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Abstract

With the globalization in education, bridging cultural differences by making course material

more accessible and adaptable to individual user needs becomes an important goal. In this

paper we attack this goal for the field of mathematics where knowledge is abstract, highly

structured, and extraordinary interlinked. Modern representation formats like our OMDOC

format allow us to capture, model, relate, and represent mathematical learning objects and thus

make them context-aware and machine-adaptable to the respective learning contexts. But to

make mathematical knowledge accessible to learners of diverse cultural backgrounds we also

need to model mathematical practice.

In this paper, we show that many practices of mathematical communities can already be

modeled in OMDOC and outline extensions to support further ones. We have implemented a

collection of services that allow applications to interpret and manage OMDOC and its practice

representations as well as to adapt OMDOC for users and communities. These services have

been integrated into our prototype E-Learning platform panta rhei to demonstrate how systems

can improve the accessibility of mathematical E-Learning materials.
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Introduction

With the ever-increasing globalization of higher education, learning institutions have to cope with

culturally induced differences in prerequisite knowledge and learning practices. This is especially

pronounced at Jacobs University Bremen with an international student body: 1100 students from

88 countries on April 8th, 2008 [University, 2008] (see figure on the right for the distribution).

Surprisingly, this also affects subjects like Mathematics

and Computer Science that are often considered culture-

independent. Even though most of our students are well

prepared and possess good mathematical knowledge1, a

recent study [AAS, 2008] shows mathematical discrep-

ancies: Students of our one-year, introductory course on

Computer Science (GenCS) reported that they had problems to get acquainted with the professor’s

notation systems, some had the feeling that the pace of the course was inappropriate and deter-

mined by the best students, some felt embarrassed to ask questions, while others did not face any

problems and were able to balance out based on their previous education. Most students rate these

discrepancies as problematic and believe that they can be associated with different educational and

cultural backgrounds. In particular Romanian and Bulgarian students are very confident with their

mathematical skills. Indian students are mostly well-educated in programming languages. Other

nationalities struggle with the course. The grade distributions in Figure 1 show an unexpected peak

in the failing grades and a concentration of nationalities.

We assume that these students are capable of passing the course, but eventually give up when

they are not able to map their previous mathematical background and practices to our course. In this

situation, we want to augment lectures with online material and E-Learning approaches that making

it more accessible and adaptable to individual user needs.

We claim that the theory of communities of practice [Lave and Wenger, 1991] can help us un-

derstand different mathematical practices and backgrounds and to eventually counteract pre-existing

differences. According to Lave and Wenger [Lave and Wenger, 1991], communities of practice

1Jacobs University is a private institutions which only accepts excellent students for its programs.
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Figure 1: Grade Distributions Fall 05, Spring 06, Fall 06, Spring 07, Fall 07, and Spring 08

(CoPs) are groups of people who share an interest in a particular domain — in our case the interest

in the GenCS course. By interacting and collaborating around problems, solutions, and insights they

develop shared practices, i.e. a common repertoire of resources consisting of experiences, stories,

tools, and ways of addressing recurring problems. Even though mathematical practitioners seem

to form a homogeneous, unified community and share the same practices all over the world, they

actually form various sub-communities that differ in their preferred notations, basic mathematical

assumptions, and motivating examples. We can observe these sub-communities among our GenCS

students and see that exactly these communities are valuable for deepening knowledge and learning.

To allow our students to access mathematical knowledge efficiently in the online materials men-

tioned above, we explicate their knowledge structure and the mathematical practices and use these

to support the students in interacting with the course materials.

For determining the knowledge structure we make use of the fact that mathematical knowledge

is abstract, highly structured, and extraordinary interlinked (cf. [Farmer, 2004]). This allows us to

more easily capture, model, relate, and represent mathematical learning objects. For the practices

we use that mathematical communities often interact via their mathematical knowledge artifacts,

such as theories or learning objects (cf. [Müller and Kohlhase, 2008]). We claim that their prac-

tices are inscribed into these artifacts. For example, mathematical authors choose notations, make

assumptions, build on different foundations as well as results, and choose typical examples to illus-

trate their mathematical concepts (cf. [Kohlhase and Kohlhase, 2006]).
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Concretely we show in this paper, how to use our OMDOC format (Open Mathematical Documents,

see [Kohlhase, 2006]) to represent mathematical learning objects as well as practices of mathemat-

ical communities. We illustrate which aspects of mathematical practices OMDOC supports and

outline an extension of the format to further practices. We have implemented a collection of en-

abling technologies, which allow applications to interpret and manage OMDOC and its practice

representations as well as to adapt OMDOC for users and communities. Our enabling technolo-

gies have been integrated into our prototype E-Learning platform panta rhei [panta rhei, 2008], to

demonstrate how systems can improve the accessibility of mathematical E-Learning materials.

Knowledge Representation for Mathematics

Mathematical Objects are what we talk and write about when we do mathematics: Rather simple

objects like numbers, functions, triangles, matrices, and more complex ones such as vector spaces

and infinite series. In order to provide automated services such as search or computation, we need to

represent these objects in a machine-processable format, such as MATHML [W3C, 2003] or OPEN-

MATH [OpenMath, 2007]. The former is a W3C recommendation for high-quality presentation of

mathematical formulae on the Web, whereas the latter concentrates on the meaning of objects2.

OPENMATH Representation MATHML Representation Presentation

<om:OMOBJ>
<om:OMA>

<om:OMS cd=”combinat1”
name=”binomial” />

<om:OMV name=”n” />
<om:OMV name=”k” />

</om:OMA>
</om:OMOBJ>

<m:mrow>
<m:mo>(</m:mo>
<m:mfrac linethickness=”0”>

<m:mi>n</m:mi>
<m:mi>k</m:mi>

</m:mfrac>
<m:mo>)</m:mo>

</m:mrow>

(n
k

)

Figure 2: OPENMATH and MATHML representation of the binomial coefficient.

Figure 2 provides the OPENMATH and MATHML representations of the number
(n

k

)
= k!

(n−k)!

of k-element subsets of a n-element set. The OMS element represents the “binomial coefficient”

function, which (via cd and name attributes) points to a definition in a content dictionary (CD)

[OMCD-Core, 2008]. CDs specify commonly agreed definitions of basic mathematical objects

2In fact MATHML has a sub-language that is equivalent to OPENMATH, but we will concentrate on the presentational

functionality of MATHML for simplicity.
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and allow machines to distinguish the meaning of included mathematical objects. Consequently,

OPENMATH expressions can be used by information retrieval or computation services while the

MATHML expression is used for display: MATHML-aware browsers will present the middle ex-

pression in Figure 2 as
(n
k

)
.

The OMDOC format serves as semantics-oriented representation format and ontology language

for mathematical knowledge. The format extends OPENMATH and MATHML with markup primi-

tives for the structure and interrelations of mathematical objects expressed as mathematical state-

ments, i.e. definitions, theorems, and proofs. We have already seen above that content dictionaries

serve as an explicitly represented context for mathematical symbols, formulae and thus learning

objects. The OMDOC format allows to represent CDs as OMDOC documents containing mathe-

matical statements, but extends this functionality with a very expressive infrastructure for inter-CD

relations that facilitate concept inheritance, parametric reuse, and multiple views on mathematical

objects and statements. We claim that this theory level makes OMDOC an ideal representation

format for mathematical learning objects (MLO) i.e. reusable, granular, highly structured, and

semantically marked up fragments of varying size:

The OMDOC approach negates the intuition of existing E-Learning approaches [Committee, 2005,

Consortium, 2001, Learning, 2000] that learning objects (LO) should be context independent (see

e.g. [LO, 2008]). We believe that this aim is not only impossible to achieve, but also misleading.

Authors are biased when creating LOs and will always include subjective, context-dependent parts

influenced by their didactic approaches or personal views. In mathematics, LOs also include the

authors’ individual and context-dependent practices such as their proving strategy, the choice of

notations, or choice of typical examples. We believe that the context and practices of LOs should

be represented explicitly so that machines can adapt them to the reader or learning goal. We will

call LOs with explicitly represented context-dependence and practices context-aware to contrast

them to the elusive “context-independent” ones. Thus, context-aware LOs allow to produce more

accessible learning materials that are targeted to the individual needs and preference of the learner:

For example, references to regional events or cultural aspects can motivate learners and allow them

to more easily map new knowledge to prior experience.

OMDOC allows to represent context-aware MLOs since it preserves the logical, narrative, and
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social contexts of MLOs and provides an infrastructure that interprets contextual information al-

lowing for sophisticated semantic services: For example, OMDOC supports a user-specific and

context-aware selection and sequencing of LOs as well as their adaptive presentation that other

non-semantic E-Learning approaches can not offer (cf. [Kohlhase and Kohlhase, 2008]).

Research on Mathematical Practices

Before we come to the representation of mathematical practices in OMDOC let us recap the folklore:

a first group of authors distinguish mathematical practices from those of other sciences. Accord-

ing to Philip Kitcher [Kitcher, 1988], the development of mathematics can be seen as a stepwise

process from generalizations and observations to their symbolic substitutes. Kitcher underlines

the dynamics in mathematics, i.e. the creating, revising, and dismissing of mathematical knowl-

edge, as well as the process of abstracting experiences to gain symbolic substitutes. Sociologist

Bettina Heintz observed the mathematical community [Heintz, 2000] and illustrates mathematical

practices such as proving, community assessment and acceptance of proofs, and the spontaneous,

problem-driven nature of mathematical collaborations. But there are also sub-communities inside

Mathematics: Godfrey Hardy, a professional mathematician himself, reflects about mathematics

in [Hardy, 1992]. He distinguishes elementary from pure mathematics, whereas the former in-

clude all school, most university and, in particular, applied mathematics and their different cultures.

George Polyá distinguishes several mathematical strategies for problem solving in elementary math-

ematics [Polya, 1973] that differ among communities and their members.

Further research focuses on specific practices such as the choice of mathematical notations

[Smirnova and Watt, 2006, Cajori, 1993], basic assumptions and logical foundations [Rabe, 2008],

or the choice of typical examples [Kerber et al., 1992]. These practices depend on different context

parameters such as nationality and language, the level of expertise, the area of application, the audi-

ence, the historical period, the output format, or the individual (author) style (cf. [Kohlhase et al., 2007]).

Consider for instance the presentation of decimal numbers: while Germans use a comma for deci-

mal numbers (4, 53); English use a point (4.53). Vise verse, Germans use a point to structure large

numbers (1.000.000), while English use a comma (1, 000, 000). If we think of the binomial coef-
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ficient, we can distinguish different presentation in various nationalities: In Germany
(n
k

)
is used,

while Russians prefer Cn
k and French write Ck

n. The imaginary unit is presented differently accord-

ing to the area of application: While mathematicians use an i, physicists use a j to not confuse the

symbol with the presentation of electric current I .

Representing Practices in OMDOC

We will now detail how some of the practices above can be encoded in the OMDOC format. In

this sense our paper can be seen as an instantiation of our earlier [Kohlhase and Kohlhase, 2008],

where we state requirements for semantic representation formats for educational materials. We will

concentrate on three practices on different levels of the OMDOC format: (1) The presentation of

mathematical results (document level), (2) the structuring and contextualization of mathematical

knowledge (theory level) and (3) the choice of mathematical notations (object level). The approach

exemplified with these examples can be applied to any practice: we analyze the mathematical ob-

jects affected by the practice and try to find a represent a functional core that is independent of the

practice. Then we try to reify — i.e. turn into represented objects — the other factors or parameters

in the practice in question. For instance for notation practices, the functional core is already there

in OPENMATH representations of formulae, we only need to reify notation definitions into objects.

Representing Mathematical Documents

On the document level, OMDOC allows to

separate narrative structure of mathematical

documents from the content structure and

thus makes it adaptable: Narrative elements

such as section, subsections, definition, ex-

amples, or proofs, allow authors to explicate the didactic relations and sequencing of fragments in

their documents. The figure to the right presents a technical report marked up using OMDOC’s doc-

ument ontology, which defines the narrative concepts such as section, example, or definition as well

as their interrelation, e.g. an example illustrates a definition (cf. [Müller, 2006]). The narrative re-
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<omdoc xmlns=”http://omdoc.org/ns” ...>

<notation> see Figure 4 </notation>

<theory xml:id=”MyTheory”>
<imports from=”http :// omdoc.org/combinat1.omdoc#binomial”/>
<omtext xml:id=”id2”>

<CMP>
The binomial coefficients is the number of ways of choosing m objects from a collection of n distinct

objects without regard to the order . We denote it by see Figure 2
</CMP>

</omtext>
</theory>

</omdoc> Figure 3: OMDOC representation of an example document.

lations allow us to model the didactic practice of authors, i.e. their way of presenting mathematical

results.

Representing Notation Practices in OMDOC

Figure 3 provides an example of a document represented in OMDOC. The OMDOC representation

includes a theory element, which embeds a mathematical object represented in OPENMATH. The

import element specifies the required prior mathematical knowledge and is used analogously to

include operators in programming languages, which import required libraries and classes. In

OMDOC, the import elements include all symbols from other theories that are used within the

current theory, but have been defined and introduced in the imported theories: In the example, the

import element of the theory MyTheory includes the symbol binomial, which is defined in the

theory combinat1. Please note that mathematical objects in OPENMATH format can not be pre-

sented as OPENMATH represents the meaning, but can not be used for display. These objects have

to be converted to MATHML. Consequently, we need to automatically process the author’s notation

practices, i.e. we need a mapping from OPENMATH to a respective MATHML representation.

In [Kohlhase et al., 2008] we presented the extension of OMDOC towards the representation

of mathematical notation practices to provide a flexible and context-aware conversion from OPEN-

MATH to MATHML: We reified notation preferences of scientists into artifacts, that is notation

specifications, which are applied onto the meaning of mathematical objects (represented in OPEN-

MATH) to generate their presentation (represented in MATHML).

Figure 4 presents the OMDOC representation of a notation specification. The prototype pat-

tern matches the OPENMATH expression of the binomial coefficient in Figure 3. The rendering

elements are applied to generate a concrete presentation for the symbol. The context attribute
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<notation xmlns:m=”http :// www.w3.org/1998/Math/MathML”
xmlns:om=”http :// www.openmath.org/OpenMath”>

<prototype>
<om:OMA>

<om:OMS cd=”combinat1” name=”binomial” />
<expr name=”arg1”/>
<expr name=”arg2”/>

</om:OMA>
</prototype>
<rendering context=”language:Russian, ru”>

<m:msubsup>
<m:mi>C</m:mi>
<render name=”arg1”/>
<render name=”arg2”/>
</m:msubsup>

</rendering>
...

<rendering context=”language:German,de”>
<m:mrow>

<m:mo>(</m:mo>
<m:mfrac linethickness=”0”>

<render name=”arg1”/>
<render name=”arg2”/>

</m:mfrac>
<m:mo>)</m:mo>

</m:mrow>
</rendering>
<rendering context=”language:French, fr”>

<m:msubsup>
<m:mi>C</m:mi>
<render name=”arg2”/>
<render name=”arg1”/>

</m:msubsup>
</rendering>

</notation>

Figure 4: An Example of a notation practice represented in OMDOC.

of the rendering element associates specific context parameters. In the example, the nationality

of the respective notations are added. This allows to distinguish the German, Russian, and French

notation of the binomial coefficient. Analogously, further context parameters such as the expertise

level (novice, intermediate, expert) or area of application (mathematics, physics) can be added.

In order to select the appropriate presentation for a symbol, we proposed a context-aware con-

version algorithm in [Kohlhase et al., 2008]: First we collect all notation specification for a mathe-

matical object, then we collect the user’s context parameters for the conversion, and finally we select

an appropriate rendering element which best fits to the current context and apply it to generate

a presentation for the mathematical object. To provide a flexible and context-aware conversion al-

gorithm, we provide various options to collect notation specifications as well as concrete context

parameters (cf. [Kohlhase et al., 2008]).

Given the notation specification in Figure 4 and a concrete context parameter, the mathematical

object in the OMDOC document in Figure 3 can be presented differently: For example, depending

on the nationality selected by the user, the binomial coefficient is presented with its German (
(n
k

)
),

Russian (Cn
k ), or French notation (Ck

n).

Representing Structure and Context of Mathematical Knowledge

To structure collections of learning objects and provide them with context OMDOC groups them

into theories and links them via theory morphisms. This mechanism reifies a practice that long
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been relatively overt in mathematical documents, e.g. the Bourbaki development of mathemat-

ics that starts with set theory [Bourbaki, 1968] and takes the mathematical practice of stating re-

sults with minimal preconditions to the extreme. OMDOC provides concrete markup for theory

objects and extends the theoretically motivated accounts of inheritance and modularity in pro-

gramming languages and mathematics to cover informal (but rigorous) mathematical practice (see

[Rabe and Kohlhase, 2008] for the most recent theory, which will be incorporated into the upcom-

ing version of OMDOC). Intuitively, a theory morphism is a mapping between theories that allow to

“view” the source theory in terms of the target theory, if the mapping conserves truth. In the simplest

case, theory morphisms model inheritance — the source theory can be viewed as an included part of

the target theory — and thus allow to model the mathematical practice of modular/object-oriented

development of knowledge in mathematics. For instance Figure 5 shows the inheritance graph of

our GenCS course, and is used by students and the instructor for navigation and overview.

notes

function_properties

functions

relations

resources

panta_rhei

QMCPI_complex_example

QMCPI_optimized

QMCPI

grader

sets_operations

highschoolsets_introduction

mathtalk

openmath_nutshell

xml_nutshellarith1 set1 relation1

boolean_expressions

formal_language_unary_arithm

struct_form_lang

string_math

formal_languagesemantics_base

syntax_base logical_system

QMC_complex_example

QMCCS

QMC_algo

normal_forms

mathml_nutshell

mathml_overview

adt_uNat

call_by_value

SML_basics

substitutions

howtocompute

dates

var_constructor_terms

substitutions_base

ground_constructor_termsresolution_derived

resolution_calculus

pl0_syntax calculi_proofslabeled_formulae

typingaids

SML_ho_functions

SML_lists

adt_lNat

types_base

prime_implicants

boolean_functionsboolean_polynomials

adt_pl0_example

boolexp_logic_intro

persons semantic_properties adt_def

typed_syntax_base

unary_numbers_operations

abstract_proc_termination

abstract_interpreter2

abstract_interpreter1 terms

activemath

activemath_nutshell

swim_nutshell

omdoc_base

hilbert_calculus_correct_full

hilbert_calculus_correctdeduction_theorementailment_thm

pl0_HilbertCalc calculi_properties

representing

thinking

CS_sample_problem

boolean_algebra

lexical_order

eval_bool_exp

relation_properties

CS_sample_performance

units

morse_code

character_codes

common_landau_sets

landau_sets

unary_term

reasoning

nat_basic

prefix_codes

string_codes

cost_boolean

SML_IO

adt_truth_values

HilbertCalc_axioms_correct

normal_boolexp

bool_equivalences

spanning_tree

algorithm

function_operations

SML_exceptions

grading

mutual_recursion

special_alphabets

BF_cost

adt_code_transition

tableaux_formal

some_characters

entailment_theorem

list_ops

lists

SML_shapes

SML_datatypes

missing_syms

QMCPI_ex

KVmaps

minmax_terms

tableaux_example

pl0_subst_correct

pl0_subst_value_lemma

pl0_semantics

QMC_prime_implicants_table

morefuncs_intro

tableaux_motivation addition_function

BF_cost_lower_bound

BF_better_cost

operatingsystems

whatislogic

adt_sorts

boolexp_logic_equiv

adt_SML_types_remarktableaux_correctness

unary_induction

prime_implicants_costs

abstract_concrete_procs

resolution_example

QMCPI_props

tools

editors

truth_tables

modular_design

ap

academic_integrity proglang

cart_casc_procs

not_cons_terms

adt_reverse_append

tableaux_derived_rules

mathtalk_ex

SML_fibonacci_example

SML_prog_effects

lets_hack

kr_experiment

cnx_nutshellsTeX_approach

sTeX_problems

gencs_plot

large_sets

rule_ex

homework

syntax_semantics

tableau_termination

performance

Figure 5: The inheritance Graph of the GenCS course

But theory morphisms can also be used to model intra-mathematical differences in practices,

e.g. differing choices of basic concepts. To gain and intuition, let consider an elementary example,

the choice measuring temperature with the Kelvin, Celsius, and Fahrenheit scales. This example

is suitable, since these scales make different defining assumptions — we model these as OMDOC

axiom elements. For instance the Fahrenheit scale defines zero degrees to be the temperature of

the coldest winter night Mr. Daniel Gabriel Fahrenheit ever experienced whereas the Celsius scale

puts zero degrees a the freezing point of water, while the Kelvin scale puts it at the at hypothetical

point, where all atoms cease motion (cf. Figure 6). The crucial observation is that (after suitable

rescaling) all arrive at compatible consequences — which we model as OMDOC theorems. This

allows us to establish the rescaling mappings as theory morphisms, since they are truth-preserving.

The important implication for eLearning is that the elaborate theory structure that was theo-
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Theory Temp. in Kelvin Temp. in Celsius Temp. in Fahrenheit

Signature ◦K ◦C ◦F

Axiom: absolute zero at 0◦K Water freezes at 0◦C cold winter night: 0◦F

Axiom: δ(1◦K) = δ(1◦C) Water boils at 100◦C domestic pig: 100◦F

Theorem: Water freezes at 271.3◦K domestic pig: 38◦C Water boils at 170◦C

Theorem: cold winter night: 240◦F absolute zero at −271.3◦C absolute zero at −460◦F

Theory morphisms: ◦C +271.3−→
◦
K, ◦C

−32/2−→
◦
F , and ◦F

+240/2−→
◦
F

Figure 6: Three equivalent theories of temperatures

retically motivated originally can be utilized for adaptation and bridging of context differences:

We can automatically recontextualize learning objects. For instance we can move a LO from a

Fahrenheit context to a Celsius context by translating it via the appropriate mapping above. This

translation is safe, since we have established it to be a theory morphism earlier. Note that the

recontextualization discussed here significantly surpasses the notation adaption discussed above

as it is at the conceptual and content level. Another example of a service based on theory mor-

phisms is to index all translations and thus make the virtual cloud of possible translations avail-

able to a formula search engine like our MATHWEBSEARCH service [Kohlhase and Şucan, 2006,

MathWebSearchDemo, 2008]. Our experiments show that even for an introductory course like

GenCS supports about three dozen non-trivial theory views, while the theory views from subse-

quent course into GenCS go in the hundreds, since these courses are given by other instructors.

Practice-aware adaptation: Implementation & Case Study

To support a practice-aware adaptation of the

OMDOC-encoded knowledge, we also need

to support the manipulation of OMDOC rep-

resentations and the tracking of users and

communities. The figure to the right presents

a framework for practice-aware adaptation, which three components are described below:

We provide tools for representing mathematical knowledge and practices in OMDOC: e.g.

the OMDOC editor Sentido [González Palomo, 2006], and tools that facilitate a consistent main-
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tenance and storage of OMDOC materials, e.g. the OMDOC repository [OMBase, 2008] and the

change management system locutor [locutor, 2007].

For the manipulation of the OMDOC representation we provide enabling technologies such

as the Java library JOMDOC [JOMDoc, 2008] which e.g. supports the context-aware conversion

of mathematical notations and the Javascript framework JOBAD [JOBAD, 2008] which supports

browser-based interactions with mathematical knowledge, e.g. the flexible display and hiding of

brackets in mathematical formulae or the on-the-fly change of notations.

To track user and community behaviors, preferences, and practices, we build on related work

on user and community modelling in mathematics, e.g. [Melis, 2001]. This allows us to adapt

OMDOC materials to concrete contexts and preferences.

The panta rhei Case Study To demonstrate our approach, we are integrating and evaluating

our services in our prototype E-Learning platform panta rhei [panta rhei, 2008] which uses JOM-

Doc to convert the lecture material (in OMDOC) to XHTML+MATHML. During the import of the

OMDOC materials, the lecturer can specify his notation preferences. In the figure below, the Ger-

man notation has been chosen. In addition, JOMDOC considers user-specific contexts to adapt the

presented material on-the-fly, i.e. users can change notations and indicate their preferences while

reading the material.

However, dynamic adaptation of material is not always in the intention of the lecturer, as he

might wish to introduce specific notations and allow students to learn new ones. Consequently, the

panta rhei system does not simply overwrite the lecturer’s notations, but can also add a hint for the

user if his notation background differs with the presented symbols; see Figure 7 for the panta-rhei-

generated variants of the material above.
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Figure 7: User-specific Adaptation of Notations
Related Work

The ACTIVEMATH system [ActiveMath, 2008, Melis and Siekmann, 2004] is based on OMDOC

and provides user-adaptivity in the the selection of examples [Goguadze et al., 2005]; the sequenc-

ing of learning objects into user-specific courses; as well as first attempts towards the adaptive

presentation of course material based on user models. The focus of this work is on integrating

knowledge representation issues with didactic and psychological criteria. However, the underlying

representation and conversion does not yet consider the full power of OMDOC and our enabling

technology: Consequently, practice-oriented adaptations are not yet specified or implemented.

The educational knowledge repository CONNEXIONS [CNX, 2008] is based on a corpus of se-

mantic artifacts represented in CNXML [Hendricks and Galvan, 2007], a lightweight XML markup

language for educational content. CNXML embeds MATHML as well as OPENMATH for the repre-

sentation of mathematical objects. If provides markup for the document level, but lacks markup of

theories and theory dependencies. However, CONNEXIONS provides “lenses” [Kelty et al., 2008]

that allow to express the approval and authorship of organizations and individuals. Technically,

lenses are selection of content or tags in the CONNEXIONS repository to help readers find content

that is related to a particular topic or focus. Conceptually, lenses provide the assessment and rele-

vance of content by a single user or group. The common assessment of mathematical knowledge by

the mathematical community is an important process for approving or refusing mathematical results

(cf. [Heintz, 2000]). Thus, CONNEXIONS implements a course-grained notion of practice-oriented

adaptation, i.e. regarding the selection or sequencing of learning objects.

[Heeren et al., 2008] specifies strategies for interactive exercises. Strategies are procedures or

procedural skills that help solving exercises and thus reflect mathematical practices, similar to the

problem solving guidelines presented by Polyá [Polya, 1973]. Based on strategy specifications,

[Heeren et al., 2008] implement a web service, which is used by several mathematical E-learning
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applications allowing them to consider alternative strategies to provide more adaptive feedback

and guidance. The MathDox system [Cuypers et al., 2008] integrates this web service to provide

interactive exercises. MathDox is based on still another XML-based format for interactive math-

ematical documents. These can be transformed to interactive mathematical web pages using the

MathDox Player and, thus, implement more accessible and living documents. However, although

the MathDox format embeds mathematical objects in OPENMATH and MATHML and provides a

basic markup of the structure of documents, it is less suited for representing mathematical structures

and practices as it is lacking OMDOC’s theoretic foundations.

Conclusion & Outlook

In this paper we show how a modern, content-oriented document format (Open Mathematical Doc-

uments) can be used to represent context-aware mathematical learning objects as well as practices

of mathematical communities. We have shown how the context awareness of MLO representations

together reified practices can be used to recontextualize MLOs and adapt them to differing cultural

backgrounds. Our enabling technologies have been integrated into our prototype E-Learning plat-

form panta rhei [panta rhei, 2008], to demonstrate how systems can improve the accessibility of

mathematical E-Learning materials

Future work will address the reification of further practices in OMDOC, e.g. to support the

automatic selection of typical examples and exercises for a given set of theories and user-specific

context parameters. Moreover, we want to extend OMDOC to represent the social context of mathe-

matical knowledge, i.e. information and relations that are capture during the user’s interaction with

mathematical knowledge such as tags, annotations, or discussions.

We also want to elaborate more on further scenarios and contributions of our semantic document

markup: [Bernareggi and Archambault, 2007, Archambault et al., 2007a, Archambault et al., 2007b]

call for structured and semantically marked up documents to support the accessibility for visually

impaired or blind people: In particular, representing mathematical expressions in MATHML can

improve the accessibility and usability of online material for speech synthesis and Braille devices.

We also intend to discuss motivational issues that arise due to a common practices of mathe-
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maticians: In [Farmer, 2005, Farmer, 2004], William Farmer highlights that mathematicians do not

fully articulate their mathematical knowledge and practices, although this can hamper the commu-

nication with others. Many mathematical details are never articulated; they reside only in the minds

of mathematicians. The user of the knowledge is expected to be able to fill in what is missing as

needed. This works well with human users who have strong mathematical skills. It does not work

well with students and average human users. However, articulation and the semantic markup of

mathematical knowledge is a precondition for enlarging the corpora of OMDOC contents. Conse-

quently, motivating mathematicians to articulate and markup their documents is a key challenge for

our further progresses and service evaluations (cf. [Kohlhase and Kohlhase, 2004]).

Acknowledgments

We would like to thank the KWARC group for their valuable feedback and discussion on our work.

Special thanks go to Normen Müller, Dimitar Misev, and Florian Rabe. This work was supported

by JEM-Thematic-Network ECP-038208.

15



References
[AAS, 2008] AAS (2008). Need assessment report by the academic affairs committee of the undergraduate student

government. private communication.

[ActiveMath, 2008] ActiveMath (2008). ACTIVEMATH. web page at http://www.activemath.org/.
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[Autexier et al., 2008] Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., and Wiedijk, F., editors (2008).
Intelligent Computer Mathematics, 9th International Conference, AISC 2008 15th Symposium, Calculemus 2008 7th
International Conference, MKM 2008 Birmingham, UK, July 28 - August 1, 2008, Proceedings, number 5144 in LNAI.
Springer Verlag.

[Bernareggi and Archambault, 2007] Bernareggi, C. and Archambault, D. (2007). Mathematics on the web: emerging
opportunities for visually impaired people. In Proceedings of the International Cross-Disciplinary Conference on Web
Accessibility (W4A 2007), Banff, Canada. 4 pages.

[Bourbaki, 1968] Bourbaki, N. (1968). Theory of Sets. Elements of Mathematics. Springer Verlag.

[Cajori, 1993] Cajori, F. (1993). A History of Mathematical Notations. Courier Dover Publications. Originally published
in 1929.

[CNX, 2008] CNX (2008). CONNEXIONS. web page at http://cnx.org.

[Committee, 2005] Committee, I. L. T. S. (2005). Ieee standard for learning technology – data model for content to
learning management system communication.

[Consortium, 2001] Consortium, I. G. L. (2001). Learnig resource metadata specification.

[Cuypers et al., 2008] Cuypers, H., Cohen, A. M., Knopper, J. W., Verrijzer, R., and Spanbroek, M. (2008). MathDox,
a system for interactive Mathematics. In Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications 2008, pages 5177–5182, Vienna, Austria. AACE.

[Farmer, 2004] Farmer, W. M. (2004). MKM: A new Interdisciplinary Field of Research. Bulletin of the ACM Special
Interest Group on Symbolic and Automated Mathematics (SIGSAM), 38:47–52.

[Farmer, 2005] Farmer, W. M. (2005). Mathematical Knowledge Management. In Schwartz, D. G., editor, Mathematical
Knowledge Management, pages 599–604. Idea Group Reference.
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