
CDMTCS
Research
Report
Series

A New Linear-Time
Dominating Number
Algorithm for Graphs of
Bounded Pathwidth

Michael J. Dinneen
Aisha J.L. Fenton
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-329
July 2008

Centre for Discrete Mathematics and
Theoretical Computer Science

A New Linear-Time Dominating Number
Algorithm for Graphs of Bounded Pathwidth

Michael J. Dinneen and Aisha J.L. Fenton
Department of Computer Science

University of Auckland
Auckland, New Zealand

Abstract

We present a simple algorithm for determining the minimum dominating
number of any graph of bounded pathwidth. The algorithm has running time
O(3t+1n) where n is the size of the graph and t is a fixed pathwidth bound.
We also present an implementation in Python of this algorithm extended to
handle graphs of bounded treewidth.

1 Introduction

This paper describes a simple linear-time algorithm for determining the minimum
dominating number of a graph of bounded pathwidth. The minimum dominating
number problem asks for a graph G, what is the minimum S ⊆ V (G) such that ev-
ery vertex is either in S or a neighbour of a vertex in S. The minimum dominating
number of a graph is a well known problem in graph theory and has applications
in many common engineering problems.

In general the minimum dominating set problem has been shown to be NP-
complete [8]. As many NP-hard problems have wide applicability and underlie
many important real-world engineering and optimization problems, tractable so-
lutions have been sought for restricted problem domains. A common approach for
NP-hard problems within the graph theory setting has been to restrict the input
type to graphs of some fixed property or parameter; the aim being to produce
solutions with polynomial running time for the restricted class of graphs. This is
the approach we follow here.

Arnborg and Proskurowski gave a linear-time algorithm for determining the
minimum dominating number for graphs of bounded treewidth [1]. The algorithm

1

we present here shares some similarities with those presented by Arnborg and
Proskurowski but we believe our algorithm is easier to use and in practice will be
more efficient for small pathwidths. Additionally the algorithm presented in this
paper is fully specified.

The rest of this paper is organized as follows: Section 2 introduces the graph
theory setting; Section 3 provides some results and notations that we use through-
out the rest of this paper; Section 4 presents a high-level sketch of the Minimum
Dominating Set (MDS) algorithm with the aim to illustrate its key concepts; Sec-
tion 5 provides the full details of the MDS algorithm and an example of its oper-
ation.

2 Background

In this section we provide a short overview to those areas of the graph theory
setting that are used throughout the paper. We assume familiarity with common
graph-theoretic notations; reference can be made to [5] for an overview of the graph
theory setting and common notations if required.

2.1 Minimum dominating number

The minimum dominating set problem has a long history and can been seen as a
generalization of the classic chess problem, Queens Domination, that dates back
to at least the publication of [9] in 1862.

Definition 1. A dominating set of a graph G is a set S ⊆ V (G) such that for

every v ∈ (V (G)�S), v is in the neighbourhood of a member of S. The dominating

number of a graph G is the minimum cardinality over all S. Let γ(G) denote the

dominating number of G, and Λ(G) denote the set of dominating sets of G that

are minimal.

Example 2. The following finite graph G has the dominating set S = {a, e}.
Observe that S is minimal as no smaller dominating set exists for G. Therefore

we say that the minimum dominating number of γ(G) = 2.

2.2 Graphs of bounded pathwidth

The important notions of pathwidth and treewidth were introduced by Robertson
and Seymour [3, 4]; they codify the notion of how closely a graph’s structure
resembles that of a path and tree respectively. We use pathwidth within this

2

a

b

c

d e f

Figure 1: G with dominating set

paper to restrict the type of graphs accepted by our algorithm to those graphs
with pathwidth at most k for some k ∈ N.

Definition 3. A path decomposition of a graph G is a sequence {X1, X2, X3, ..., Xr}
of subsets of V (G) such that the following are satisfied:

1.
⋃

1≤i≤r Xi = V (G)

2. For every edge uv ∈ E(G) there exists an Xi, 1 ≤ i ≤ r such that u ∈ Xi

and v ∈ Xi

3. For 1 ≤ i < j < k ≤ r, Xi ∩Xk ⊆ Xj

Definition 4. The pathwidth of a path decomposition [X1, X2, X3, ..., Xr] is equal

to max1≤i≤r|Xi| − 1. And the pathwidth of a graph G is defined as the minimum

pathwidth over all G’s path decompositions.

Example 5. Figure 2 depicts a graph with one of its path decompositions, {X1, X2, X3,

X4, X5}. This path decomposition has a maximum cardinality of 3 over all Xi. As

the path decomposition is minimal, we conclude that the graph has pathwidth is

2.

2.3 Graph t-parse encoding

The input to our algorithm (henceforth called the ‘MDS algorithm’) is encoded
as a t-parse; a t-parse is an encoding of a bounded pathwidth graph into a string
representation [6, 7]. Although not strictly necessary for the operation of the MDS
algorithm it has the convenient property of ordering the elements of a graph into
a sequence [e1, e2, ..., el] where ei ∈ V (G) ∪ E(G) and consequently orders the set
of partial solutions emitted by the MDS algorithm.

It is shown in [6] that a graph G has a t-parse encoding if and only if G has
pathwidth at most t.

3

path decomposition
sets Xi

|Xi|=3

Figure 2: Graph G and path decomposition

Definition 6. We start by defining the language Σ∗
t .

Σt = Vt ∪ Et

Vt = { 0n, 1n, ..., tn}
Et = { i j : i, j ∈ Vt, i 6= j}

Each character of Σt represents a distinct operation that is performed against

a given graph. These operations are defined as follows for the graph G:

inG = G + u and give vertex u the label i. If there is an existing vertex

v ∈ V (G) such that v is labeled i, then remove the label from v first (leaving

v unlabeled).

i j G = G + ij for i, j ∈ V (G) that are labeled i, j respectively.

Definition 7. A parse is a string of characters in Σ∗
t such that any edge operator

i j does not appear before the vertex operators inand jnwithin the string (that

is an edge does not appear before its corresponding vertices have been defined for

the first time).

4

Definition 8. A t-parse is a parse [o1, o2, ..., ol] such that all vertex operators

0n, 1n, . . . , tnappear at least once within [o1, o2, ..., ol].

The bounded pathwidth graph that is represented by a t-parse is called its
underlying graph. The underlying graph of a t-parse can be found by using the
following procedure: start with the empty graph G = ∅, scan left to right along
the t-parse performing each operation as represented by each character Ti. The
final state of G, after all operations have been performed is the t-parse’s underlying
graph.

Definition 9. For a given t-parse T and integer 1 ≤ i ≤ |T |, let Gi represent the

underlying graph of the t-parse given by the prefix T i
1.

Informally, a t-parse can simply be understood as a data structure that repre-
sents a bounded pathwidth graph. For simplicity of notation, henceforth, we will
use Gi to denote both the string T i

1 (that is the data structure) and the underlying
graph Gi – which exact meaning will be clear from the context of its use.

Observant readers will have noticed that as a t-parse’s underlying graph is built
that only the last t + 1 vertices are labeled and therefore ‘visible’ to subsequent
operations (e.g. edge operations). We define the active vertex set of a graph as
follows:

Definition 10. For a given t-parse G let the active boundary of G, denoted ∂(G),

be equal to the currently labeled vertices of G. In other words the last t+1 vertices

that were added to the graph.

Example 11. The following example depicts G5 and G|T | for the t-parse T =

[0n, 1n, 2n, 0 1 , 0 2 , 2n, 0 1 , 0 2]. In each case the vertices of the graph’s

currently active boundary are shown in grey.

0

1

2

[0 , 1 , 2 , 0 1 , 0 2]

0

1

2

2

[0 , 1 , 2 , 0 1 , 0 2 , 2 , 0 2 , 1 2]

Figure 3: G5 and G|T |

5

3 Dominating Set Properties

In this section we introduce some properties of minimum dominating sets along
with some results that we’ll use throughout the rest of the paper.

Definition 12. For a given dominating set D ∈ Λ(G) and vertex v ∈ D let

U(v) equal the number of vertices that are uniquely dominated by v. In other

words U(v) equals the number of v’s neighbours that have no dominators in their

neighbourhood, except for v. If v does not uniquely dominate any of its neighbours

then U(v) = 0.

Lemma 13. If a vertex v ∈ D, for some D ∈ Λ(G), has U(v) = 0, then none of

v’s neighbours are within D, that is N(v) ∩D = ∅.

Proof. Assume that v does have a dominator x ∈ D in its neighbourhood. By

definition the vertices V (G)�{v} are dominated by the set D�v. Now if the

dominator x is in v’s neighbours then x can also dominate v. Therefore we are able

to construct a smaller dominating set D�{v} to dominate G, thus contradicting

the minimality of D.

Lemma 14. If a vertex v ∈ D, for D ∈ Λ(G), has U(v) = 0 then the dominating

set D′ = D�{v} is minimal for G− v (that is D′ ∈ Λ(G− v)).

Proof. By the definition of U(v) = 0, the vertices D�v dominate V (G)�{v}, so

D′ is a dominating set of G− v.

We now show that D′ is also minimal. Assume for sake of contradiction that

there exists a dominating set C ∈ Λ(G− v) with |C| < |D′|. Consequently we are

able to construct a dominating set C ′ = C ∪ {v} for the graph G. Now observe

that |C ′| = |C| + 1 giving us |C ′| ≤ |D′| < |D|. As we have contradicted the

minimality of D, we conclude that D′ ∈ Λ(G− v).

Corollary 15. If a vertex v ∈ D, for D ∈ Λ(G), has U(v) = 0, then γ(G− v) =

γ(G)− 1.

Definition 16. For a given subset of vertices s ⊆ V (G), let γs(G) denote the

cardinality of the smallest dominating set of the graph G that includes s as a

subset. Likewise, let Λs(G) denote the set of smallest dominating sets of a graph

G that include s as a subset.

Lemma 17. For a given vertex v ∈ V (G)|v /∈ s, U(v) = 0 if and only if γs(G) >

γs(G− v).

6

Proof. That U(v) = 0 =⇒ γs(G) > γs(G− v) follows from Corollary 15.

Conversely we show γs(G) > γs(G− v) =⇒ U(v) = 0 by construction. Given

v ∈ V (G) such that there exists a D ∈ Λs(G− v) with D < γs(G), we are able to

construct a minimum dominating set for the graph G with U(v) = 0 as follows: let

D′ = D ∪ {v}. Since D dominates all vertices V (G − v) and s ⊆ D we conclude

D′ ∈ Λs(G) with U(v) = 0.

Lemma 18. For a given subset of vertices r ⊆ V (G), |γs∪r(G)| = |γs(G)| if and

only if there exists a D ∈ Λs(G) such that r ⊆ D.

Proof. If there exists a D ∈ Λs(G) such that r ⊆ D then observe that D is also

a member of Λs∪r(G), implying that |γs∪r(G)| = |γs(G)|. Likewise if |γs∪r(G)| =

|γs(G)| then for D′ ∈ Λs∪r(G), D′ is a member of Λs(G).

4 Algorithm Sketch

We start by providing a high-level sketch of our MDS algorithm. We deliberately
leave out some details and make several assumptions at this stage with the aim to
provide a clear illustration of the key concepts used by the algorithm.

The MDS algorithm follows a dynamic programming approach. A bounded
pathwidth graph, encoded as a t-parse, is provided as input. The algorithm scans
through the t-parse from left to right, producing a partial solution for each under-
lying graph Gi. State information is maintained for the previous partial solution
and is used to calculate the next partial solution. The final solution is given after
processing the last operator within the t-parse.

4.1 Partial solution procedure

We now describe the procedure used by the MDS algorithm to derive the minimum
dominating number of a graph Gi+1. The procedure uses the state information from
the previous partial solution (of graph Gi) to calculate the minimum dominating
number for Gi+1. We leave it to the next section to fully detail how the required
state information for each partial solution is gathered; in particular we assume
knowledge of Gi’s dominating sets.

Let oi+1 be the operation at index i + 1 within the t-parse G.

1. If oi+1 is a vertex operator vnthen γ(Gi+1) = γ(Gi) + 1.

2. If oi+1 is an edge operator u v , such that for all D ∈ Λ(Gi), {u, v} ∩D 6=
{u, v} is true then γ(Gi+1) = γ(Gi).

7

3. If oi+1 is an edge operator u v , such that there exists a D ∈ Λ(Gi) with
{u, v} ∩D = {u, v} then

(a) If U(v) = 0 or U(u) = 0 within a dominating set D then γ(Gi+1) =
γ(Gi)− 1.

(b) Otherwise, γ(Gi+1) = γ(Gi)

The above procedure is now re-stated as a series of lemmas so that we may
present the corresponding proofs of the statements.

Lemma 19 (Rule 1). If Gi+1 = Gi+v where v is an isolated vertex then γ(Gi+1) =

γ(Gi) + 1.

Proof. This is trivially true, as an isolated vertex cannot be dominated by any

other vertices.

Lemma 20 (Rule 2). If Gi+1 = Gi +uv such that for all D ∈ Λ(Gi), D∩{u, v} 6=
{u, v} then γ(Gi+1) = γ(Gi).

Proof. We start by showing that γ(Gi+1) ≥ γ(Gi). Assume for sake of contradic-

tion that there exists a D′ ∈ Λ(Gi+1) with |D′| < |D|. It therefore must be possible

to construct a dominating set D′′ of Gi as follows:

D′′ =


D′ if D′ ∩ {u, v} = ∅ or D′ ∩ {u, v} = {u, v}
D′ ∪ {u} if D′ ∩ {u, v} = {v}
D′ ∪ {v} if D′ ∩ {u, v} = {u}

However examination of each value of D′′ shows that we have a contradiction! If

D′′ = D′ then |D′′| = |D′| < |D| thus contradicting the minimality of D. Moreover

if D′′ = D′∪{u} or D′′ = D′∪{v} then we have constructed a dominating set such

that D′′ ∈ Λ(Gi) and both vertices u, v are present together in the dominating set,

hence contradicting our definition of how the vertices u, v were to be chosen.

It is trivially the case that γ(Gi+1) ≤ γ(Gi) as adding an edge cannot increase

the dominating number of a graph. Therefore we conclude that γ(Gi+1) = γ(Gi)

Lemma 21 (Rule 3.a). If Gi+1 = Gi + uv and there exists a D ∈ Λ(Gi) such that

D ∩ {u, v} = {u, v} and U(u) = 0 or U(v) = 0 then γ(Gi+1) = γ(Gi)− 1.

8

Proof. We start by showing γ(Gi+1) ≤ γ(Gi) − 1 by construction. Without loss

of generality assume U(v) = 0, and let D′ = D�{v}. By definition D′ must

dominate all vertices V (Gi)�{v}. Recall that u ∈ D′, therefore the addition of

the edge between u and v must allow D′ to dominate all vertices V (Gi+1).

We now show the opposite direction: γ(Gi+1) ≥ γ(Gi)− 1. Assume for sake of

contradiction that there exists a D′ = Λ(Gi+1) such that |D′| < |D| − 1; we are

then able to construct a D′′ ∈ Λ(Gi) as follows:

D′′ =


D′ if D′ ∩ {u, v} = ∅ or D′ ∩ {u, v} = {u, v}
D′ ∪ {u} if D′ ∩ {u, v} = {v}
D′ ∪ {v} if D′ ∩ {u, v} = {u}

Observe that |D′′| ≤ (|D′|+ 1) < |D|, hence we have contradicted the minimality

of D and we conclude that γ(Gi+1) = γ(Gi)− 1

Lemma 22 (Rule 3.b). If Gi+1 = Gi + uv and for all D ∈ Λ(Gi) such that

D ∩ {u, v} = {u, v} the following is true, U(u) > 0 and U(v) > 0, then γ(Gi+1) =

γ(Gi).

Proof. It is trivially the case that γ(Gi+1) ≤ γ(Gi) as the addition of an edge

cannot increase the dominating number of a graph. Now consider the opposite

direction: γ(Gi+1) ≥ γ(Gi). Assume for sake of contradiction that there exists a

D′ = Λ(Gi+1) with |D′| < |D|; we are then able to construct a D′′ ∈ Λ(Gi) as

follows:

D′′ =


D′ if D′ ∩ {u, v} = ∅ or D′ ∩ {u, v} = {u, v}
D′ ∪ {u} if D′ ∩ {u, v} = {v}
D′ ∪ {v} if D′ ∩ {u, v} = {u}

However examination of each value of D′′ shows that we have a contradiction.

If D′′ = D′ then |D′′| < |D| thus contradicting the minimality of D. Furthermore

if D′ ∩ {u, v} = {u} then D′ will dominate all vertices V (Gi)�{v}. Hence D′′ =

D′ ∪ {v} is a minimum dominating set for Gi with v ∈ D′′ and U(v) = 0, thus

contradicting that U(v) > 0 must be true. A similar argument can be made for

D′′ = D′ ∪ {u}, hence we conclude that γ(Gi+1) = γ(Gi).

5 Main Results

We are now able to present the full details of the MDS algorithm, building upon
the conceptual framework given in Section 4.

9

5.1 MDS algorithm

The algorithm accepts a t-parse encoding G of a bounded pathwidth graph as
input and returns the minimum dominating number of the underlying graph. The
MDS algorithm uses the following procedure to calculate a return value.

For each prefix Gi, for 0 ≤ i ≤ |G|, we calculate a set of state information. Let
the tuple (s, q, i) index this state information, such that: q ∈ Q, s ∈ Sq

Q = P({0, 1, ..., t}) Sq = P({0, 1, ..., t}�q)

Next we assign each value of the tuple (s, q, i) an integer value called its state
entry, as follows:

(s, q, i) = γs(Gi − q)

In other words, the state information of each partial solution is comprised of the
minimum cardinalities of the dominating sets of the graphs Gi−q with the vertices
s included within them. Both s and q are subsets of the graph’s active boundary.

The state entry values for each new partial solution i + 1 is calculated using
the Calculate State Entry procedure given below. The procedure is provided with
the state information of Gi and returns a value for each tuple (s, q).

We now prove Theorem 23 and show that the MDS algorithm correctly cal-
culates the minimum dominating number of a t-parse G. Much of the proof has
already been provided in Section 4, so we build upon lemmas 19, 20, 21 and 22
and show how the information we assumed for these lemmas is obtained from the
state information we keep for each partial solution.

Theorem 23. The MDS algorithm gives the minimum dominating number of a

graph G, where G has bounded pathwidth.

Proof. We justify the steps of the algorithm below.

Line 4 Follows directly from Lemma 19.

Line 6 Let j be the label represented by the vertex operator jn. As a vertex v

already exists with label j, v is removed from the active boundary of Gi+1

and is therefore not excluded from the graph anymore. Hence our return

value is equal to the value indexed by (s, q�{j}, i).

Line 11 As either u or v is excluded from the current graph, the edge operation

defined by oi+1 is ignored.

10

Algorithm 1 Calculate State Entry (s, q) for i + 1

Require: q ∈ Q {Current boundary vertices removed from graph}
Require: s ∈ Sq {Current boundary vertices included in dominating set}
Require: oi+1 {Current operator under consideration}
Require: Prev[Q][Sq] {State info for partial solution Gi, indexed by Q, Sq}
1: if oi+1 is vertex operator then

2: Let v equal the vertex label represented by oi+1

3: if v /∈ q then

4: Return Prev[q][s] + 1

5: else

6: Return Prev[q�{v}][s] {Since v is replaced}
7: end if

8: else if oi+1 is edge operator then

9: Let {u, v} equal the edge represented by oi+1

10: if {u, v} ∩ q 6= ∅ then {Is u or v in q?}
11: Return Prev[q][s]

12: else {Therefore neither are in q}
13: if {u, v} ∩ s = {u, v} then {Are both u,v in s?}
14: Return Prev[q][s]

15: else if {u, v} ∩ s = ∅ then {Are both u,v not in s}
16: if Prev[q][s∪{u, v}] == Prev[q][s] then {Are both u,v in some D.S.?}
17: if (Prev[q ∪ u][s ∪ v] < Prev[q][s ∪ v]) ∨ (Prev[q ∪ v][s ∪ u] <

Prev[q][s∪ u]) then {Are either U(u) = 0 or U(v)=0 when the other

is dominator?}
18: Return Prev[q][s]− 1

19: else

20: Return Prev[q][s]

21: end if

22: else {Therefore one of u, v must be dominated by another vertex}
23: Return Prev[q][s]

24: end if

25: else {One of (u, v) ∈ s}
26: Assume u ∈ s and v /∈ s without loss of generality

27: if Prev[q ∪ v][s] < Prev[q][s] then {Does U(v) = 0?}
28: Return Prev[q][s]− 1

29: else

30: Return Prev[q][s]

31: end if

32: end if

33: end if

34: end if 11

Line 14 From the conditions given on line 13 both u, v ∈ s and therefore must be

included within any dominating set of Gi+1. Assume for sake of contradiction

that there exists a D ∈ Λs(Gi+1) with |D| < γs(Gi). However D is also a

member of Λs(Gi) as D dominates all V (Gi) – since u, v ∈ D – hence we

have a contradiction.

Line 18 From the conditions given on lines 16 and 17 – and applying Lemmas

18 and 17 respectively – we conclude that there exists a Ds ∈ Λs(Gi) where

u, v ∈ Ds and that either U(u) = 0 or U(v) = 0. Applying Lemma 21 directly

we conclude that γs(Gi+1) = γs(Gi)− 1.

Line 20 From the conditions given on lines 16 and 17 – and applying Lemmas

18 and 17 respectively – we conclude that for all Ds ∈ Λs(Gi) such that

u, v ∈ Ds the following is true, U(u) > 0 and U(v) > 0. Applying Lemma 22

directly we conclude that γs(Gi+1) = γs(Gi).

Line 23 From the condition given on line 16 – and applying Lemma 18 – we

conclude that for all D ∈ Λs(Gi), {u, v} ∩D 6= {u, v}. Applying Lemma 20

directly we conclude that γs(Gi+1) = γs(Gi).

Line 28 From the conditions given on lines 25 and 27 – and applying Lemma 17

– we conclude that there exists a Ds ∈ Λs(Gi) where u, v ∈ Ds and that

either U(u) = 0 or U(v) = 0. Applying Lemma 21 directly we conclude that

γs(Gi+1) = γs(Gi)− 1.

Line 30 From the conditions given on lines 25 and 29 – and applying Lemma 17 –

we conclude that for all D ∈ Λs(Gi) that U(u) > 0 and U(v) > 0. Applying

Lemma 22 directly we conclude that γs(Gi+1) = γs(Gi).

5.2 Running time of MDS algorithm

Theorem 24. The running time of the MDS algorithm is O(n).

Proof. Recall that we have set t equal to the upper bound of the input graph’s

pathwidth.

A single left to right scan is made of the t-parse by the MDS algorithm to obtain

the final solution. As a t-parse encodes the elements (that is both the vertices and

edges) of a graph, there will be O(n + m) operations. However as the input graph

12

has bounded pathwidth the number of edges within the graph are bounded by

m ≤ n(t + 1)− 1; hence we can reduce this to O(n).

For each partial solution the algorithm calculates a value for each tuple (s, q).

Recall that Q = P({0, 1, ..., t}) and that Sq = P({0, 1, ..., t}�q) hence there will

be
∑t+1

i=1

(
t+1

i

)
values of q and 2((t+1)−|q| values of s for each value of q. Each value

is updated in constant time, as detailed in the Calculate State Entry procedure

above, therefore we have:

T (MDS) = nc1

t+1∑
i=1

(
t + 1

i

)
2i + c2

= nc1(2 + 1)t+1 + c2 by the binomial theorem

= nc13
t+1 + c2

= O(n)

Although the MDS algorithm is linear in terms of the input graph’s size, it is
exponential in terms of t with O(3t+1) state entry values needing to be updated
for each element of the input graph. However, the constants c1 and c2 will be
very small in practice, consequently allowing the algorithm to be quite practical
for small values of t.

6 Extending Algorithm for Graphs of Bounded

Treewidth

We now present a concrete implementation of our dominating set algorithm. Ac-
tual working Python code is given in Figure 4. We also extend our pathwidth
algorithm to handle graphs of bounded treewidth by including a method to up-
date the state tables for the circle plus ⊕ operator (see [6]). Here we can glue
together two t-parse’s by identifying boundary vertices with the same label. Thus
a treewidth t-parse is a tree of unary (vertex and edge) operators and binary circle
plus operators. We summarize our MDS algorithm procedure below in terms of
our dominating set state representation of a t-parse:

For 0 ≤ x ≤ t of the boundary. let f : {0, 1, . . . , t} → {0, 1, 2} be an index
denoting a dominating set cover D with x ∈ D (if f(x) = 0), not in D but covered
but by a t-parse vertex of D (if f(x) = 1), or not covered yet (assumed to be
covered by an extension when f(x) = 2).

13

#!/usr/local/bin/python

import sys, re, array

class tOp:
 "A t-parse Operator"
 def __init__(self,tok): self.tok=int(tok)
 def __str__(self): return str(self.tok)
 def isEdgeOp(self): return (self.tok > 9)
 def isVertexOp(self): return (self.tok <= 9)
 def v1(self): return self.tok % 10 # vertex 1
 def v2(self): return self.tok / 10 # vertex 2 if EdgeOp

def rankDS(f):
 "produce dominating state from boundary states"
 " 0= 'in DS', 1= 'dominated but not in DS', 2= 'future dominated'"
 num=0
 for i in range(t+1): num=num*3+f[t-i]
 return num

def unrankDS(num):
 "extract boundary vertex dominating state from index"
 f=[]
 for i in range(t+1):
 f.append(num % 3); num /= 3;
 return f

def pwDS(pwTokens,state):
 "dynamic program for Pathwidth Dominating Set"
 for op in pwTokens:
 o=tOp(op); # print o
 stateOld=state[:]
 if o.isEdgeOp():
 v1=o.v1(); v2=o.v2()
 for i in xrange(3**(t+1)): # update all state boundary combinations
 f=unrankDS(i)
 if (f[v1]==0 and f[v2]==2) or (f[v1]==2 and f[v2]==0): state[i]=1<<30
 elif f[v1]==0 and f[v2]==1:
 fnew=f[:]; fnew[v2]=2; inew=rankDS(fnew)
 state[i]=min(stateOld[i],stateOld[inew])
 elif f[v1]==1 and f[v2]==0:
 fnew=f[:]; fnew[v1]=2; inew=rankDS(fnew)
 state[i]=min(stateOld[i],stateOld[inew])
 else: # isVertOp()
 v1=o.v1()
 for i in xrange(3**(t+1)):
 f=unrankDS(i)
 if f[v1]==0:
 fnew=f[:]; fnew[v1]=1; inew=rankDS(fnew)
 state[i]=min(stateOld[i],stateOld[inew])+1
 elif f[v1]==1: state[i]=1<<30
 elif f[v1]==2:
 fn1=f[:]; fn1[v1]=0; in1=rankDS(fn1)
 fn2=f[:]; fn2[v1]=1; in2=rankDS(fn2)
 state[i]=min(stateOld[in1],stateOld[in2])
 return state

Figure 4: Dominating set algorithm implemented using Python.

14

Dominating Set (cont.)

def init_count(n):
 "how many in DS without internal DS vertices"
 cnt=0
 for i in unrankDS(n):
 if i==1: return 1 << 30 # no minimum since not dominated
 elif i==0: cnt+=1 # count this vertex
 return cnt

def twDS(G):
 "dynamic program for Treewidth Dominating Set"
 G=G.strip(); #print "G=",G
 state=array.array('i', map((lambda n:init_count(n)), range(3**(t+1))))
 if len(G)==0: return state # state of empty t-parse
 if G[0]!='(': return pwDS(re.findall('\d+',G),state)
 level=1
 for i in range(1,len(G)): # doing a circle plus operator
 if G[i]==')': level-=1
 elif G[i]=='(': level+=1
 if level==0:
 state1=twDS(G[1:i-1]) # strip a level of ()'s
 while 1:
 k=G[i+1:].find('('); # level will imeadiately be set to 1 below
 if k==-1: return pwDS(re.findall('\d+',G[i+1:]),state1)
 for j in range(i+1+k,len(G)): # get 2nd (next) argument to circle plus
 if G[j]==')': level-=1
 elif G[j]=='(': level+=1
 if level==0:
 state2=twDS(G[i+2+k:j-1]); #print "circle plus\n"
 state=array.array('i', map((lambda n:1<<30), range(3**(t+1))))
 for x in xrange(3**(t+1)): # now update state for circle plus
 for y in xrange(3**(t+1)):
 f1=unrankDS(x); f2=unrankDS(y);
 f=[]; common=0;
 for z in range(t+1): # compute new boundary f() conditions
 if f1[z]==0 and f2[z]==0: common+=1
 if f1[z]==0 or f2[z]==0: f.append(0)
 elif f1[z]==2 and f2[z]==2: f.append(2)
 else: f.append(1)
 r=rankDS(f);
 s1=state1[rankDS(f1)]; s2=state2[rankDS(f2)]
 if s1 < 1<<30 and s2 < 1<<30: state[r]=min(state[r],s1+s2-common)
 if j+1 < len(G):
 state1=state; i=j+1
 break # to next while iteration to look for another circle plus
 else: return state

main program
#
s=sys.stdin.read().strip() # read input graph
i=s.find('('); t=int(s[0:i-1]); s=s[i:] # set global treewidth t
best=1<<30; state=twDS(s)
for i in xrange(3**(t+1)):
 flag=1
 for f in unrankDS(i):
 if f==2: flag=0; break;
 if flag: best = min(best,state[i])
print best

Figure 4: (cont.) Dominating set algorithm implemented using Python.

15

For the 3t+1 possible functions f , we set T [f] to be the minimum dominating
set of the current t-parse (or undefined if one isn’t possible). That is, we don’t
count vertices that will occur in an exentsion.

� For initial empty t-parse:

T [f] =

{
undef if f(x) = 1 for any x
the number of x such that f(x) = 0, otherwise

}
� Vertex operator xnupdate rule:

case 1: f(x) = 0, T ′[f] = min(T [f], T [fwithf(x) = 1]) + 1

case 2: f(x) = 1, T ′[f] = undef

case 3: f(x) = 2, T ′[f] = min(T [f with f(x) = 0], T [f with f(x) = 1])

� Edge operator u v update rule:

case 0: f(u) = 2 and f(v) = 0, T ′[f] = undef
f(u) = 0 and f(v) = 2, T ′[f] = undef

case 1: f(u) = f(v), T ′[f] = T [f]

case 2: f(u) = 0 and f(v) = 1, T ′[f] = min(T [f], T [f with f(v) = 2])
f(u) = 1 and f(v) = 0, T ′[f] = min(T [f], T [f with f(u) = 2])

case 3: f(u) = 1 and f(v) = 2, T ′[f] = T [f]
f(u) = 2 and f(v) = 1, T ′[f] = T [f]

� Circle plus operator G1 ⊕G2 update rule:

We need to combine various substate cases to get the state for each index f().
Consider all f1() and f2() for t-parses G1 and G2. Let common(f) be the number
times f1(x) = f2(x) = 0. We can combine a f1(x) = 1 and f2(x) = 2 (or vise
versa) to get f(x) = 1.

If one of f1(x) = 0 or f2(x) = 0 then f(x) = 0. If both f1(x) = 2 and f2(x) = 2
then f(x) = 2. Otherwise f(x) = 1.

T ′[f] = min(T1[f1] + T2[f2]− common(f)).

16

6.1 Input format

Our Python program reads input as a sequence of tokens (printable ASCII char-
acters separated by white space) from the keyboard/stdin/console. The first token
will be a positive integer t ≤ 9 denoting the pathwidth/treewidth of the graph
(i.e., it indicates a t-parse will follow). The interpretation for the remaining tokens
are given in the next table.

token semantic meaning
i a vertex operator in, represented as an integer, where 0 ≤ i ≤ t ≤ 9

ij an edge operator i j where t ≥ i > j ≥ 0 (note: no space between i and j)

(a begin marker for a pathwidth t-parse (can be nested for tree branches)
) an end marker for a pathwidth/treewidth t-parse

Thus, we read/encounter the two tokens ’)’ and ’(’ in sequence then this denotes
a circle plus ⊕ operator. Note that it is guaranteed that each right token ’(’ will
have a matched left token ’)’. We assume boundary vertices 0, 1, . . . , t precede the
first token of a pathwidth t-parse (and are not given in the input format). Assume
left-associativity for all operators and at least one space between each of them,
including the parentheses.

6.2 Examples

Some concrete examples of the MDS algorithm, using the Python input format,
are given in the next table.

input output
2 (10 21 1 10 21 0 10 20 2 20 21) 2
2 ((10 1 10 21 1 21 10) (21 2)) 2
2 ((10 1 10 21 1 21 10 0) ((10 1 10 21 1 21 10 0)
(10 1 10 21 1 21 10 0))) 5
3 (32 31 30 20 21 10 0 10 20 21 1 10 21 1 10 21 1 10 0 10 30 20) 2
2 (21 2 21 2 21 20 1 10 21 1 10 21 1 10 21 1 10 21 1 10 21 2 21 1 10 20) 2
3 ((30 32 21 10 1 10 2 32 1 21 10 31 1 21 10 31)
(2 20 21 32 2 20 21 32) 0 1 10 1 10 0 10 1 10) 5
4 (10 20 30 40 32 2 20 21 42 0 10 2 21 3 30 31 4 41) 2

17

The following example shows the state information for each stage of the MDS
algorithm for input T = [0n, 1n, 2n, 0 1 , 0 2 , 0n, 0 1 , 0 2]

0n, 1n, 2n 0 1 0 2 0n 0 1 0 2

Q S γ(Gi − q)s

∅ ∅ 3 2 1 2 2 2

0

1

2

0

{0} 3 2 1 2 2 2
{1} 3 2 2 3 2 2
{2} 3 2 2 3 2 2
{0,1} 3 3 2 3 3 2
{0,2} 3 2 2 3 2 2
{1,2} 3 2 2 3 2 2
{0,1,2} 3 3 3 3 3 3

{0} ∅ 2 2 2 1 1 1

0

1

2
{1} 2 2 2 2 2 2
{2} 2 2 2 2 2 2
{1,2} 2 2 2 2 2 2

{1} ∅ 2 2 1 2 2 1

0

2

0

{0} 2 2 1 2 2 2
{2} 2 2 1 2 2 1
{0,2} 2 2 2 2 2 2

{2} ∅ 2 1 1 2 1 1
0

1

0{0} 2 1 1 2 2 2
{1} 2 1 1 2 1 1
{0,1} 2 2 2 2 2 2

{0,1} ∅ 1 1 1 1 1 1

0

2

{2} 1 1 1 1 1 1
{0,2} ∅ 1 1 1 1 1 1 0

1
{1} 1 1 1 1 1 1

{1,2} ∅ 1 1 1 2 2 2 0 0
{0} 1 1 1 2 2 2

{0,1,2} ∅ 0 0 0 1 1 1

7 Conclusion

In this paper we have presented an algorithm for determining the minimum dom-
inating number for graphs of bounded pathwidth. It has running time O(n3t+1)
for graph’s of order n and pathwidth upper bound t.

The algorithm has several advantages over previous bounded pathwidth algo-
rithms for obtaining minimum dominating numbers. These include: the algorithm
is simple and will have a straight forward implementation; it has fast running time

18

for small values of t; and it can be extended in constant time, allowing graphs to be
interactively grown. Additionally the algorithm presented here is fully specified.

References

[1] S. Arnborg and A. Proskurowski. Linear-Time algorithms for NP-hard prob-
lems on graphs embedded in k-trees. Discrete Applied Mathematics, 23:11–24,
1989.

[2] Neil Robertson and Paul D. Seymour. Graph Minors - A survey. In Surveys in
Combinatorics, volume 103, pages 153171. Cambridge University Press, 1985.

[3] Neil Robertson and Paul D. Seymour. Graph Minors I. Excluding a Forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

[4] Neil Robertson and Paul D. Seymour. Graph Minors III. Planar treewidth.
Journal of Combinatorial Theory, Series B, 36:49–64, 1984.

[5] Reinhard Diestel, Graph Theory, Electronic Edition. Springer Verlag, New
York, 1997.

[6] Michael J Dinneen, Practical Enumeration Methods for Graphs of
Bounded Pathwidth and Treewidth. CDMTCS Research Report Series.
http://www.cs.auckland.ac.nz/CDMTCS//researchreports/055mjd.pdf

[7] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with vertex
cover up to five. In Vincent Bouchitte and Michel Morvan, editors, Orders,
Algorithms and Applications, ORDAL’94, volume 831 of Lecture Notes on
Computer Science, pages 86–99. Springer Verlag, July 1994.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP–completeness. W. H. Freeman and Company, 1979.

[9] C.F. de Jaenisch, Applications de l’Analyse Mathematique au Jeu des Echecs,
Appendix, pages 244 (Petrograd, 1862).

19

