
CDMTCS
Research
Report
Series

The Halting Probability via Wang
Tiles

Gregory J. Chaitin
IBM Research, NY, USA

CDMTCS-325
June 2008

Centre for Discrete Mathematics and
Theoretical Computer Science

The Halting Probability
via Wang Tiles

Gregory Chaitin∗

Abstract

Using work of Hao Wang, we exhibit a tiling characterization of
the bits of the halting probability Ω.

Algorithmic information theory [2] shows that pure mathematics is infinitely
complex and contains irreducible complexity. The canonical example of such
irreducible complexity is the infinite sequence of bits in the base-two expan-
sion of the halting probability Ω. The halting probability is defined by taking
the following summation

0 < Ω =
∑

U(p) halts

2−|p| < 1

over all the self-delimiting programs p that halt when run on a suitably
defined universal Turing machine U . Here |p| denotes the size in bits of the
program p. The value of Ω depends on the choice of U , but its surprising
properties do not.

The numerical value of Ω is maximally unknowable in the following precise
sense. You need an N -bit theory in order to be able to determine N bits of
Ω [5]. Nevertheless, Ω has a kind of diophantine reality, because there is a
diophantine equation with a parameter k that has finitely or infinitely many
solutions depending on whether the kth bit of Ω is respectively 0 or 1 [2].

∗IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598,
U.S.A., chaitin@us.ibm.com.

1

More recently, Ord and Kieu [3] have shown that there is also a diophantine
equation with a parameter k that has an even or odd number of solutions
depending on whether the kth bit of Ω is respectively 0 or 1.

In [4] we show that as well as “diophantine reality,” Ω also possesses a kind
of algebraic reality, because there is an algebraic problem with a parameter
i which yields the infinite sequence of bits bi in the binary expansion of Ω:

Ω =
∑

i=1,2,3,...

bi × 2−i.

The purpose of this note is to discuss the fact that the bits of Ω can also be
dressed up as facts about infinite tilings using a specific fixed set W of Wang
tiles (also referred to as Wang dominoes) with a certain distinguished subset
D ⊂ W . In particular, consider the infinite half-plane extending to the right.
Given i, we can place a vertical strip of Wang tiles on the left-most column
of this half-plane, in such a manner that this determines a single unique
tiling of the infinite half-plane using the Wang tiles W . This unique tiling
will contain finitely or infinitely many tiles from the distinguished subset D
depending on whether bi is respectively 0 or 1.

We proceed to the proof.
First of all, note that one can calculate better and better lower bounds

on Ω, for example, by using the simple LISP function given in [6, pp. 65–69].
This works because Ω is the limit of Ωn defined as follows:

Ωn =
∑

|p| ≤ n and U(p) halts in ≤ n steps

2−|p|.

As n tends to infinity, Ωn tends to Ω, and from some point on each bit of
Ωn will remain correct, since Ω is irrational.1 In other words, as n tends to
infinity, the values of individual bits of Ωn will fluctuate but eventually settle
down to the correct values.

Wang tiles have an entire chapter devoted to them in the standard ref-
erence Grünbaum and Shephard [1]. Nevertheless [1] does not show how to
simulate a Turing machine using Wang tiles. The beauty of Wang tiles is
that there is an easy way to do such simulations, so a proof of this fact is
included here.

1I.e., this limiting process cannot give us .3659999. . . instead of .3660000. . . because
then Ω would be a rational number and would therefore not be irreducibly complex.

2

Wang tiles consist of identical squares divided into 4 triangular pieces by
their two diagonals:

!
We shall refer to the 4 pieces as left, right and top and bottom quadrants.
Each of these quadrants has a particular color, and we are given a finite set
W of these tiles, each with a specific choice of colors for each of its four
quadrants. The rules for tiling with these Wang tiles W is that adjacent tiles
must have abutting edges with matching colors, one can use as many copies
of each tile as one wishes, one cannot rotate or reflect tiles in W , and they
must all fit together in a regular square grid.

It is easy to simulate a Turing machine with a single two-way infinite
tape and a single read-write head using Wang tiles. The strategy is to make
the successive contents of the Turing machine tape into successive vertical
columns of Wang tiles, starting with the initial tape contents in the left-most
vertical column of the half-plane. So increasing time in the Turing machine
computation corresponds to moving rightwards in the tiling. In other words,
the tiling is a kind of “spacetime” diagram of the computation.

Furthermore, the internal state of the Turing machine moves on the tape
together with the read-write head. In other words, we pretend the internal
state is the read-write head. So the internal state will move across the
spacetime diagram of the computation following the motion of the read-write
head.

How are the Wang tiles WT corresponding to a specific Turing machine
T colored?

The first step is to choose our set of colors. The colors for the Wang tiles
correspond to each of the following: quiescent (BLACK), Turing machine
tape symbols, Turing machine internal states, and (tape symbol, internal
state) pairs. There is a unique color for each possibility in this list.

The next step is to indicate the choice of colors for each tile in WT . To
do this I will employ diagrams of this form:

color of top quadrant
↓

color of left quadrant → WANG TILE → color of right quadrant
↑

color of bottom quadrant

The directions of the arrows are intended to indicate in which direction
information is flowing in the spacetime diagram.

3

Now let’s use these diagrams to exhibit the tiles that we need to simulate
a computation.

The first step is to ensure that the inactive tape cells of the Turing ma-
chine are simulated. These are the ones far from the read-write head. The
following tiles will ensure this:

quiescent
↓

tape symbol → WANG TILE → same tape symbol
↑

quiescent

Now let’s take a look at the active tape square, the one with the read-
write head. The simplest case is if the read-write head doesn’t move. But
the tape symbol and internal state can change, depending on the state and
the tape symbol that was read:

quiescent
↑

(tape symbol, state) → WANG TILE → (new tape symbol, new state)
↓

quiescent

If the read-write head moves, then the active square becomes inactive.
This is done by choosing one of the following two tiles, depending on the
direction of motion of the read-write head:

new state
↑

(tape symbol, state) → WANG TILE → new tape symbol
↓

quiescent

quiescent
↑

(tape symbol, state) → WANG TILE → new tape symbol
↓

new state

And here is how we activate inactive tape squares by moving the read-
write head to them:

new internal state
↓

tape symbol → WANG TILE → (same tape symbol, new internal state)
↑

quiescent

4

quiescent
↓

tape symbol → WANG TILE → (same tape symbol, new internal state)
↑

new internal state

Up to here, we have just shown how to use Wang tiles to simulate a
Turing machine. Now let’s tailor the construction to represent the bits of Ω.
The first step is to produce the finite set of Wang tiles corresponding to the
following Turing machine: Given n 1’s on its initial tape, with everything
else blank and the read-write head in the initial state on the top (first) 1,
it calculates successive approximations to bn, more precisely, it calculates
the nth bit of Ωk for k = 1, 2, 3, . . . This is an unending computation, and
certain distinguished internal states correspond to outputting a 1 bit, i.e.,
to the fact that the nth bit of Ωk is 1. All the Wang tiles which have these
special “output 1” internal states are placed in the distinguished subset D
of our tile set W .

If the nth bit of Ω is 1, then for all sufficiently large k, the nth bit of
Ωk will be 1, and the Turing machine will visit infinitely many “output 1”
states, and there will be infinitely many tiles in D in the unique tiling that
is a spacetime diagram of this unending computation. Contrariwise, if the
nth bit of Ω is 0, then for all sufficiently large k, the nth bit of Ωk will be
0, and the Turing machine will not visit infinitely many “output 1” states,
and there will be only finitely many tiles in D in the unique tiling that is a
spacetime diagram of this unending computation.

This completes the proof.
Using the technique of [3], which is also presented in [5], we can modify

this construction somewhat. As before, the bits of Ω are dressed up as facts
about infinite tilings using a specific fixed set W of Wang tiles with a certain
distinguished subset D ⊂ W . Consider the infinite half-plane extending to
the right. Given i, we can place a vertical strip of Wang tiles on the left-
most column of this half-plane, in such a manner that this determines a
single unique tiling of the infinite half-plane using the Wang tiles W . In the
alternative version of our construction based on the technique of Ord and
Kieu [3], this unique tiling will always contain finitely many tiles from the
distinguished subset D. However the number of tiles in D in this unique
infinite tiling depending on i will be even or odd depending on whether the
ith bit of Ω, bi, is respectively 0 or 1.

5

For the philosophical significance of Ω, see [7].

References

[1] B. Grünbaum, G. C. Shephard, Tilings and Patterns, W. H. Freeman,
1987, Chapter 11.

[2] G. Chaitin, Algorithmic Information Theory, Cambridge University
Press, 1987.

[3] T. Ord, T. D. Kieu, “On the existence of a new family of diophantine
equations for Ω,” Fundamenta Informaticae, Vol. 56 (2003), pp. 273–
284.

[4] G. Chaitin, “An algebraic characterization of the halting probability,”
Fundamenta Informaticae, Vol. 79 (2007), pp. 17–23.

[5] G. Chaitin, Meta Math!, Pantheon, 2005.

[6] G. Chaitin, The Limits of Mathematics, Springer-Verlag, 1998.

[7] G. Chaitin, Thinking about Gödel & Turing: Essays on Complexity,
1970–2007, World Scientific, 2007.

6

