The tensor or Kronecker product of some operators

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann




and B =




b11 b12 . . . b1m

b21 b22 . . . b2m

. . . . . . . . . . . .

bm1 bm2 . . . bmm




(6)

is represented by an n×n-matrix

A⊗B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB

. . . . . . . . . . . .

an1B an2B . . . annB




=




a11b11 a11b12 . . . a1nb1m

a11b21 a11b22 . . . a2nb2m

. . . . . . . . . . . .

annbm1 annbm2 . . . annbmm




. (7)

Observables

Let us start with the spin one-half angular momentum observables of a single particle along an

arbitrary direction in spherical co-ordinates θ and ϕ in units of h̄ [32]; i.e.,

Mx =
1
2


 0 1

1 0


 , My =

1
2


 0 −i

i 0


 , Mz =

1
2


 1 0

0 −1


 . (8)

The angular momentum operator in arbitrary direction θ, ϕ is given by its spectral decomposition

S 1
2
(θ,ϕ) = xMx + yMy + zMz = Mx sinθcosϕ+My sinθsinϕ+Mz cosθ

= 1
2σ(θ,ϕ) = 1

2


 cosθ e−iϕ sinθ

eiϕ sinθ −cosθ




= −1
2


 sin2 θ

2 −1
2e−iϕ sinθ

−1
2eiϕ sinθ cos2 θ

2


+ 1

2


 cos2 θ

2
1
2e−iϕ sinθ

1
2eiϕ sinθ sin2 θ

2




= −1
2

{1
2 [I2−σ(θ,ϕ)]

}
+ 1

2

{1
2 [I2 +σ(θ,ϕ)]

}
.

(9)

7



The orthonormal eigenstates (eigenvectors) associated with the eigenvalues −1
2 and +1

2 of

S 1
2
(θ,ϕ) in Eq. (9) are

|−〉θ,ϕ ≡ x− 1
2
(θ,ϕ) = eiδ+

(
−e−

iϕ
2 sin θ

2 ,e
iϕ
2 cos θ

2

)
,

|+〉θ,ϕ ≡ x+ 1
2
(θ,ϕ) = eiδ−

(
e−

iϕ
2 cos θ

2 ,e
iϕ
2 sin θ

2

)
,

(10)

respectively. δ+ and δ− are arbitrary phases. These orthogonal unit vectors correspond to the two

orthogonal projectors

F∓(θ,ϕ) =
1
2

[I2∓σ(θ,ϕ)] (11)

for the spin down and up states along θ and ϕ, respectively. By setting all the phases and angles to

zero, one obtains the original orthonormalized basis {|−〉, |+〉}.

In what follows, we shall consider two-partite correlation operators based on the spin observ-

ables discussed above.

(i) Two-partite angular momentum observable

If we are only interested in spin state measurements with the associated outcomes of spin

states in units of h̄, Eq. (13) can be rewritten to include all possible cases at once; i.e.,

S 1
2

1
2
(θ̂, ϕ̂) = S 1

2
(θ1,ϕ1)⊗S 1

2
(θ2,ϕ2). (12)

(ii) General two-partite observables

The two-particle projectors F±± or, by another notation, F±1±2 to indicate the outcome on

the first or the second particle, corresponding to a two spin-1
2 particle joint measurement

aligned (“+”) or antialigned (“−”) along arbitrary directions are

F±1±2(θ̂, ϕ̂) =
1
2

[I2±1 σ(θ1,ϕ1)]⊗ 1
2

[I2±2 σ(θ2,ϕ2)] ; (13)

where “±i,” i = 1,2 refers to the outcome on the i’th particle, and the notation θ̂, ϕ̂ is used

to indicate all angular parameters.

To demonstrate its physical interpretation, let us consider as a concrete example a spin state

measurement on two quanta as depicted in Fig. 3: F−+(θ̂, ϕ̂) stands for the proposition

‘The spin state of the first particle measured along θ1,ϕ1 is “−” and the spin

state of the second particle measured along θ2,ϕ2 is “+” .’
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FIG. 3 Simultaneous spin state measurement of the two-partite state represented in Eq. (16). Boxes indicate

spin state analyzers such as Stern-Gerlach apparatus oriented along the directions θ1,ϕ1 and θ2,ϕ2; their

two output ports are occupied with detectors associated with the outcomes “+” and “−”, respectively.

More generally, we will consider two different numbers λ+ and λ−, and the generalized

single-particle operator

R 1
2
(θ,ϕ) = λ−

{
1
2

[I2−σ(θ,ϕ)]
}

+λ+

{
1
2

[I2 +σ(θ,ϕ)]
}

, (14)

as well as the resulting two-particle operator

R 1
2

1
2
(θ̂, ϕ̂) = R 1

2
(θ1,ϕ1)⊗R 1

2
(θ2,ϕ2) = λ−λ−F−−+λ−λ+F−+ +λ+λ−F+−+λ+λ+F++.

(15)

Singlet state

In what follows, singlet states |Ψd,n,i〉 will be labeled by three numbers d, n and i, denoting the

number d of outcomes associated with the dimension of Hilbert space per particle, the number n

of participating particles, and the state count i in an enumeration of all possible singlet states of n

particles of spin j = (d−1)/2, respectively. For n = 2, there is only one singlet state, and i = 1 is

always one.

Consider the singlet “Bell” state of two spin-1
2 particles

|Ψ2,2,1〉=
1√
2

(|+−〉−|−+〉). (16)

With the identifications |+〉 ≡ ê1 = (1,0) and |−〉 ≡ ê2 = (0,1) as before, the Bell state has a

vector representation as

|Ψ2,2,1〉 ≡ 1√
2

(ê1⊗ ê2− ê2⊗ ê1) =
1√
2

[(1,0)⊗ (0,1)− (0,1)⊗ (1,0)] =
(

0,
1√
2
,− 1√

2
,0

)
.

(17)
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The density operator ρΨ2,2,1 is just the projector of the dyadic product of this vector, corresponding

to the one-dimensional linear subspace spanned by |Ψ2,2,1〉; i.e.,

ρΨ2,2,1 = |Ψ2,2,1〉〈Ψ2,2,1|=
[
|Ψ2,2,1〉, |Ψ2,2,1〉†

]
=

1
2




0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0




. (18)

Singlet states are form invariant with respect to arbitrary unitary transformations in the single-

particle Hilbert spaces and thus also rotationally invariant in configuration space, in particular

under the rotations |+〉 = ei ϕ
2
(
cos θ

2 |+′〉− sin θ
2 |−′〉

)
and |−〉 = e−i ϕ

2
(
sin θ

2 |+′〉+ cos θ
2 |−′〉

)
in

the spherical coordinates θ,ϕ defined above [e. g., Ref. [37], Eq. (2), or Ref. [38], Eq. (7–49)].

The Bell singlet state is unique in the sense that the outcome of a spin state measurement along

a particular direction on one particle “fixes” also the opposite outcome of a spin state measurement

along the same direction on its “partner” particle: (assuming lossless devices) whenever a “plus”

or a “minus” is recorded on one side, a “minus” or a “plus” is recorded on the other side, and vice

versa.

Results

We now turn to the calculation of quantum predictions. The joint probability to register the

spins of the two particles in state ρΨ2,2,1 aligned or antialigned along the directions defined by (θ1,

ϕ1) and (θ2, ϕ2) can be evaluated by a straightforward calculation of

PΨ2,2,1±1±2(θ̂, ϕ̂) = Tr
[
ρΨ2,2,1 ·F±1±2

(
θ̂, ϕ̂

)]

= 1
4 {1− (±11)(±21) [cosθ1 cosθ2 + sinθ1 sinθ2 cos(ϕ1−ϕ2)]} .

(19)

Again, “±i,” i = 1,2 refers to the outcome on the i’th particle.

Since P= +P6= = 1 and E = P=−P6=, the joint probabilities to find the two particles in an even

or in an odd number of spin-“−1
2”-states when measured along (θ1, ϕ1) and (θ2, ϕ2) are in terms

of the expectation function given by

P= = P++ +P−− = 1
2 (1+E) = 1

2 {1− [cosθ1 cosθ2− sinθ1 sinθ2 cos(ϕ1−ϕ2)]} ,

P6= = P+−+P−+ = 1
2 (1−E) = 1

2 {1+[cosθ1 cosθ2 + sinθ1 sinθ2 cos(ϕ1−ϕ2)]} .
(20)

10



Finally, the quantum mechanical expectation function is obtained by the difference P=−P6=; i.e.,

EΨ2,2,1−1,+1(θ1,θ2,ϕ1,ϕ2) =− [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] . (21)

By setting either the azimuthal angle differences equal to zero, or by assuming measurements in

the plane perpendicular to the direction of particle propagation, i.e., with θ1 = θ2 = π
2 , one obtains

EΨ2,2,1−1,+1(θ1,θ2) = −cos(θ1−θ2),

EΨ2,2,1−1,+1(π
2 , π

2 ,ϕ1,ϕ2) = −cos(ϕ1−ϕ2).
(22)

The general computation of the quantum expectation function for operator (15) yields

EΨ2,2,1 λ1λ2(θ̂, ϕ̂) = Tr
[
ρΨ2,2,1 ·R 1

2
1
2

(
θ̂, ϕ̂

)]
=

= 1
4

{
(λ−+λ+)2− (λ−−λ+)2 [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2]

}
.

(23)

The standard two-particle quantum mechanical expectations (21) based on the dichotomic out-

comes “−1” and “+1” are obtained by setting λ+ =−λ− = 1.

A more “natural” choice of λ± would be in terms of the spin state observables (12) in units of

h̄; i.e., λ+ = −λ− = 1
2 . The expectation function of these observables can be directly calculated

via S 1
2
; i.e.,

EΨ2,2,1− 1
2 ,+ 1

2
(θ̂, ϕ̂) = Tr

{
ρΨ2,2,1 ·

[
S 1

2
(θ1,ϕ1)⊗S 1

2
(θ2,ϕ2)

]}

= 1
4 [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] = 1

4EΨ2,2,1−1,+1(θ̂, ϕ̂).
(24)

B. Three-state particles

Observables

The single particle spin one angular momentum observables in units of h̄ are given by [32]

Mx =
1√
2




0 1 0

1 0 1

0 1 0


 , My =

1√
2




0 −i 0

i 0 −i

0 i 0


 , Mz =




1 0 0

0 0 0

0 0 −1


 . (25)

Again, the angular momentum operator in arbitrary direction θ, ϕ is given by its spectral de-
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composition

S1(θ,ϕ) = xMx + yMy + zMz = Mx sinθcosϕ+My sinθsinϕ+Mz cosθ

=




cosθ e−iϕ sinθ√
2

0
eiϕ sinθ√

2
0 e−iϕ sinθ√

2

0 eiϕ sinθ√
2

−cosθ


 =−F−(θ,ϕ)+0 ·F0(θ,ϕ)+F+(θ,ϕ),

(26)

where the orthogonal projectors associated with the eigenstates of S1(θ,ϕ) are

F−(θ,ϕ) =




sin4 θ
2 −e−iϕ sin2 θ

2 sinθ√
2

1
4e−2iϕ sin2 θ

− eiϕ sin2 θ
2 sinθ√
2

sin2 θ
2 −e−iϕ cos2 θ

2 sinθ√
2

1
4e2iϕ sin2 θ − eiϕ cos2 θ

2 sinθ√
2

cos4 θ
2


 ,

F0(θ,ϕ) =




sin2 θ
2 −e−iϕ cosθsinθ√

2
−1

2e−2iϕ sin2 θ

−eiϕ cosθsinθ√
2

cos2 θ e−iϕ cosθsinθ√
2

−1
2e2iϕ sin2 θ eiϕ cosθsinθ√

2
sin2 θ

2


 ,

F+(θ,ϕ) =




cos4 θ
2

e−iϕ cos2 θ
2 sinθ√

2
1
4e−2iϕ sin2 θ

eiϕ cos2 θ
2 sinθ√

2
sin2 θ

2
e−iϕ sin2 θ

2 sinθ√
2

1
4e2iϕ sin2 θ eiϕ sin2 θ

2 sinθ√
2

sin4 θ
2


 .

(27)

The orthonormal eigenstates associated with the eigenvalues +1, 0, −1 of S1(θ,ϕ) in Eq. (26)

are
|+〉θ,ϕ ≡ x+1 = eiδ+1

(
e−iϕ cos2 θ

2 , 1√
2

sinθ,eiϕ sin2 θ
2

)
,

|0〉θ,ϕ ≡ x0 = eiδ0
(
− 1√

2
e−iϕ sinθ,cosθ, 1√

2
eiϕ sinθ

)
,

|−〉θ,ϕ ≡ x−1 = eiδ−1
(

e−iϕ sin2 θ
2 ,− 1√

2
sinθ,eiϕ cos2 θ

2

)
,

(28)

respectively. For vanishing angles θ = ϕ = 0, |+〉= (1,0,0), |0〉= (0,1,0), and |−〉= (0,0,1).

The generalized one-particle observable with the previous outcomes of spin state measurements

“coded” into the map

−1 7→ λ−, 0 7→ λ0, +1 7→ λ+ (29)

can be written as

R1(θ,ϕ) = λ−F−(θ,ϕ)+λ0F0(θ,ϕ)+λ+F+(θ,ϕ). (30)

We now torn to the construction of two-partite operators.

(i) Two-partite angular momentum observable

12
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FIG. 4 Simultaneous measurement of the two particles with three outcome per particle. Boxes indicate spin

state analyzers such as Stern-Gerlach apparatus oriented along the directions θ1,ϕ1 and θ2,ϕ2; their two

output ports are occupied with detectors associated with the outcomes “λ+,” “λ0” and “λ−”, respectively.

If one is only interested in spin state measurements with the associated outcomes of spin

states in units of h̄, Eq. (26) can be used to build up the corresponding two-partite operators;

i.e.,

S11(θ̂, ϕ̂) = S1(θ1,ϕ1)⊗S1(θ2,ϕ2). (31)

(ii) General two-partite observables

The two-particle joint operator corresponding to R1(θ,ϕ is

R11(θ̂, ϕ̂) = R1(θ1,ϕ1)⊗R1(θ2,ϕ2). (32)

For the sake of the physical interpretation of this generalized operator (32), let us con-

sider as a concrete example a spin state measurement on two quanta as depicted in Fig. 4:

λ−F−(θ1,ϕ1)⊗λ+F+(θ2,ϕ2) stands for the proposition

‘The outcome of the first particle measured along θ1,ϕ1 is “λ−” and the outcome

of the second particle measured along θ2,ϕ2 is “λ+” .’

(iii) Two-partite Kochen-Specker observables

For the sake of an operationalization of the 117 contexts contained in their proof, Kochen

and Specker [13] introduced an observable based on spin one with degenerate eigenvalues

corresponding to λ+ = λ− = 1 and λ0 = 0, or its “inverted” form λ+ = λ− = 0 and λ0 = 1.

The corresponding correlation functions will be discussed below.

13



Singlet state

Consider the two spin-one particle singlet state

|Ψ3,2,1〉=
1√
3

(−|00〉+ |−+〉+ |+−〉) . (33)

Its vector space representation can be explicitly enumerated by taking the direction θ = ϕ = 0 and

recalling that |+〉 ≡ (1,0,0), |0〉 ≡ (0,1,0), and |−〉 ≡ (0,0,1); i.e.,

|Ψ3,2,1〉 ≡ 1√
3

(0,0,1,0,−1,0,1,0,0) . (34)

Results

(i) Expectation of general two-partite observables

The general computation of the quantum expectation function for operator (32) yields

EΨ3,2,1 λ−λ0λ+(θ̂, ϕ̂) = Tr
[
ρΨ3,2,1 ·R11

(
θ̂, ϕ̂

)]
=

= 1
192

{
24λ2

0 +40λ0 (λ−+λ+)+22(λ−+λ+)2−32(λ−−λ+)2 cosθ1 cosθ2+

+2(−2λ0 +λ−+λ+)2 cos(2θ2)
[
(3+ cos(2(ϕ1−ϕ2)))cos(2θ1)+2sin(ϕ1−ϕ2)

2
]
+

+2(−2λ0 +λ−+λ+)2
[
cos(2(ϕ1−ϕ2))+2cos(2θ1)sin(ϕ1−ϕ2)

2
]
−

−32(λ−−λ+)2 cos(ϕ1−ϕ2)sinθ1 sinθ2+

+8(−2λ0 +λ−+λ+)2 cos(ϕ1−ϕ2)sin(2θ1)sin(2θ2)
}

.

(35)

(ii) Expectation of two-partite angular momentum observable

For the sake of comparison, let us relate the rather lengthy expectation function in Eq. (35)

to the standard quantum mechanical expectations (21) and (22) based on the dichotomic

outcomes by either using S11 from Eq. (31), or by setting λ0 = 0, λ+ = +1 and λ− = −1.

With these identifications,

EΨ3,2,1−1,0,+1(θ̂, ϕ̂) =−2
3

[cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] =
2
3

EΨ2,2,1−1,+1(θ̂, ϕ̂).

(36)

This expectation function is functionally identical with the spin one-half (two outcomes)

expectation functions.

14



(iii) Expectation of two-partite Kochen-Specker observables

The expectation function resulting from the Kochen-Specker observable corresponding to

λ+ = λ− = 1 and λ0 = 0 or its inverted form λ+ = λ− = 0 and λ0 = 1 is

EΨ3,2,1 +1,0,+1(θ̂, ϕ̂) = 1
24 {11+ cos[2(ϕ1−ϕ2)]+4cos(ϕ1−ϕ2)sin(2θ1)sin(2θ2)+

+2 [cos(2θ1)+ cos(2θ2)]sin2(ϕ1−ϕ2)+

+cos(2θ1)cos(2θ2) [cos(2(ϕ1−ϕ2))+3]} ,

EΨ3,2,1 0,+1,0(θ̂, ϕ̂) = 1
3 [cosθ1 cosθ2)+ cos(ϕ1−ϕ2)sinθ1 sinθ2]

2 ,

EΨ3,2,1 +1,0,+1(π
2 , π

2 , ϕ̂) = 1
6 {cos [2(ϕ1−ϕ2)]+3} ,

EΨ3,2,1 0,+1,0(π
2 , π

2 , ϕ̂) = 1
3 cos2(ϕ1−ϕ2),

EΨ3,2,1 +1,0,+1(θ̂,0,0) = 1
6 {cos [2(θ1−θ2)]+3} ,

EΨ3,2,1 0,+1,0(θ̂,0,0) = 1
3 cos2(θ1−θ2).

(37)

By comparing the quantum expectation function EΨ3,2,1−1,0,+1(θ̂,0,0) ∝−cos(θ1−θ2) of the

spin operators in Eq. (36) with the quantum expectation function of the Kochen Specker opera-

tors EΨ3,2,1 +1,0,+1(θ̂,0,0) ∝ cos [2(θ1−θ2)] of Eq. (37), one could, for higher-than one-half angu-

lar momentum observables, envision an “enhancement” of the quantum expectation function by

adding weighted expectation functions, generated from different labels λi. Indeed, in the domain
π
3 < |θ1−θ2| < π

3 , the plasticity of EΨl,2,1 λ−1,λ0,λ+1 can be used to build up “enhanced” quantum

correlations via

1
2

{
EΨ3,2,1−1,0,+1(θ̂,0,0)+3

[
2EΨ3,2,1 +1,0,+1(θ̂,0,0)−1

]}

= 1
2 [−cos(θ1−θ2)+ cos2(θ1−θ2)]

<−cos(θ1−θ2) = EΨ2,2,1−1,+1(θ̂,0,0)

(38)
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C. Four-state particles

Observables

The spin three-half angular momentum observables in units of h̄ are given by [32]

Mx =
1
2




0
√

3 0 0
√

3 0 2 0

0 2 0
√

3

0 0
√

3 0




, My =
1
2




0 −√3i 0 0
√

3i 0 −2i 0

0 2i 0 −√3i

0 0
√

3i 0




, Mz =
1
2




3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3




.

(39)

Again, the angular momentum operator in arbitrary direction θ, ϕ can be written in its spectral

form
S 3

2
(θ,ϕ) = xMx + yMy + zMz = Mx sinθcosϕ+My sinθsinϕ+Mz cosθ

=




3cosθ
2

√
3

2 e−iϕ sinθ 0 0
√

3
2 eiϕ sinθ cosθ

2 e−iϕ sinθ 0

0 eiϕ sinθ −cosθ
2

√
3

2 e−iϕ sinθ

0 0
√

3
2 eiϕ sinθ −3cosθ

2




= −3
2F− 3

2
(θ,ϕ)− 1

2F− 1
2
(θ,ϕ)+ 1

2F+ 1
2
(θ,ϕ)+ 3

2F+ 3
2
(θ,ϕ).

(40)

If one is only interested in spin state measurements with the associated outcomes of spin states

in units of h̄, the associated two-particle operator is given by

S11(θ̂, ϕ̂) = S1(θ1,ϕ1)⊗S1(θ2,ϕ2). (41)

More generally, one could define a two-particle operator by

F2
λ− 3

2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2

(θ̂, ϕ̂) = Fλ− 3
2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2
(θ1,ϕ1)⊗Fλ− 3

2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2
(θ2,ϕ2), (42)

where

Fλ− 3
2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2
(θ,ϕ) = λ− 3

2
F− 3

2
(θ,ϕ)+λ− 1

2
F− 1

2
(θ,ϕ)+λ 1

2
F+ 1

2
(θ,ϕ)+λ 3

2
F+ 3

2
(θ,ϕ). (43)

For the sake of the physical interpretation of this operator (42), let us consider as a concrete

example a spin state measurement on two quanta as depicted in Fig. 5: Fλ− 3
2
(θ1,ϕ1)⊗Fλ

+ 3
2
(θ2,ϕ2)

stands for the proposition

‘The outcome of the first particle measured along θ1,ϕ1 is “λ− 3
2
” and the outcome of

the second particle measured along θ2,ϕ2 is “λ+ 3
2
” .’
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FIG. 5 Simultaneous measurement of the two particles with four outcome per particle. Boxes indicate spin

state analyzers such as Stern-Gerlach apparatus oriented along the directions θ1,ϕ1 and θ2,ϕ2; their two

output ports are occupied with detectors associated with the outcomes “λ+ 3
2
,” “λ+ 1

2
,” “λ− 1

2
” and “λ− 3

2
,”

respectively.

Singlet state

The singlet state of two spin-3/2 observables can be found by the general methods developed

in Ref. [39]. In this case, this amounts to summing all possible two-partite states yielding zero

angular momentum, multiplied with the corresponding Clebsch-Gordan coefficients

〈 j1m1 j2m2|00〉= δ j1, j2δm1,−m2

(−1) j1−m1

√
2 j1 +1

(44)

of mutually negative single particle states resulting in total angular momentum zero. More explic-

itly, for j1 = j2 = 3
2 ,

|ψ4,2,1〉 =
1
2

(∣∣∣∣
3
2
,−3

2

〉
−

∣∣∣∣−
3
2
,
3
2

〉
−

∣∣∣∣
1
2
,−1

2

〉
+

∣∣∣∣−
1
2
,
1
2

〉)
. (45)

Again, this two-partite singlet state satisfies the uniqueness property. The four different spin states

can be identified with the cartesian basis of fourdimensional Hilbert space
∣∣ 3

2

〉 ≡ (1,0,0,0),
∣∣ 1

2

〉 ≡
(0,1,0,0),

∣∣−1
2

〉 ≡ (0,0,1,0), and
∣∣−3

2

〉 ≡ (0,0,0,1), respectively.

Results

For the sake of comparison, let us again specify the rather lengthy expectation function in

the case of general observables with arbitrary outcomes λi, i = 1, . . . ,4 to the standard quantum

mechanical expectations (24) and (36) by setting λ+ 3
2
= +3

2 , λ+ 1
2
= +1

2 , λ− 1
2
=−1

2 and λ− 3
2
=−3

2 ;
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i.e., by substituting the general outcomes with spin state observables in units of h̄. With these

identifications, the expectation functions can be directly calculated via S 3
2

3
2
; i.e.,

EΨ4,2,1− 3
2 ,− 1

2 ,+ 1
2 ,+ 3

2
(θ̂, ϕ̂) = Tr

{
ρΨ4,2,1 ·

[
S 3

2
(θ1,ϕ1)⊗S 3

2
(θ2,ϕ2)

]}

= −5
4 [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2]

= 8
15EΨ2,3,1−1,+1(θ̂, ϕ̂)

= 5EΨ2,2,1− 1
2 ,+ 1

2
(θ̂, ϕ̂) = 5

4EΨ2,2,1−1,+1(θ̂, ϕ̂)

. (46)

This expectation function is again functionally identical with the spin one-half and spin one (two

and three outcomes) expectation functions.

The plasticity of the general expectation function

EΨ4,2,1 λ− 3
2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2
(θ̂, ϕ̂) = Tr

[
ρΨ4,2,1 ·F2

λ− 3
2
,λ− 1

2
,λ

+ 1
2
,λ

+ 3
2

(θ̂, ϕ̂)
]

(47)

can be demonstrated by enumerating special cases; e.g.,

EΨ4,2,1−1,−1,+1,+1(θ,0,0,0) = 1
8 [−7cosθ− cos(3θ)] ,

EΨ4,2,1−1,+1,+1,−1(θ,0,0,0) = 1
4 [3cos(2θ)+1] ,

EΨ4,2,1 +1,−1,+1,−1(θ,0,0,0) = 1
2 [−cosθ− cos(3θ)] .

(48)

These functions are drawn in Fig. 6, together with the spin state expectation function
4
5EΨ4,2,1− 3

2 ,− 1
2 ,+ 1

2 ,+ 3
2
(θ,0,0,0) = −cosθ and the classical linear expectation function Ecl,2,2(θ) =

2θ/π−1 in Eq. (2).

D. General case of two spin j particles

We shall next treat the general case of spin expectation values of two particles with arbitrary

spin j.

Observables

In full generality, the matrix representation of the spin j angular momentum observables in

units of h̄ are given by

(Mx)m,n = 1
2

√
j( j +1)−m(m−1)δm,n+1 + 1

2

√
j( j +1)−m(m+1)δm,n−1,

(My)m,n = i
2

√
j( j +1)−m(m−1)δm,n+1− i

2

√
j( j +1)−m(m+1)δm,n−1,

(Mz)m,n = mδmn,

(49)
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FIG. 6 Plasticity of the expectation function of two spin three-half quanta in a singlet state. (a)

EΨ4,2,1−1,−1,+1,+1 is represented by the long-dashed blue curve, (b) EΨ4,2,1−1,+1,+1,−1 is represented by

the dashed-dotted red curve, (c) EΨ4,2,1 +1,−1,+1,−1 is represented by the short-dashed green curve, (d)

4
5 EΨ4,2,1− 3

2 ,− 1
2 ,+ 1

2 ,+ 3
2

is represented by the dotted orange curve, and (e) Ecl,2,2(θ) is represented by the clas-

sical linear black line.

where m,n =− j,− j +1, . . . , j−1, j.

Again, the angular momentum operator in arbitrary direction θ, ϕ in units of h̄ can be written

as

S j(θ,ϕ) = xMx + yMy + zMz = Mx sinθcosϕ+My sinθsinϕ+Mz cosθ. (50)

If one is interested in spin state measurements with the associated outcomes of spin states in

units of h̄, the associated two-particle operator is given by

S j j(θ̂, ϕ̂) = S j(θ1,ϕ1)⊗S j(θ2,ϕ2). (51)

The physical interpretation of the operator (51) is this:

‘The outcome of the first particle measured along θ1,ϕ1 is some λm and the outcome

of the second particle measured along θ2,ϕ2 is some λm′ , where λm,λm′ ∈ {− j,− j +

1, . . . , j− 1, j correspond to one of the 2 j + 1 outcomes of a spin state measurement

along the directions θ1,ϕ1 and θ2,ϕ2, respectively.’
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Singlet state

The singlet state of two spin- j observables can again be found by the general methods de-

veloped in Ref. [39]. A singlet state composed from just two particles can only be a “zigzag”

state [39] of the form

∣∣Ψ2,2 j+1,1
〉

= ∑ j
m=− j〈 j +m j−m|00〉 |+m,−m〉

≡ ∑2 j+1
m=1

(−1)1+ j−m
√

2 j+1 em⊗ e2( j+1)−m,
(52)

where Eq. (44) has been used, and em is the m’th vector of the Cartesian basis in 2 j+1-dimensional

vector space, with m’th component 1 and 0 otherwise.

Results

With these identifications, the expectation functions can be directly calculated via S j j yielding

EΨ2,2 j+1,1− j,− j+1,...,+ j−1,+ j(θ̂, ϕ̂) = Tr
{

ρΨ2,2 j+1,1 ·
[
S j(θ1,ϕ1)⊗S j(θ2,ϕ2)

]}

= − j(1+ j)
3 [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] .

(53)

Thus, the functional form of the two-particle expectation functions based on spin state observables

is independent of the absolute spin value.

III. FOUR SPIN ONE-HALF PARTICLE CORRELATIONS

To begin with the analysis of four-partite correlations, consider four spin-1
2 particles in one of

the two singlet states generated by the two “paths” in the multipartite state space depicted in Fig. 7

(See also Ref. [39]).

|Ψ2,4,1〉 =
1√
3

[
|++−−〉+ |−−++〉

−1
2
(|+−〉+ |−+〉)(|+−〉+ |−+〉)

]
, (54)

|Ψ2,4,2〉 = (|Ψ2,2,1〉)2 =
1
2
(|+−〉−|−+〉)(|+−〉−|−+〉), (55)

where |Ψ2,2,1〉 = 1√
2

(|+−〉− |−+〉) is the two particle singlet “Bell” state. In what follows,

we shall concentrate on the first state |Ψ2,4,1〉, since |Ψ2,4,2〉 is just the product of two two-partite

singlet states, thus presenting entanglement merely among two pairs of two quanta.
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FIG. 7 Construction of both singlet states a) |Ψ2,4,1〉 of Eq. (54) and b) |Ψ2,4,2〉 of Eq. (55) of four spin-1
2

particles. Concentric circles indicate the target states. The second state is a “zigzag” state composed by the

product of two two-partite singlet states. The two-dimensional diagram represents the “space” or “domain”

of all multi-partite states, whereby the number of particles is represented by the abscissa (the x-coordinate)

along the positive x-axis. The ordinate (the y-coordinate) of the state is equal the total angular momentum

of the state. Note that a single point may represent many states; all corresponding to an equal number of

particles, and all having the same total angular momentum. N-partite singlet states can be constructed by

starting from the unique state of one particle, then proceeding via all “diagonal” and, whenever possible for

integer spins , also “horizontal” pathways consisting of single substeps adding one particle after the other

— either diagonally from the lower left to the upper right “↗,” or diagonally from the upper left to the

lower right “↘,” or, if possible, also horizontally from left to right “→” — towards the zero momentum

state of N particles. Every diagonal or horizontal substep corresponds to the addition of a single particle.

With the identification of |+〉 ≡ ê1 = (1,0) and |−〉 ≡ ê2 = (0,1) as before, the two pure states

have a vector representation as

Ψ̂2,4,1 = 1√
3

[
ê1⊗ ê1⊗ ê2⊗ ê2 + ê2⊗ ê2⊗ ê1⊗ ê1

− 1√
2

(
ê1⊗ ê2 + ê2⊗ ê1

)⊗ 1√
2

(
ê1⊗ ê2 + ê2⊗ ê1

)]

=
(

0,0,0, 1√
3
,0,− 1

2
√

3
,− 1

2
√

3
,0,0,− 1

2
√

3
,− 1

2
√

3
,0, 1√

3
,0,0,0

)
.

(56)

The density operators ρΨ2,4,1 is just the projector corresponding to the one-dimensional linear
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subspaces spanned by the vectors representing Ψ̂2,4,1 in Eq. (56); i.e., it is the dyadic product

ρΨ2,4,1 = |Ψ2,4,1〉〈Ψ2,4,1|=
[
|Ψ2,4,1〉, |Ψ2,4,1〉†

]
. (57)

A. Observables

In what follows, the operators corresponding to the spin state observables will be enumerated.

The projection operators F corresponding to a four spin one-half particle joint measurement

aligned (“+”) or antialigned (“−”) along those angles are

F±±±±(θ̂, ϕ̂) = 1
2 [I2±σ(θ1,ϕ1)]⊗ 1

2 [I2±σ(θ2,ϕ2)]⊗
⊗1

2 [I2±σ(θ3,ϕ3)]⊗ 1
2 [I2±σ(θ4,ϕ4)] .

(58)

To demonstrate its physical interpretation, let us consider a concrete example: F−+−+(θ̂, ϕ̂)

stands for the proposition

‘The spin state of the first particle measured along θ1,ϕ1 is “−”, the spin state of

the second particle measured along θ2,ϕ2 is “+”, the spin state of the third particle

measured along θ3,ϕ3 is “−”, and the spin state of the fourth particle measured along

θ4,ϕ4 is “+” .’

Fig. 8 depicts a measurement configuration for a simultaneous measurement of spins along θ1,ϕ1,

θ2,ϕ2, θ3,ϕ3 and θ4,ϕ4 of the state Ψ2,4,1.

B. Probabilities and expectations

The joint probability to register the spins of the four particles in state ρi aligned or antialigned

along the directions defined by (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) can be evaluated by a

straightforward calculation of

PΨ2,4,1±1,±1,±1±1(θ̂, ϕ̂) = Tr
[
ρΨ2,4,1 ·F±±±±

(
θ̂, ϕ̂

)]
. (59)

The expectation functions and joint probabilities to find the four particles in an even or in an

odd number of spin-“−”-states when measured along (θ1, ϕ1), (θ2, ϕ2), (θ3, ϕ3), and (θ4, ϕ4) obey

Peven + Podd = 1, as well as E = Peven−Podd; hence Peven = 1
2 [1+E] and Podd = 1

2 [1−E]. Thus,
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FIG. 8 Simultaneous spin measurement of the four-partite singlet state represented in Eq. (55). Boxes

indicate spin state analyzers such as Stern-Gerlach apparatus oriented along the directions θ1,ϕ1, θ2,ϕ2,

θ3,ϕ3 and θ4,ϕ4; their two output ports are occupied with detectors associated with the outcomes “+” and

“−”, respectively.

the four particle quantum correlation is given by (cf. Table I)

EΨ2,4,1−1,+1(θ̂, ϕ̂) = 1
3 {cosθ3 sinθ1 [−cosθ4 cos(ϕ1−ϕ2)sinθ2 +2cosθ2 cos(ϕ1−ϕ4)sinθ4]+

sinθ1 sinθ3 [2cosθ2 cosθ4 cos(ϕ1−ϕ3)+

(2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4))sinθ2 sinθ4]+

cosθ1 [2sinθ2 (cosθ4 cos(ϕ2−ϕ3)sinθ3 + cosθ3 cos(ϕ2−ϕ4)sinθ4) +

cosθ2 (3cosθ3 cosθ4− cos(ϕ3−ϕ4)sinθ3 sinθ4)]} .

(60)

If all the polar angles θ̂ are all set to π/2, then this correlation function yields

EΨ2,4,1−1,+1(
π
2
,
π
2
,
π
2
,
π
2
, ϕ̂) =

1
3

[2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4)] . (61)

Likewise, if all the azimuthal angles ϕ̂ are all set to zero, one obtains

EΨ2,4,1−1,+1(θ̂) =
1
3

[2cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2)cos(θ3−θ4)] . (62)

The plasticity of the expectation function EΨ2,4,1−1,+1(θ̂) of Eq. (62) for various parameter values

θ is depicted in Fig. 9.
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FIG. 9 Plasticity of the expectation function of four spin one-half quanta in a singlet state. (a)

EΨ2,4,1−1,+1(θ, π
4 ,−θ,θ) is represented by the long-dashed blue curve, (b) EΨ2,4,1−1,+1(θ,θ,−θ,θ) is rep-

resented by the dashed-dotted red curve, (c) EΨ2,4,1−1,+1(θ,−θ,−θ,θ) is represented by the short-

dashed green curve, (d) EΨ2,4,1−1,+1(θ,−θ,−θ,0) is represented by the dotted orange curve, and (e)

EΨ2,4,1−1,+1(−θ,−θ, π
4 ,θ) is represented by the solid magenta line.

IV. SUMMARY

Compared to the two-partite quantum correlations of two-state particles, the plasticity of the

quantum expectations of states of more than two particles originates in the dependency of the

multitude of angles involved, as well as by the multitude of singlet states in this domain. For

states composed from particles of more than two mutually exclusive outcomes, the plasticity is

also increased by the different values associated with the outcomes.

We have explicitly derived the quantum correlation functions of two- and four-partite spin

one-half, a well as two-partite systems of higher spin. All quantum expectation functions of the

two-partite spin observables have identical form, all being proportional to cosθ1 cosθ2 +cos(ϕ1−
ϕ2)sinθ1 sinθ2. We have also argued that, by utilizing the plasticity of the quantum expectation

functions for spins higher that one-half, this well-known correlation function can be “enhanced”

by defining sums of quantum expectation functions, at least in some domains of the measurement
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Peven = 1
2 [1+E] , Podd = 1

2 [1−E] , E = Peven−Podd

EΨ2,4,1−1,+1(θ̂, ϕ̂) = 1
3 {cosθ3 sinθ1 [−cosθ4 cos(ϕ1−ϕ2)sinθ2 +2cosθ2 cos(ϕ1−ϕ4)sinθ4]+

sinθ1 sinθ3 [2cosθ2 cosθ4 cos(ϕ1−ϕ3)+

(2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4))sinθ2 sinθ4]+

cosθ1 [2sinθ2 (cosθ4 cos(ϕ2−ϕ3)sinθ3 + cosθ3 cos(ϕ2−ϕ4)sinθ4) +

cosθ2 (3cosθ3 cosθ4− cos(ϕ3−ϕ4)sinθ3 sinθ4)]}
EΨ2,4,1−1,+1(θ̂) = 1

3 [2cos(θ1 +θ2−θ3−θ4)+ cos(θ1−θ2)cos(θ3−θ4)] .

EΨ2,4,1−1,+1(π
2 , π

2 , π
2 , π

2 , ϕ̂) = 1
3 [2cos(ϕ1 +ϕ2−ϕ3−ϕ4)+ cos(ϕ1−ϕ2)cos(ϕ3−ϕ4)]

EΨ2,4,2−1,+1(θ̂, ϕ̂) = [cosθ1 cosθ2 + cos(ϕ1−ϕ2)sinθ1 sinθ2] ·
[cosθ3 cosθ4 + cos(ϕ3−ϕ4)sinθ3 sinθ4]

EΨ2,4,2−1,+1(θ̂) = cos(θ1−θ2)cos(θ3−θ4),

EΨ2,4,2−1,+1(π
2 , π

2 , π
2 , π

2 , ϕ̂) = cos(ϕ1−ϕ2)cos(ϕ3−ϕ4),

TABLE I Probabilities and expectation functions for finding an odd or even number of spin-“−”-states for

both four-partite singlet states. Omitted arguments are zero.

angles.

It would be interesting to know whether this plasticity of the quantum expectations

EΨl,2,1 λ−l ,...,λ+l for “very high” angular momentum l observables could be pushed to the point

of maximal violation of the Clauser-Horne-Shimony-Holt inequality without a bit exchange such

as by using the “building up ” of a step function from the individual expectation functions [40];

e.g., for 0≤ θ≤ π,

sgn(x) =





−1 for 0≤ x < π
2

0 for x = π
2

+1 for π
2 < θ≤ π

=
4
π

∞

∑
n=0

(−1)n cos
[
(2n+1)

(
θ+ π

2

)]

2n+1
. (63)

Any such violation of Boole-Bell type “conditions of possible experience” beyond the maximal

quantum violations, as for instance derived by Tsirelson [41] and generalized in Ref. [42] not

necessarily generalizes to the multipartite, non dichotomic cases. Note also that such a strong

or even maximal violation of the Boole-Bell type “conditions of possible experience” beyond

the maximal quantum violations needs not necessarily violate relativistic causality [36, 43], or

be associated with a “sharpening” of the angular dependence of the joint occurrence of certain

elementary dichotomic outcomes, such as “++,” “+−,” “−+” or “−−,” respectively.
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[1] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwissenschaften 23,

807–812, 823–828, 844–849 (1935), English translation in [44] and [45, pp. 152-167].

http://dx.doi.org/10.1007/BF01491891, http://dx.doi.org/10.1007/BF01491914,

http://dx.doi.org/10.1007/BF01491987

[2] A. Zeilinger, “A Foundational Principle for Quantum Mechanics,” Foundations of Physics 29, 631–

643 (1999).

http://dx.doi.org/10.1023/A:1018820410908
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