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Abstract

After proving the completeness of the system of predicate logic in his doctoral
dissertation (1929), Gödel has continued the investigation of the completeness problem
for more comprehensive formal systems, especially for systems encompassing all known
methods of mathematical proof. In 1931 (see [28, 25]) Gödel proved his famous (first)
incompleteness theorem, which in modern terms reads:

Every computably enumerable, consistent axiomatic system containing el-
ementary arithmetic is incomplete, that is, there exist true sentences un-
provable by the system.

Our aim is to present a personal view of the incompleteness phenomenon. We will focus
on interesting/natural concrete independent sentences, on the source of incompleteness,
and on how common the incompleteness phenomenon is. Some open questions will be
briefly stated.

1 The incompleteness theorem

In modern language the incompleteness theorem [28] can be expressed in the following
form:

Theorem 1 Every axiomatic system F which is
(1) finitely specified,
(2) rich enough to include the arithmetic, and
(3) arithmetically sound,
is incomplete; that is, there exists (and can be effectively constructed) a sentence of arith-
metic which
(A) can be expressed in F ,



(B) is true, and
(C) is unprovable by F .

Our main example of an axiomatic theory is the Zermelo–Fraenkel set theory with choice,
ZFC. We fix an interpretation of Peano Arithmetic (PA) in ZFC. Each sentence of the
language of PA has a translation into a sentence of the language of ZFC, determined by
the interpretation of PA in ZFC. A “sentence of arithmetic” indicates a sentence of the
language of ZFC that is the translation of some sentence of PA.

Condition (1) says that there is a computable function listing all axioms and inference rules
(which could be infinite): the axioms and inference rules form a c.e. set. We cannot take
as axioms all true arithmetical sentences because this set is not c.e.

Condition (2) says that F has all the symbols and axioms used in arithmetic, the symbols
for 0 (zero), S (successor), + (plus), × (times), = (equality) and the axioms making them
work (as, for example, x + S(y) = S(x + y)). Condition (2) says that F is “infinite”;
it cannot be satisfied if we do not have individual terms for the natural numbers. For
example, Tarski proved that the Euclidean geometry, which refers to points, circles and
lines, is complete.

Finally, (3) says that every sentence of arithmetic proved by F is true; in ZFC a true
sentence of arithmetic is a sentence whose translation in PA is true in the standard model
of PA.

Incompleteness shows that there are more true sentences than provable sentences (in a
given axiomatic theory with the required properties). A closer analogy is the relation
between what is true and what can be proved in court.1

One could replace conditions (B) and (C) in Theorem 1 by the following condition

(B’) is neither provable or disprovable by F ,

which makes no reference to truth.

In what follows we will fix

an axiomatic theory F satisfying the properties (1), (2), (3) in Theorem 1

and let X be the underlying alphabet of F . A sentence which F cannot prove nor disprove
is called independent (of F). A set A ⊆ X∗ is said to be expressible in F (or definable in
the language of F) if there is a predicate H of F such that for all x ∈ X∗, H(x) is true iff
x ∈ A.

Let Arith be the set of true sentences of arithmetic expressible in PA.
1The Scottish judicial system which admits three forms of verdict, guilty, not-guilty and not-proven,

comes closer to the spirit of incompleteness.
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Theorem 2 No axiomatic theory F can prove all sentences of Arith.

2 Incompleteness as a theorem in computability theory

We assume that the reader is familiar with the notion of computable function and set
(on naturals or strings) and with the basic theorem stating the existence of a computable
function f such that the set it enumerates S = {f(0), f(1), f(2), . . . , f(n), . . .} is not com-
putable. Sets enumerated by computable functions are called computably enumerable
(c.e.). For details see any textbook in computability theory, for example [35].

Inspired by Davis [20], we consider all propositions sn of the form “n !∈ S”, where S
is the above set and n is a natural number. Let F be an axiomatic theory containing
(among other sentences) all propositions sn. We assume that: a) F is sound for all sn, i.e.
whenever F proves sn, then n !∈ S, b) there is a computable function t which enumerates all
propositions sn that F can prove, i.e. {t(0), t(1), . . . , t(m), . . .} = {si | F proves si, i ≥ 0}.

In this setting Gödel’s incompleteness theorem can be stated as follows:

Theorem 3 If F is an axiomatic system satisfying a) and b) above, then there is a natural
number N such that N !∈ S, but F cannot prove sN (F cannot prove the true proposition
sN ).

Proof. Assume by contradiction that there is no such N , i.e. for all n, F proves sn iff
n !∈ S. We consider the function g(n) defined by the following algorithm:

“in parallel generate the pairs (f(0), t(0)), (f(1), t(1)), . . . till at some stage we
get i ≥ 0 such that n = f(i) (in which case we put g(n) = 1), or j ≥ 0 with
sn = t(j)(when we put g(n) = 0),”

where f enumerates S and t comes from b).

We claim that g is computable. Indeed, if n ∈ S, then n = f(i), for some i ≥ 0, so g(n) = 1;
otherwise, n !∈ S, so sn = t(j), for some j ≥ 0, hence g(n) = 0. Because F is sound it is
impossible to have a pair i, j such that n = f(i) and sn = t(j) and because n ∈ S or n !∈ S
it is impossible for the procedure computing g(n) to continue indefinitely. We have reached
a contradiction because for all n ≥ 0, g(n) = 1 iff n ∈ S, showing that S is computable. !

3 Interpreting incompleteness

Gödel wrote his paper very carefully. Speculating on his extreme caution, Feferman [24]
stated that Gödel “could have been more centrally involved in the development of the
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fundamental concepts of modern logic—truth and computability—than he was.” Gödel took
pain to convince various people about the validity of his assertions and results, but he
avoided any public debate and considered his results to have been accepted by those whose
opinion mattered to him.

There is a variety of reactions to incompleteness, ranging from pessimism to optimism or
simple dismissal. For pessimists, this result can be interpreted as the final, definite failure
of any attempt to formalise the whole of mathematics. For example, H. Weyl acknowledged
that the incompleteness theorem has exercised a “constant drain on the enthusiasm” with
which he engaged himself in mathematics. In contrast, scientists like Dyson acknowledge
the limit placed by incompleteness on our ability to discover the truth in mathematics,
but interpret this in an optimistic way, as a guarantee that mathematics will go on forever
(see Barrow [1], pp. 218–221). According to Smoryńsky [36], “students who hear of Gödel
Theorem either recover from it or else go on to become experts in mathematical logic”.
A lucid analysis of the impact of the incompleteness theorem in physics is presented in
Barrow [2] (see also [16, 38, 12]).

Here are two opinions expressed in 2006 with the occasion of Gödel’s centenary and 75 years
since Gödel’s incompleteness theorem was published. For Davis [20], “Gödel’s theorem had
made it clear that no single formal system could be devised that would enable all mathe-
matical truths, even those expressible in terms of basic operations on the natural numbers,
to be provided with a formal proof.” Feferman [23] wrote: “my view of Gödel’s incom-
pleteness theorems is that their relevance to mathematical logic (and its offspring in the
theory of computation) is paramount; further, their philosophical relevance is significant,
but in just what way is far from settled; and finally, their mathematical relevance outside
of logic is very much unsubstantiated but is the object of ongoing, tantalizing efforts.”

4 Three questions

In what follows we will discuss the following three questions on incompleteness:

• Are there interesting/natural concrete independent sentences?

• What is the source of incompleteness?

• How common is the incompleteness phenomenon?

An analogy suggested in [23] can be used to clarify these questions. Cantor’s diagonal proof
shows the existence of transcendental reals but doesn’t provide any natural/interesting
concrete examples. Liouville constructed an interesting class of examples of transcendental
reals, but his method was not directly useful for showing that a natural example of real
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(like π, e) is transcendental; however, Liouville’s method shows a source of transcendence
(Liouville numbers can be approximated “quite closely” by rationals). Ferdinand von
Lindemann’s proof showed that π, the most interesting real number, is transcendental.
Finally, are there “many” transcendental reals? The answer is yes in both measure and
category [34].

5 Are there interesting independent sentences?

Gödel’s proof shows the existence of independent sentences: even more, one can effectively
construct infinitely many such sentences, but2 it gives no interesting concrete examples of
independent sentences.

An axiomatic system is consistent if it does not prove the assertion “0=1”. The first
interesting example appears in Gödel’s second incompleteness theorem:

Theorem 4 Every axiomatic theory F cannot prove its own consistency.

Gödel [29] found the first combinatorial ∀∃–sentence3 which is independent in PA. Re-
ferring to normalisation for a typed extension of lambda-calculus—the system T, Gödel’s
independent sentence is

Each term has a normal form T.

Gödel’s proof was extended and improved by Girard (see [26] and the discussion in Longo
[31]). Other combinatorial ∀∃–sentences true but unprovable in PA include Paris and
Harrington modified form of the finite Ramsey theorem [33] and Kruskal-Friedman theorem
[31]; they generated many other results (see [4] for a list). Diophantine examples are
discussed by Matiyasevich in [32]; for a uniform way to generate true and unprovable
sentences see [11].

Interesting ∀∃–sentences appear in algorithmic information theory (see also the discussion
in [5]). A prefix-free (Turing) machine is a Turing machine from bit strings to bit strings
whose domain is a prefix-free set. A prefix-free machine is universal if it can simulate every
prefix-free machine. The prefix complexity of the string x (induced by U) is defined by
H(x)(= HU (x)) = min{|w| | U(w) = x} (see more in [7]).

As first example consider all sentences of the form

H(x) > m,

2As Cantor’s proof of the existence of transcendental reals.
3A sentence of the form ∀x∃yR(x, y), where R is a computable predicate is a ∀∃–sentence.
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where x is a string and m is a natural number. Clearly, H(x) > m iff ∀y∃t (U(y) stops in
time t and U(y) = x =⇒ |y| > m), is a ∀∃–sentence. Chaitin [14] (see also the presentation
in [19]) proved the following:4

Theorem 5 Consider an axiomatic theory F . Then, there exists a constant c (depending
on F) such that if F proves a sentence of the form “H(x) > m”, then m < c.

As H is unbounded, there are infinitely many true sentences of the form “H(x) > m” that
F cannot prove. The axiomatic theory can be coded itself by a string, so it makes sense
to talk about H(F).5

Interesting examples of independent ∀∃–sentences appear in connection with the bits of
Chaitin’s Omega number. The halting probability ΩU of a prefix-free universal machine U
(see [15]) is defined by ΩU =

∑
U(x) is defined 2−|x|. In [15] Chaitin proved

Theorem 6 Assume that ZFC is arithmetically sound. Then, for every prefix-free uni-
versal machine U , ZFC can determine the value of only finitely many bits of ΩU , and one
can give a bound on the number of bits of ΩU which ZFC can determine.

The real ΩU depends on U , and so by constructing a special U Solovay [37] proved the
following:

Theorem 7 There effectively exists a prefix-free universal machine U such that ZFC (if
arithmetically sound) cannot determine any bit of ΩU .

This result was generalised in [6] as follows:

Theorem 8 Assume that ZFC is arithmetically sound. Consider a prefix-free machine U
which PA proves universal and assume that ΩU is written in binary as follows:

ΩU = 0.ω0ω1 . . . ωi−1ωiωi+1 . . . , where ω0 = ω1 = . . . = ωi−1 = 1, ωi = 0.

Then, we can effectively construct a prefix-free universal machine U ′ (depending upon ZFC
and U) such that PA proves universal, ΩU = Ω′

U , and ZFC can determine at most i initial
bits of Ω′

U .
4In [13] the state complexity of 3-tape-symbol Turing machines was used to prove a similar result.
5A false interpretation of Theorem 5 might say that the complexity of theorems proven by F is bounded

by H(F) + c. Indeed, if the set of theorems proven by F is infinite, then their program-size complexities
will be arbitrarily large.
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Is it possible to find simpler concrete independent sentences? A natural idea is to look
at ∀–sentences6. Goldbach’s conjecture or Riemann hypothesis are ∀–sentences. Are they
independent of ZFC? Of course, this is not known. However, as they are ∀–sentences one
can associate to each of them a program which never halts iff the conjecture is true. In [8]
such programs have been effectively constructed, ΠG (for Goldbach’s conjecture) has 3,484
bits and ΠR (for Riemann hypothesis ) has 7,780 bits. Solving the Halting Problem for
relatively small-size programs would solve these questions.

Two similar conjectures seem to be different. Define the function T (x) = x/2, if x is even,
and T (x) = 3x + 1, if x is odd. The famous conjecture by Collatz is:

Collatz’ conjecture. For every a > 0, there is an iteration N such that TN (a) = 1.

The reverse (mirror) of a number is the number formed with the same decimal digits but
written in the opposite order. For example, the mirror of 12 is 21, the mirror of 131072
is 270131, etc. Start with the decimal representation of a natural a, reverse the digits
and add the constructed number to a; iterate this process till the result is a palindrome.
Following [21] we have:

The palindrome conjecture. For every a, a palindrome number will be obtained after
finitely many iterations of the above procedure.

In [8] it was proved that Collatz conjecture is a ∀–sentence, but the proof—based on the
fact that the set of natural numbers a satisfying the conjecture is c.e.—is not constructive.
The same argument applies also to the palindrome conjecture. We don’t know whether
there is no constructive proof for the fact that each conjecture is a ∀–sentence. This
suggests that the Collatz and palindrome conjectures are more likely to be unprovable than
Goldbach or Riemann conjectures.

Another possibility to get a simpler independent statement is suggested by the following
two conjectures stated by Dyson [22].

Dyson’s first conjecture. The reverse (in decimal) of a power of two is never a power
of five.

Dysons plausibility argument is based on the following heuristics:
6A sentence of the form ∀xR(x), where R is a computable predicate is a ∀–sentence.
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The digits in a big power of two seem to occur in a random7 way without any
regular pattern. If it ever happened that the reverse of a power of two was a
power of five, this would be an unlikely accident, and the chance of it happening
grows rapidly smaller as the numbers grow bigger. If we assume that the digits
occur at random, then the chance of the accident happening for any power of
two greater than a billion is less than one in a billion. It is easy to check that
it does not happen for powers of two smaller than a billion. So the chance that
it ever happens at all is less than one in a billion. That is why I believe the
statement is true.

Dyson’s second conjecture. Dyson’s first conjecture is unprovable in ZFC.

Dyson’s argument in favour of the second conjecture is:

But the assumption that digits in a big power of two occur at random also
implies that the statement is unprovable. Any proof of the statement would
have to be based on some non-random property of the digits. The assumption
of randomness means that the statement is true just because the odds are in
its favour. It cannot be proved because there is no deep mathematical reason
why it has to be true.

6 What is the source of incompleteness?

In Theorem 5 the high H–complexity of sentences “H(x) > m” with m > c is a source of
their unprovability. Chaitin has formulated the following “information-preservation prin-
ciple”:

The theorems of a finitely specified theory cannot be significantly more complex
than the theory itself.

Is every true sentence s with H(s) > c unprovable by the theory? Unfortunately, the
answer is negative because only finitely many sentences s have complexity H(s) < c in
contrast with the fact that the set of all theorems of the theory is infinite; see also [17]
(reprinted in [18] pp. 55–81) and [38], pp. 123–125.

Chaitin’s “information-preservation principle” was proved in [9] for δ, a computable vari-
ation of the prefix-free complexity H:

7These binary strings are not random in algorithmic information theory sense [7] because their H–
complexity is about the logarithm of their length.
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δ(x) = H(x)− |x|.

To exclude the fact that the “information-preservation principle” is a consequence of some
particular way of writing/coding the theorems in the given axiomatic theory we need to
show that it is invariant with respect to every “acceptable” codification of sentences of the
theory.

Let X be an alphabet with Q elements for the axiomatic theory F . Consider a computable,
one-to-one binary coding g of the set of sentences of F . The δ-complexity of a sentence
u ∈ F induced by g is defined by:

δg(u) = H2(g(u))− #log2 Q$ · |u|Q. (1)

In [9] one proves the following result:

Theorem 9 For every axiomatic theory F and for any computable, one-to-one function
g, we can compute a bound N such that no sentence x with complexity δg(x) > N can be
proved in the theory.

Question 1. Find other natural measures of complexity for which Chaitin’s “heuristic
principle” holds true.

Sentences expressed by strings with large δ–complexity are unprovable. Theorem 9 does
not hold true for an arbitrary finitely-specified theory as there are c.e. sets containing
strings of arbitrary large δ-complexity. It is possible to have incomplete theories without
high δ-complexity sentences; for example, an incomplete theory for propositional tautolo-
gies.

Question 2. In the context of Theorem 9, are there independent sentences x with low
δg-complexity?

7 How common is the incompleteness phenomenon?

Is incompleteness a mere linguistic trick, an accidental phenomenon? To answer this ques-
tion we need to measure the “size of the set of independent sentences” of an axiomatic
theory F . There are two possibilities and an important restriction: we can use either
topological or probabilistic methods, but we have to work with constructive notions as the
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space of sentences is countable. We shall see that in both topological and probabilistic
terms incompleteness is ubiquitous.

For every non c.e. set A ⊆ X∗ expressible in F , the set I(A) of all independent sentences
of the form “s ∈ A” is non-empty and, indeed, infinite. How large is I(A)?

We start with a few elementary facts in topology, see [27]. The equivalence class of x
induced by the relation ≡ is denoted by [x]≡. A set is saturated with respect to an
equivalence relation if it is a union of equivalence classes. Let τ be a topology on X∗ and
let Cτ be its closure operator. A set A ⊆ X∗ is said to be rare with respect to τ if for
every x ∈ X∗ and every open neighbourhood Nx of x, one has Nx $⊆ Cτ (A). A subset of
X∗ is dense if its closure is equal to X∗ and it is co-rare if its complement is rare. A dense
set is “larger” than a rare one, and a co-rare set is “larger” than a dense set.

The topologies considered as examples in the sequel are generated by partial orders on X∗

in the standard way: the closure operator Cτ≤ is given by Cτ≤(A) = {u ∈ X∗ | ∃v ∈ A, u ≤
v}, for A ⊆ X∗ (see [27], p. 57–58). For any u ∈ X∗, let N≤

u = {v | v ∈ X∗, u ≤ v} be the
open neighbourhood of u.

To exclude situations in which equivalence classes tend to form “clusters” we will consider
only topologies with the following property:

(F): There is a computable equivalence relation ≡ on X∗ such that for every
x ∈ X∗ and every open neighbourhood Nx of x, the set {y | y ∈ X∗, Nx∩ [y]≡ =
∅} is finite.

In [10] one proves the following:

Theorem 10 Suppose that the topology τ is generated by a computable and length pre-
serving partial order and satisfies (F) with respect to a computable equivalence relation ≡.
For every non c.e. set A ⊆ X∗ expressible in an axiomatic theory F saturated by ≡, the
set I(A) is co-rare in τ .

There are many natural topologies satisfying the above condition in Theorem 10, the
prefix–topology among them (see the examples and Lemma 5.1 in [10]).

The topological results have been reinforced in [9] in probabilistic terms. Let g be
a computable, one-to-one binary coding for the sentences of F , and consider a) the
probability pprov

g (n) that a sentence of length n is provable in F and, b) the probability
ptrue

g (n) that a sentence of length n is true.8

8These probabilities depend on g in the same way as the complexity δg depends on g (see (1).
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Theorem 11 In every axiomatic theory F , for all g, we have limn→∞ pprov
g (n) = 0, but

limn→∞ ptrue
g (n) > 0.

Even if there exist independent sentences with low δg-complexity sentences (see Question 2),
in view of Theorem 11, the probability that a true sentence of length n with δg-complexity
less than or equal to N is unprovable in the theory tends to zero when n tends to infinity.

The complexity measure ρ defined by ρ(x) = H(x)/|x| is bounded, so Theorem 9 is
trivially valid for ρ. However, Grenet [30] proved that Theorem 11 fails to be true for ρ.

Question 3. [P. Cholak] Is there is a sequence of computable, one-to-one binary codings
gi of sentences such that limn,i→∞ ptrue

i,n = 0?
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AMS 17 (1970), 672.

[14] G. J. Chaitin. Information-theoretic limitations of formal systems, J. Assoc. Comput.
Mach. 21 (1974), 403–424.

[15] G. J. Chaitin. A theory of program size formally identical to information theory, J.
Assoc. Comput. Mach. 22 (1975), 329–340.
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