
CDMTCS
Research
Report
Series

Evolution of Mutating Software

Gregory J. Chaitin
IBM Research, NY, USA

CDMTCS-337
October 2008

Centre for Discrete Mathematics and
Theoretical Computer Science



Evolution of Mutating Software∗

Gregory Chaitin†

Abstract

We propose using random walks in software space as abstract for-
mal models of biological evolution. The goal is to shed light on bio-
logical creativity using toy models of evolution that are simple enough
to prove theorems about them. We consider two models: a single mu-
tating piece of software, and a population of mutating software. The
fitness function is taken from a well-known problem in computabil-
ity theory that requires an unlimited amount of creativity, the Busy
Beaver problem.

Key words: evolution, random walk, software space, Busy Beaver
function

1 Introduction

This paper proposes modeling biological evolution as mutating software.
However at the level of abstraction of this paper, biological evolution and
mathematical creativity are not so different.

I have been interested in theoretical biology for a long time [1]. However
I could not find a way to go forward. Here we propose an approach that
I feel shows promise, but much remains to be done. We only present some
preliminary results.

∗Talk given Friday October 10, 2008 at the IBM Watson Research Center in York-
town Heights, NY. The author wishes to thank his colleagues Charles Bennett and David
DiVincenzo for their helpful comments.

†IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598,
U.S.A., chaitin@us.ibm.com.

1



The immediate stimulus for this paper was Berlinski’s entertaining
polemic [2], in which he presents a number of criticisms of Darwinian evo-
lution, a number of perplexing aspects of evolution that he feels are not yet
well explained by Darwin’s theory.

Here are five areas in which I believe that thinking of DNA as mutating
software can be helpful. (Software mutations may be point mutations, such
as changing or adding a single bit, or they may be high-level, such as copying
a subroutine and then modifying it.)

1. Why are there so many missing intermediate biological forms?
This is not a problem, because a small change in a program can produce
an enormous change in its output. Change in output does not have to
be continuous, it can be extremely discontinuous.

2. How are sudden major steps in evolution possible, for ex-
ample, the transition from single-celled organisms to multi-
cellular organisms? What is happening here is that the main pro-
gram (a single cell) becomes a subroutine in a larger multi-cellular
organism. Changing the main program into a subroutine that is called
several times is not a big software change.

3. Why is there so much fractal, hierarchical structure in organ-
isms? This is just an extension of the previous point. It’s recursive,
deeply-nested subroutine structure, which is a good way to build a large
piece of software out of smaller pieces of software.

4. Why does complexity increase? An increase in the size of a soft-
ware organism may be due to a genuine increase in function but may
also be due to software bloat, the familiar fact that it is easier to add
new code than to change existing code.

5. Why do we need DNA? In other words, why is the genotype
different from the phenotype? Well, if we are mutating software
written in a very redundant high-level language convenient for humans,
the mutation distance between useful organisms will be much larger
than if we are mutating a much more concise representation of these
algorithms more similar to a binary machine language. So a way of
obtaining redundant programs from compressed versions of them will
probably evolve, since it greatly increases evolvability by decreasing the
mutation distance between useful software.

2



On the other hand, if we are mutating software written in the extremely
compact kind of representations used in algorithmic information theory
[3], then there is no need for DNA and the genotype can remain the
same as the phenotype.

Based on these general considerations, we propose studying the evolution
of mutating software. We already made this proposal in [4], but there we
could not see where the dynamics comes from. We could not see how to get
our software organisms to evolve.

Now I’ve found a way to do that. In this paper we describe some sim-
ple models where you can show that complexity increases due to increased
function, not due to software bloat (point (4) above).

2 A problem requiring creativity: Naming

big numbers

To get evolution, we must give our software organisms something challenging
to do. Here is a simple mathematical problem requiring unlimited creativity,
naming big numbers.

For example, 100100 is certainly a big number, but we can do much better
than that.

Following Hodges [5], write n ↑ m instead of nm. Then define n ↑↑ m as
follows:

• n ↑↑ 0 = 1,

• n ↑↑ (m + 1) = n ↑ (n ↑↑ m).

Similarly, define n ↑↑↑ m as follows:

• n ↑↑↑ 0 = 1,

• n ↑↑↑ (m + 1) = n ↑↑ (n ↑↑↑ m).

Continue in this fashion with four up arrows, five, etc.
Going beyond Hodges, define n ⇑ m to be n ↑ · · · ↑ n with m up arrows!

What is the value of 999 ⇑ 999?
Unlimited creativity is required for this problem, because for any scheme

for naming large numbers, one can come up with a better scheme, just like
we improved on Hodges.

3



(See also Steinhaus [6], Knuth [7], Davis [8].)
Naming big numbers is closely related to a classical problem in com-

putability theory, the Busy Beaver problem, and the Busy Beaver function.
If you are naming numbers informally as we have just done, then a Busy
Beaver function of N can be loosely defined as the biggest positive integer
you can name in ≤ N symbols or characters of text.

If you are using a programming language to name positive integers, then
the Busy Beaver function is the greatest positive integer that can be produced
by a program of size ≤ N bits (programs that calculate a single integer and
then halt). Busy Beaver functions grow faster than any computable function
of N , which shows that naming big numbers requires an unlimited amount
of creativity.

For more on this, see Aaronson [9] and Wikipedia [10].

3 The formal setting

In a nutshell:

• binary program = genotype = phenotype,

• positive integer output by program = fitness.

3.1 Software space = binary programs for calculating

a positive integer

All finite bit strings are valid programs, but some may never produce any
output.

We have to pick a universal Turing machine = a general-purpose pro-
gramming language. I’ll use the universal Turing machine that I’m most
familiar with, the one U in [3], which has the property that for any other
Turing machine C, there is always a prefix πC such that the output U(πC p)
produced when the concatenation of πC with p is run on U , is the same as
the output C(p) produced when p is run on C. This shows that the programs
for U are concise, or, more precisely, not much bigger than the programs for
C.

However, we need to modify the universal machine U of [3] so that it
runs forever without producing any output or else produces a single positive
integer 1, 2, 3, as output. This is easy to do by filtering the output of U . In

4



addition, U requires programs to be self-delimiting, and not all bit strings
are valid programs. Here we need all finite bit strings to be valid programs.
This can be done by modifying U so that it ignores extra program bits and
loops forever if it runs out of program bits.

Since U is universal, our software space includes all possible algorithms
for calculating a positive integer.

3.2 Point mutations and mutation distance

Point mutations: change a bit, delete a bit, or insert a bit. (Some authors
allow adjacent bits to be interchanged, but I’ll omit that here.)

The most straight-forward way of defining a metric on software space is as
the number of point mutations required to get from one organism to another.

That’s the general idea, but sometimes we need a more subtle way to
define mutation distance, as − log2 of the probability of getting from one
organism to another via a single mutation. That is the right way to think
about mutation distance if you can go from any organism to another in one
mutation with small but non-zero probability, which we need to do in model
1 to avoid getting stuck on a local fitness maximum.

3.3 The fitness function: Naming big numbers

The bigger the positive integer that is produced by a program, the fitter it
is. If it never produces any output because it never halts, then it is totally
unfit.

3.4 We need an oracle for the halting problem

In our models we will need to use an oracle for the halting problem, because
if a random mutation would give us a program that never produces any
output, we want to be able to skip it. If it does produce output, we can run
the program and see how fit it is.

4 Model 1: A random walk in software space

In this model we consider a single software organism, initially the empty
program = zero-length bit string. At each step N , we pick a mutation at

5



random, and check if the resulting organism is more fit. If so, this organ-
ism becomes our new step (N + 1)th organism. Otherwise we pick another
mutation at random and continue as before.

The problem here is to get the random walk to cover the entire software
space, i.e., be ergodic. If we pick a point mutation at random this will not
happen. There is also the problem of being stuck in a local fitness maximum.

To avoid these problems, we can’t just use point mutations, we need to
do something more sophisticated. We need a small but non-zero probability
of going from any software organism to any other.

One way to get this to work, which just happens to be the first way that
I could think of, but which is no doubt only one of many possible ways to
accomplish this, is as follows:

• To get each new organism, use a single point mutation with proba-
bility 1/2, use two point mutations with probability 1/4, three with
probability 1/8, etc.

• Also, bias the point mutations to change the beginning of the program.
This is a good strategy since our universal computer U reads a self-
delimiting prefix from the beginning of the program string and then
runs it (see [3]).

• The point mutation will delete, flip, or insert a bit at the first bit of
the program with probability 1/2, it will make a change at the second
bit with probability 1/4, at the third bit with probability 1/8, etc.

If the rules of the game are set up in this way, a single mutation consisting
of many point mutations will eventually insert a prefix at the beginning of
the software organism that computes an extremely large positive integer and
that ignores the rest of the program string. The result is that one can show
that with high probability the fitness of our software organism will grow
faster than any computable function of the step N , which shows that genuine
creativity is occurring.

I omit the detailed calculations and estimates.

5 Model 2: Evolution in parallel

In this model we consider a population of software organisms, not a single
organism. We start as before with a trivial program, and at each stage add to

6



our population all the software organisms that are one point mutation away
from the organisms in our current population. More precisely, each organism
gives birth to all those organisms one point mutation away. So by stage N
our population will include all N -bit software organisms, since we can add a
bit at each stage.

Furthermore, fit organisms have many siblings. When an organism is
added to the population, we check its fitness. If this is K, we add K addi-
tional copies of that organism to our population.

Programs that produce extremely large numbers K will quickly predom-
inate. In fact, at stage N the organism with the most siblings will be the
≤ N -bit program that calculates the biggest number K. This value of K is
by definition the Busy Beaver function of N bits, the largest output that can
be produced by a program ≤ N bits in size, and grows faster than any com-
putable function of N . This value of K is also the greatest positive integer
with program-size complexity (as defined in [3]) ≤ N .

Model 2 is simpler than model 1, and it evolves more quickly, because
it is evolving in parallel. Note that this is a deterministic model. However,
the history leading from the initial organism to each individual organism at
stage N , will still look like a random walk.

6 Model 3: The trivial model

Let me now criticize our two previous models. Here is another model of
evolution.

At stage N look at all programs ≤ N bits in size and select the one that
produces the biggest output, which is in fact the Busy Beaver function of N
bits, the largest output that can be produced by a program ≤ N bits in size.

This is even simpler than our previous model, and does just as well. Why
did we take the trouble to formulate models 1 and 2, if model 3 is simpler
and does just as well?

The answer is that the problem with model 3 is that it is not at all
biological in spirit. This is not how Nature searches through the space of all
possible organisms.

7



7 Discussion

As the trivial model shows, if you have an oracle for the halting problem (and
all three of our models do), it is easy to obtain concise names for extremely
big numbers. It is the way the search through software space is done that
is biological, not the organism that you come up with. (Although the way
the search is done will influence the kinds of organisms that you are likely to
get.)

I should also emphasize that at best our models are the Platonic ideal that
biological evolution attempts to approach, they are not the real thing we see
happening around us. Nature does not have an oracle for the halting problem,
and the number of organisms cannot increase exponentially indefinitely.

Furthermore, different models may be required to shed light on each of
the problems (1) through (5) discussed in Section 1. In this paper, we have
only addressed point (4), why does complexity increase? We get complexity
to provably increase by choosing a fitness function that rewards creativity
and by making sure that our random walks in software space are ergodic,
i.e., cover the entire space.

References

[1] G. J. Chaitin, “To a mathematical definition of ‘life’,” ACM SICACT
News, No. 4 (January 1970), pp. 12–18.

[2] David Berlinski, The Devil’s Delusion, Crown Forum, 2008, pp. 192–
197.

[3] G. J. Chaitin, Exploring Randomness, Springer-Verlag, 2001.

[4] G. J. Chaitin, “Speculations on biology, information and complexity,”
EATCS Bulletin, Vol. 91 (February 2007), pp. 231–237. Reprinted in
G. J. Chaitin, Thinking about Gödel and Turing, World Scientific, 2007.

[5] Andrew Hodges, One to Nine, Norton, 2008, pp. 246–249, Alan Turing,
Simon and Schuster, 1983, p. 145.

[6] Hugo Steinhaus, Mathematical Snapshots, Oxford University Press,
1969, pp. 29–30.

8



[7] Donald E. Knuth, “Mathematics and computer science: Coping with
finiteness,” in D. E. Knuth, Selected Papers on Computer Science, CSLI
Publications, 1996, pp. 31–33, 58.

[8] Martin Davis, The Universal Computer, Norton, 2000, pp. 169, 235.

[9] Scott Aaronson, http://www.scottaaronson.com/writings/bignumbers.

html

[10] Wikipedia, http://en.wikipedia.org/wiki/Busy_beaver

9




