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Abstract

The paper investigates bounds on various notions of complexity for
ω–languages. We understand the complexity of an ω–languages as the
complexity of the most complex strings contained in it. There have been
shown bounds on simple and prefix complexity using fractal Hausdorff
dimension. Here these bounds are refined by using general Hausdorff
measure originally introduced by Felix Hausdorff. Furthermore a lower
bound for a priori complexity is shown.
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1 Introduction

Algorithmic complexity was introduced to investigate the amount of informa-
tion of strings. It measures the information of a string as the length of the
shortest programme that outputs the string. A comprehensive work on the
variants of complexity is the book [4] by Li and Vitániy. The approach on
ω–languages we follow is to find complexity bounds for the most complex
ω–words contained in the ω–language. Here we find another witness to the
obvious assumption that large ω–languages contain complex ω–words. The
notion of ’large’ used in this paper is taken from geometric measure theory. In
[3] Felix Hausdorff introduced the general fractal Hausdorff measure which
allows a detailed investigation of infinite sets having Lebesgue measure zero.
The concepts of fractal geometry are described at full length in Falconer’s book
[2]. In the papers [8] and [1] have been proved lower bounds for simple and
prefix complexity depending on the Hausdorff dimension. We use the general
Hausdorff measures to improve these bounds and to find a lower bound on a
priori complexity for ω–languages.

2 Notation and Preliminary Results

In this section we briefly recall the concept of Kolmogorov complexity of (in)fi-
nite words and measures (of ω-languages). For more detailed information
the reader is referred to the textbooks [4] and [2]. In the following X is a fi-
nite alphabet with cardinality |X| = r. By X∗ we denote the set (monoid) of
words on X, including the empty word ε, and Xω is the set of infinite words
(ω–words) over X. For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concate-
nation. We extend this concatenation in the obvious way to subsets W ⊆ X∗

and B ⊆ X∗ ∪ Xω. For a language W let W∗ :=
⋃

n∈N Wn be the submonoid of
X∗ generated by W, and by Wω := {w1 · · ·wn · · · | wn ∈ W \ {ε}} we denote
the subset of Xω formed by concatenating words of W. Furthermore |w| is
the length of the word w ∈ X∗ and pref(B) is the set of all finite prefixes of
strings in B ⊆ X∗ ∪ Xω, we abbreviate w ∈ pref({η}) by w v η. By ξ[n] we
denote the prefix of ξ ∈ X∗ ∪ Xω of length n. And again for any language W
let Wδ := {ξ | |pref(ξ) ∩W| = ∞} the subset of ω–words of Xω containing
infinitely many prefixes of W, called δ–limit of W.
It is useful to consider the set Xω as a metric space (Cantor space) (Xω, ρ) of
all ω–words over the alphabet X where the metric is ρ is defined as follows

ρ(ξ, η) := inf{r−|w| | w @ ξ ∧ w @ η}

The open (and simultaneously closed) balls in (Xω, ρ) are the sets of the form
w · Xω, where w ∈ X∗. The diameter of these balls is d(w · Xω) = r−|w|.
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Programme size complexity defines the complexity of a finite string to be the
length of a shortest programme which prints the string. Let ϕ : X∗ → X∗ be a
partial–recursive function. The complexity of a word w ∈ X∗ with respect to
ϕ is defined as

Kϕ(w) := {|π| | π ∈ X∗ ∧ ϕ(π) = w} (1)
It is well known that there is an optimal partial–recursive function U, that is, a
function satisfying that for every partial–recursive function ϕ

∃cϕ∀w(w ∈ X∗ → KU(w) ≤ Kϕ(w) + cϕ) (2)

We fix an optimal function U and further on we call the complexity with respect
to this function KS. The conditional complexity Kϕ(w|n) is length of a shortest
programme which outputs w under the additional input n (w.r.t. function ϕ).
For every w ∈ X∗ and n ∈N holds KS(w|n) ≤ KS(w) + c true.
If we solely consider partial–recursive functions ϕ with prefix–free domains
dom(ϕ) ⊆ X∗ we obtain an optimal function in the same way. The complexity
function with respect to this (fixed) optimal function is called KP.
The third notion of complexity this paper deals with is a priori complexity. It
is obtained in the following way. Consider a semimeasure m on X∗, that is a
function which satisfies m(ε) ≤ 1 and m(w) ≥ ∑x∈X m(wx), for any w ∈ X∗.
In [10] Levin proved the existence of a universal semicomputable semimeasure
m′, that is for all semimeasures m there is a constant cm such that

∀w ∈ X∗ m(w) ≤ cm ·m′(w) (3)

Then the a priori complexity is defined as KA(w) = − logr m′(w). A well
known property of KA is

2.1 Proposition The function KA is a minimal upper semicomputable total
function satisfying

∑
w∈M

r−KA(w) ≤ 1, for any prefix–free set M ⊆ X∗.

Accordingly, the complexity of an infinite word ξ is a function mapping the
natural number n to the complexity of the n–length prefix of ξ.

2.1 Definition Let ξ ∈ Xω.

1. The function KS(ξ[·]) : N→N is called simple Kolmogorov complexity
of ξ.

2. The function KS(ξ[·]|·) : N×N → N is called conditional complexity
of ξ.

3. The function KP(ξ[·]) : N→N is called prefix complexity of ξ.

4. The function KA(ξ[·]) : N→N is called a priori complexity of ξ.

Throughout the paper the notation follows mainly Uspensky and Shen in [9].
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3 Generalisation of Hausdorff Measure

As mentioned above, we achieve complexity bounds by a fractal (Hausdorff–)
measure. For the purpose of defining the desired measures we need to charac-
terise dimension–functions, that is, functions that “behave well” in the neigh-
bourhood of zero. The behaviour below zero is not important for the definition
of our measures. In detail we have the following requirements

3.1 Definition A function h : [0, ∞)→ [0, ∞) is called dimension function if

1. h(t) > 0 for all t > 0, h(0) = 0,

2. h is increasing for t ≥ 0, and

3. h is continuous from the right for all t ≥ 0.

Now we use the usual construction of an outer measure.

3.2 Definition For F ⊆ Xω and h a dimension function

Hh(F) := lim
l→∞

inf

{
∑

w∈W
h(r−|w|) | F ⊆W · Xω ∧ ∀w(w ∈W → |w| ≥ l)

}

is called the Hausdorff h–measure (or h–measure) of F.

Here the condition ∀w(w ∈ W → |w| ≥ l) means, that the diameters of the
covering sets are at most r−l. A well–known family satisfying the conditions of
Definition 3.1 is the family of exponential functions h(t) = tα, with 0 ≤ α ≤ 1.
The measures derived from these functions are the common α–dimensional
(Hausdorff–) measures which we call Lα throughout the paper.
First we examine how the different measures are related to each other. Given
two dimension functions g and h a comparison of Hh and Hg can be achieved
by simply comparing the behaviour of the functions g and h close to zero.
The following lemma gives a relation between the behaviour of the dimension
functions g and h and the corresponding measuresHh andHg.

3.1 Lemma ([3])
Let g, h dimension functions and F ⊆ Xω.

1. If h(t)
g(t) −→ 0 for t −→ 0, then Hg(F) < ∞ implies Hg(F) = ∞ and

Hh(F) > 0 impliesHg(F) = ∞.

2. If c1 · g(t) ≤ h(t) ≤ c2 · g(t) for constants c1, c2 > 0 and sufficiently small
t, then for every ω–language F it holds c1 · Hg(F) ≤ Hh(F) ≤ c2 · Hg(F).
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From this lemma we derive that if g(t) ≤ h(t) for sufficiently small t, then
Hg(F) ≤ Hh(F). Especially if g(t) = c · h(t) for some c > 0, then
Hg(F) = c · Hh(F). Additionally, the second part gives us the following equiv-
alence of the measures Hg and Hh: the measures Hg and Hh are simultane-
ously zero, positive or infinite, respectively.
First we prove under which conditions an ω–language has non–zero h–measure,
and subsequently use these conditions to prove our bounds. The proof of this
result follows the line of Lemma 3.8 in [8].

3.2 Theorem Let V ⊆ X∗ and h be a dimension function. Then

∑
v∈V

h(r−|v|) < ∞ implies Hh(Vδ) = 0.

Proof. Let V(i) := {v | v ∈ V ∧ |A(v)∩V| = i + 1}. Then V(i) contains exactly
those words of V, having i + 1 prefixes in V. Thus for every i ∈ N we have
V(i) · Xω ⊇ Vδ and V is disjoint union of all V(i). Further on

Hh(Vδ) ≤ ∑
v∈V(i)

h(r−|v|), for all i ∈N.

And since the sum ∑v∈V h(r−|v|) converges the right hand side tends to zero
for large i. o

4 Refinement of Complexity Bounds

4.1 Simple Kolmogorov complexity

In this section we derive our announced refinement of bounds. First we in-
vestigate simple Kolmogorov complexity. We want to improve the result from
[8]. There it is stated that for an ω–language F ⊆ Xω with Lα(F) > 0 and
an arbitrary function f : N → N which is growing not too slow, that is
∑i∈N r− f (i) < ∞, there is a ξ ∈ F satisfying

KS(ξ[n]) ≥a.e. α · n− f (n) (4)

In particular this shows that KS(ξ[n]) ≥a.e. α · n− (1 + ε) logr(n).
The next result states, that the gap between the complexity of the most complex
ω–words of a language having non–zero h–measure and function
− logr(h(r−n)) is at most (1 + ε) · log n.
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4.1 Theorem (Refinement of Inequality 4)
Let F ⊆ Xω and f : N→N an arbitrary function satisfying ∑i∈N r− f (i) < ∞.

ThenHh(F) > 0 implies

∃ξ(ξ ∈ F ∧KS(ξ[n]) ≥a.e. − logr(h(r−n))− f (n)

Proof. Define the set of all ω–words with high (conditional) complexity with
respect to dimension–function h and function f as

E(h, f ) := {ξ | KS(ξ[n] | n) ≥a.e. − logr(h(r−n))− f (n)}.

Its complement consists of all ω–words having at least infinitely many prefixes
w with complexity less than − logr(h(r−|w|))− f (|w|). Thus this complement
is the δ-limit of the set V := {v | KS(v | |v|) < − logr(h(r−n))− f (n)}. Count-
ing the number of elements of a fixed length n in this set gives us an estimate
for |V ∩ Xn| = |{w | |w| = n ∧ KS(w | n) < − logr(h(r−n)) − f (n)}| ≤
r− logr(h(r−n))− f (n). In order to utilise Lemma 3.2 we consider the following
sum:

∑
v∈V

h(r−|v|) = ∑
i∈N

|V ∩ Xn| · h(r−i)

≤ ∑
i∈N

r− logr(h(r−i))− f (i) · h(r−i) = ∑
i∈N

r− f (i) (5)

Due to our assumed properties of f the sum (5) is finite. Thus Lemma 3.2
yields Hh(Vδ) = Hh(Xω \ E(h, f )) = 0. Hence Hh(F) = Hh(F ∩ E(h, f )), for
any ω–language F ⊆ Xω. This gives us F ∩ E(h, f ) 6= ∅, wheneverHh(F) > 0,
which proves our theorem. o

Consider an ω–language F with Lα(F) = ∞ and Lα′(F) = 0, for any α′ > α.
Thus there exists a ξ ∈ F fulfilling Inequality 4, that is K(ξ[n]) ≥a.e. α · n− f (n).
Now take h as a function converging faster to zero than r−α·n satisfying
Hh(F) > 0 and

∀ε > 0 r−α·n > h(r−n) > r−(α+ε)·n

for all n > n0 and some n0 ∈N. Then our refined bound states there is a ξ ∈ F
with K(ξ[n]) ≥a.e. − log h(r−n) − f (n) > α · n − f (n). Thus the bound has
been raised.
On the other hand let Lα(F) = 0 and Lα′(F) = ∞, for any α′ < α. Thus for any
ε > 0 there is ξ ∈ F with K(ξ[n]) ≥a.e. (α− ε) · n− f (n). Now let h be again a
dimension–function fulfilling

∀ε > 0 r−(α−ε)·n > h(r−n) > r−α·n

and Hh(F) > 0. As above we can now raise the bound from (α− ε) · n− f (n)
to − log h(r−n)− f (n).
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4.1 Example Let X = {a, b}, F := {a, b} · ∏∞
i=0

(
{a, b}2i−1 · a

)
and f with

∑i∈N r− f (i) < ∞ fixed. One can show that L1(F) = 0 and L1−ε(F) = ∞,
for any ε > 0. Thus there is a ξ ∈ F such that for any ε > 0

KS(ξ[n]) ≥a.e. (1− ε) · n− f (n)

Now consider the dimension function h(r−|w|) = r−|w| · |w|. The h–measure of
F isHh(F) = 1. Hence by Theorem 4 there is a ξ ∈ F such that

KS(ξ[n]) ≥a.e. − log(r−n · n)− f (n) = n− log n− f (n).

This bound is almost everywhere strictly greater than (1− ε) · n− f (n).

If 0 < Lα(F) < ∞ Theorem 4.1 yields no improvement. This can be seen by
Lemma 3.1.
In the proof of Theorem 4.1 we have shown that the measure of the set of
ω–words of low conditional complexity is zero. Thus we can formulate a sim-
ilar result for conditional complexity.

4.2 Corollary Let F ⊆ Xω, Hh(F) > 0 and f : N → N an arbitrary function
satisfying ∑i∈N r− f (i) < ∞.
Then there is a ξ ∈ F satisfying KS(ξ[n] | n) ≥ − logr(h(r−n))− f (n) for al-
most every n ∈N.

4.2 Prefix complexity

Due to the fact that the domains of prefix functions have to be prefix–codes,
the prefix–complexity of a ω–word is higher than its simple or conditional
complexity. The known bound in Equation 6 is taken from [1]. Again, let
F ⊆ Xω an ω–language having Lα(F) > 0 and c > 0 an arbitrary constant.
Then there is a ξ ∈N satisfying

KP(ξ[0 . . . n]) ≥a.e. α · n− c (6)

To refine this bound for prefix complexity we take an approach similar to the
one for simple complexity. Here again we replace the linear function α · n by
− logr(h(r−n)).

4.3 Theorem (Refinement of Inequality 6)
Let F ⊆ Xω, Hh(F) > 0 and c > 0 a constant. Then there is a ξ ∈ F fulfilling

KP(ξ[0 . . . n]) ≥a.e. − logr(h(r−n))− c.

Proof. We prove this by showing that the set of ω–words having infinitely
many prefixes of lower complexity is a Hh–null set. We consider this set as
the union of δ–limits of the sets Wc = {w | KP(w) ≤ − log(h(r−|w|)) + c},
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depending on the constant c ∈ N. In order to utilise Lemma 3.2 again we
estimate the following bound

1 > ∑
w∈X∗

r−KP(w) > ∑
w∈Wc

r−KP(w) ≥ ∑
w∈Wc

r−c · rlog h(r−|w|) ≥ r−c · ∑
w∈Wc

h(r−|w|)

The first part is known as Kraft’s inequality. Since c is a constant we have
∑w∈Wc h(r−|w|) < ∞, thus Lemma 3.2 yields Hh(Wδ

c ) = 0, for arbitrary c ∈ N.
Now from Hh(F) > 0 it follows that F \ ⋃c∈N Wδ

c 6= ∅, which in turn shows
our assertion. o

The same arguments as for simple complexity prove that we achieved a refine-
ment of Inequality 6. A similar result for computable functions h is proved in
[6, Theorem 2.6]. Analysing the proof of Theorem 4.3 it yields the following.

4.4 Theorem Let F ⊆ Xω andHh(F) > 0. Then it holds

1. Hh
(⋃

c∈N{ξ | KP(ξ[0 . . . n]) ≤i.o. − log(h(r−|w|))− c}
)

= 0

2. There is a ξ ∈ F, such that

lim
n→∞

KP(ξ[0 . . . n])− (− log(h(r−|w|))) = ∞

4.3 A priori complexity

The last complexity we investigate is a priori complexity. It is known from [4]
and [9] that a priori complexity is upper bounded by prefix complexity but in-
comparable to simple complexity. The result we show states that
ω–languages F having positive Hh–measure contain ω–words of complexity
at least − logr(h(r−n)) up to a constant dependent onHh(F).

4.5 Theorem Let F ⊆ Xω and Hh(F) > 0. Then for any constant
c > − logHh(F)1 there is a ξ ∈ F such that

KA(ξ[0 . . . n]) ≥a.e. − logr(h(r−n))− c.

Proof. As in the proof of Theorem 4.1 we define the set of ω–words
not fulfilling the asserted inequality as the δ-limit of
Wc = {w | KA(w) ≤ − log(h(r−n))− c}. By Vm we denote those words of Wc
having at least length m

Vm = {w | |w| ≥ m ∧KA(w) ≤ − log(h(r−|w|))− c}
1Here it is understood that − log ∞ = −∞
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Then Vm+1 ⊆ Vm, for any m ∈ N. Let Vm be the set of all words in Vm which
have no prefix in Vm. Then Vm is a prefix code and Vm · Xω covers Wδ

c . Using
Proposition 2.1 we can estimate theHh–measure of Wδ

c as follows

Hh(Wδ
c ) = lim

n→∞
inf

{
∑

v∈V
h(r−|v|) | V · Xω ⊇Wc ∧ l(V) ≥ n

}
≤ lim

m→∞ ∑
v∈Vm

h(r−|v|) = lim
m→∞ ∑

v∈Vm

rlog h(r−|v|)

≤ lim
m→∞ ∑

v∈Vm

r−KA(v)−c ≤ r−c

Now if c > − logrHh(F) we haveHh(Wδ
c ) ≤ r−c < Hh(F), and, consequently,

Hh(F \Wδ
c ) > 0. Thus the set F \Wδ

c is not empty, which in turn proves our
assertion. o

Note that this result is not similar to Theorem 4.3. In contrast to prefix com-
plexity the bound for a priori complexity is not valid for all constants. The con-
stant depends on the ω–language and itsHh–measure. The following example
states that the difference between a priori complexity and− log(h(r−|w|)) may
not grow unboundedly.

4.2 Example Let X = {0, 1, 2} and F = (X · 0)ω. Then we have L 1
2
(F) = 1.

Consequently there is a ξ ∈ F such that KA(ξ[n]) ≥a.e.
1
2 · n− c, for arbitrary

c > 0. On the other hand one can easily see that

KA(x10x20 . . . x n
2
0) ≤ KA(x1x2 . . . x n

2
) + c′ ≤ 1

2
· n + c′′. (7)

Thus a similar result like the one in the second part of Theorem 4.4 for KA is
not valid.
Now let V = {1, 2}∗ · 0 and F′ = V · F. Then V is a prefix code and therefore
(see [5])

L 1
2
(F′) = ∑

v∈V
r

1
2 ·|v| ·L 1

2
(F) = ∑

v∈V
r

1
2 ·|v| = ∞

and L 1
2 +ε(F′) = 0, for any ε > 0. Since KA(v · ξ[n]) ≤ KA(ξ[n]) + cv all

ω–words in F′ have a linear upper a priori bound KA(ξ ′[n]) ≤ 1
2 · n + cξ ′ . This

shows that even for ω–languages of infinite measure the linear lower bound
of Theorem 4.4 is, in general, not improvable.

5 Conclusion

We have seen that the known bounds of simple (conditional) and prefix com-
plexity could be refined using a more general measure than the α–dimensional
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measure. From the result on a priori complexity one sees that the lower bound
is valid for monotone complexity (see [4] or [9]), too. Moreover, it is known
(see [9]) that the difference between a priori and monotone complexity is bound-
ed by a slow growing recursive function. This leads to the conjecture that one
cannot obtain better lower bounds for monotone complexity than for a priori
complexity. Our last example states that in general the lower bound for a priori
complexity cannot be improved.
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