
CDMTCS
Research
Report
Series

Proceedings of the Computer
Graduate Workshop 2007

J. Teutenberg (ed.)
University of Auckland, NZ

CDMTCS-321
April 2008

Centre for Discrete Mathematics and
Theoretical Computer Science

CODEANNOTATOR: DIGITAL INK ANNOTATION WITHIN ECLIPSE

 Xiaofan Chen Dr. Beryl Plimmer

ABSTRACT
Programming environments do not support ink annotation. Yet,
annotation is the most effective way to actively read and review
a document. This paper describes a tool, CodeAnnotator, which
integrates annotation support inside a programming
development environment (PDE). This tool is designed and
developed to assist programmers in directly annotating on code
within the programming development environment.
Programmers will benefit from a more intuitive interaction
space to record notes and comments just as they would on paper
documents.

Author Keywords
Digital ink annotation, annotation, sketch, eclipse

1. INTRODUCTION
Annotating documents when reading assists readers by
enhancing reading-comprehension activities [5, 6]. Moreover,
reading documents that have been annotated by previous
readers improves subsequent readers’ understanding and recall
of the emphasized items [15, 18]. People are accustomed to
make annotations with pens on paper documents. More recently,
researchers have been exploring adding digital ink functionality
to provide annotation over digital documents [8, 9, 11, 12].
However, programming development environments (PDE) do
not support digital ink annotation. People cannot make
annotations directly inside the PDEs without the addition of
annotation support.

This project aims to provide people with an electronic
environment to annotate code documents within a PDE. We
designed and developed a tool, CodeAnnotator, to support users
to directly annotate over code within Eclipse. As this tool
integrates annotation support inside the PDE, it offers additional
advantages inherent from typical code review processes, as
explained by Priest [12].

With CodeAnnotator after loading a code file in a PDE, users
can write annotations using a digital pen while also having all
the functions offered by the PDE, such as debugging, compiling,
and executing. Therefore, users have both PDE and annotating
support.

This paper begins with a summary of related work on digital ink
annotation. Then it presents the design requirements and
implementation of CodeAnnotator, followed by conclusions and
future work.

2. RELATED WORK
Most early annotation tools, such as Wang Freestyle [3] and
XLibris [4, 14], only support annotating over static documents.
These tools provide users with simple free-form ink annotation
and an interface and features similar to that of paper. They are

self-reliant, independent from environments and may be used
by people when editing and reading digital documents.

With the experiences researchers gained from development of
self-reliant annotation tools, tools that integrate annotation
support insider other developing environments have emerged.
For instance, people can annotate over Word documents
directly in Microsoft Word [7]. MADCOW [2], WPM [17] and
Web annotation tool [13] assist users in making annotations in
web browsers.

However, code documents have a unique feature that other
types of documents do not have: code is non-linear; it is
arranged in logical classes and procedures that are not intended
to be read sequentially like a book [12]. Some digital ink
annotation tools were designed and developed to meet the
unique features of code. Penmarked [11] is a tool for annotating
and marking student assignments through tablet PCs. Teachers
can read the assignments and add digital ink annotations
directly on the document. The limitations of this system are: it
only deals with static documents and opens files as a text file,
so code files (Java, C# etc.) can not be compiled or run under
this system. Gild [10] is a set of plug-ins for Eclipse to mark
assignments written in Java. However, it doesn’t support digital
ink annotation. RCA [12] is a code annotation tool added to
Visual Studio .Net 2005 (VS). Users record digital ink
annotation on a code file opened in VS, and also use all the
functions provided by VS. However, it doesn’t provide
navigation of annotations to support users finding and moving
between annotations.

A program document is normally very long and split among
many files. Navigation support of annotations can provide users
with an outline of existing annotations and the information of
how many and where annotations exist. Also it assists users to
easily locate a specific annotation. Among the current available
annotation tools, there are no tools that provide navigation
support.

3. DESIGN
Digital ink annotating requires support for three major functions:
the annotations must be free-form and modifiable, the
annotations can be reflowed when the underlying text is
changed, and a navigation support is provided to help users to
overview, select and find annotations.

3.1 Requirements
The PDE must be extensible to allow developers to extend its
functionality and add in other functions. In order to allow the
PDE to perform normally while supporting digital ink
annotation, CodeAnnotator must integrate into the PDE
seamlessly.

When a user first selects a code file to annotate, a new
annotation file will be created and stored as a part of the
development project. Once the user finishes the annotation, the
annotation file needs to be saved to allow later review. The
annotation file will be loaded when the user wants to review or
annotate the selected code file.

3.2 Free-form and modifiable annotation
Free-form annotation consists of words, symbols and text
selection marks, and allows annotations to be made anywhere
without limitation on shape or content [14]. This is achieved by
overlaying the code window with a transparent canvas that
holds ink annotations and associating annotations to the
underlying code by making the code window and the
transparent canvas scroll together. This approach allows users
to annotate anywhere inside the code window; there is no
restriction of a pagination boundary in the code window as
there is in document formats such as PDF that set artificial
restraints on the users’ positioning of the annotations

When people annotate over paper documents with pens, it is
hard to modify existing annotations. Modifying real ink
annotations usually involves concealing or crossing out the
annotations then rewriting them; this looks messy. A digital ink
annotation tool provides users with functions to efficiently and
cleanly erase, select, move and recolor a selected annotation.

3.3 Reflowing annotations
One of the most important features of digital ink annotation
tools is to be able to deal with dynamic digital documents. As
annotation is most often a function of some type of review it
must be expected that the text inside the documents will be
changed. This requires the existing annotations be reflowed to
remain consistent with the underlying code when the code file
is modified. In order to reflow annotations, ink strokes have to
be grouped. Annotations belonging to the same underlying
context must be grouped together by taking into consideration
location and temporal properties of the ink strokes that make up
the annotation [1, 16]. Then when underlying code moves
up/down, any attached annotation group has to move too. And
when underlying code is deleted, its attached annotation must
either be deleted or archived.

A code file is arranged line by line. Each code line cannot be
rearranged like a sentence and typically lines are not wrapped
with resizing the code window. Therefore, it is unnecessary to
consider the issue of reflowing annotations horizontally. We
only need to focus on moving annotations up or down inside the
code window.

3.4 Navigation support
A project contains many code files. A code file is structured by
its classes and procedures. PDEs often offer a navigation
system to assist programmers to know which code files exist in
the project and how classes are related in a code file, and to
locate a specific class.

For digital ink annotation tools, it is useful to provide a similar
navigation system to users. A code file often extends over many
lines and cannot be fully displayed in one screen. We have to
scroll the screen up/down to review existing annotations, which

is very inconvenient. Through the navigation system, users can
easily locate a specific annotation inside the code window.

4. IMPLEMENTATION
CodeAnnotator is developed inside Eclipse as a set of plug-ins.
Because Eclipse supports Java language it is a popular open
source PDE that used extensively in teaching departments and
industry.

CodeAnnotator can be used on tablet PCs and desktop
computers with a tablet USB input device. It allows users to
directly annotate onto the output screen. This tool is
implemented in Java using both the Java API and Eclipse
framework.

Fig. 1. CodeAnnotator in Eclipse

Figure 1 shows an annotation window in Eclipse. When a user
loads a code file and selects annotation model from the Eclipse
toolbar, a new annotation window is created based on the
current code window. An Outline window is created. The
flyout-Palette at the right side of the annotation window
contains the annotation tools.

The major features of CodeAnnotator are: attaching annotations
to a specific code line, grouping annotations and editing them,
reflowing annotations, and navigating annotations.

4.1 Attaching Annotations
Ink strokes are used as linkers to link a group of annotations to
a specific code line [12]. Linkers can only be a line or a circle.
Each is treated differently so first we have to recognize the
linkers.

Fig. 2. Line linker

A feature of a straight line is that its start point and last point
touch the left and right board of the bounding box (See Figure
2). And this can be discriminated from a circle by measuring
whether the distance between the first point and the last point
(ab) is less than the hypotenuses of 25% of the bounding box’s
width and height (a’b’) (See Figure 3).

Fig. 3. Circle linker

If the linker is a line, then its corresponding annotation group is
linked to the code line closest to the start point of the linker.
Otherwise, for a circle the corresponding annotation group is
attached to the line closest to the middle point of the bounding
box.

4.2 Group and edit annotations
We group annotations based on the spatial and temporal
properties of the annotations [1, 16]. After creating a linker, if
the subsequent annotation is created in less than two seconds,
then it belongs to this linker. If the following annotation is
created in less than two seconds, then it also belongs to this
linker. Otherwise, we use the spatial property of the annotation
to decide which group it belongs to.

Spatially adjacent annotations are considered to be in the same
group. We calculate the position of the new annotation; say at
the coordinate (x1, y1), and its height is h1, its width is w1.
According to this calculated position, we find a closest
annotation group and then this annotation belongs to this group.
For example, the first group is located at the coordinate (x2, y2),
and its height is h2, its width is w2. The second group is located
at the coordinate (x3, y3), and its height is h3, its width is w3.

Fig. 4. Group annotations

• If the range from y1 to y1+h1 partially overlaps with the

range from y2 to y2+h2, then the new annotation belongs
to the first group.

• If the range from y1 to y1+h1 partially overlaps with the
range from y3 to y3+h3, then the new annotation belongs
to the second group.

• If the range from y1 to y1+h1 overlaps with both the range
from y2 to y2+h2 and the range from y3 to y3+h3, then we
have to decide which is closest:

• If x1 is bigger than x2 and x3, then if x1 is closer to
x2+w2 than to x3+w3, then the new annotation
belongs to the first group, otherwise it belongs to the
second group.

• If x1 is less than x2 and x3, then if x1 is closer to x2
than to x3, the new annotation belongs to the first
group, otherwise it belongs to the second.

• If x1 is bigger than x2 and is less than x3, then x1
belongs to the first group because we are more likely
to append comments to the existing annotation.

• If x1 is bigger than x3 and is less than x2, then x1
belongs to the second group

• Otherwise, we consider the new annotation to be a new
group.

Editing annotations is a very important function in annotation
tools. We support moving a specific annotation group around
by selecting it. Also an annotation can be deleted or erased by
selecting it with the eraser tool. Annotations can be written in
different colors by selecting a color before writing. Moreover,
we can recolor an existing annotation by selecting it and then
selecting a different color from the color tool.

4.3 Reflow annotations
Reflowing existing annotations is necessary to maintain
consistency with the underlying code. We only need to consider
the vertical reflow as code is line-based. There are three
situations we need to handle, as explained by Priest [12]. First,
when several code lines are added ahead of a code line with
annotations, this code line and its associated annotation group
moves down together. Second, when several code lines are
deleted ahead of a code line with annotations, this code line and
its corresponding annotation group moves up together. Third,
when a code line with annotations is deleted, its associated
annotation group is also deleted.

4.4 Navigation support

Fig. 5. Navigation support

(x3,y3,h3,w3)

(x1,y1,h1,w1)
(x2,y2,h2,w2)

The navigation system includes a Navigator window and an
Outline window. The Navigator window tells users which code
files were annotated. The Outline window guides users to locate
the position of a specific annotation inside the annotation
window, and provides a graphical outline of existing
annotations. Users can directly open an annotation file in the
Navigator window. After this file is opened, an Outline window
is automatically opened and shows a graphical outline of
existing annotations in this file. When users make an annotation
in the annotation window, a copy of this annotation and its
corresponding information such as location will be put inside
the Outline window (See Figure 4). When users select a specific
annotation inside the Outline window, the annotation window
will scroll to the page containing this annotation.

5. CONCLUSTION and FUTURE WORK
This paper describes a code digital ink annotation tool,
CodeAnnotator. The objective of this tool is to provide users
with an electronic environment to annotate in Eclipse. This tool
lets users enjoy both digital ink annotation and Eclipse support.
In other words, after loading a code file in Eclipse, users can
write annotations with a digital pen and can also access all the
functions provided by Eclipse, such as debugging, compiling,
and executing.

Including handwriting recognition is a challenge because the
writing and iconic annotation must first be separated. We are
yet to extend CodeAnnotator to recognize handwriting. When
this is completed the next steps are to conduct usability testing
and evaluation studies to assess the efficacy of annotation
within a PDE.

Another interesting extension would be functionality to
consolidate digital ink annotations made by different users into
one file to support collaborative code review. Then the separate
digital ink annotations can be merged automatically, and some
mechanism would differentiate each person’s annotations,
particularly when they are in the same place. Furthermore, we
can extend it to support assignment marking. This would allow
markers to directly mark program assignments in Eclipse.

6. REFERENCES
[1] Bargeron, D. and Moscovish, T. Reflowing digital ink

annotations. CIII 2003, April 5-10, ACM Press
(2003),385-392

[2] Bottoni, P., Levialdi, S., Labella, A., Panizzi, E.,

Trinchese, R. and Gigli, L. MADCOW: a visual interface
for annotating web pages. Proc. of the working conference
on Advanced visual interfaces AVI ’06, ACM Press (2006),
314-317

[3] Francik, E. Rapid, Integrated design of a multimedia

communication system. HumanComputer Interface
Design (1995), 36-69

[4] Golovchinsky, G. and Denoue, L. Moving Markup:

Repositioning freeform annotations. Proc. UIST 2002,
ACM Press (2002), 21-30

[5] Marshall, C. C. Annotation: from paper books to the
digital library. Proc DL 1997, ACM Press (1997), 131-
140

[6] Marshall, C. C. Toward an ecology of hypertext

annotation. Proc. HyperText 1998, ACM Press (1998), 40-
48

[7] Microsoft Word.

http://www.microsoft.com/office/word/using.htm

[8] Mock, K. Teaching with Tablet PCs. Proc. Journal of

Computing Sciences in Colledges 20, 2 (2004) 17-27

[9] Moran , T. P., C, P. and Van Melle, W. Pen-based

interaction techniques for organizing material on an
electronic whiteboard. In Symposium on User Interface
Software and Technology (1997), 45-54

[10] Myers, D., Hargreaves, E., Ryall, J., Thompson, S.,

Burgess, M., German, D. and Storey, M. Developing
marking support within Eclipse. Proc. Of OOPSLA 2004,
ACM Press (2004), 62-66

[11] Plimmer, B. and Mason, P. A Pen-based paperless

environment for annotating and marking student
assignments. Proc. 7th Australasian User Interface
Conference, CRPIT press (2006), 37-44

[12] Priest, R. and Plimmer, B. RCA: Experiences with an IDE

annotation tool. Proc. 6th ACM SIGCHI New Zealand
chapters international conference 2006, ACM Press
(2006), 53-60

[13] Ramachandran, S. and Kashi, R. An architecture for ink

annotations on web documents. Proc. 17th International
Conference on Document Analysis and Recognition, IEEE
Computer Society (2003), 256-260

[14] Schilit, B. N., Golovchinsky, G. and Price, M.N. Beyond

Paper: Supporting active reading with free form digital ink
annotations. Proc. CHI 98, lOS Angeles, CA, ACM Press
(1998), 249-256

[15] Schumacher, G. M. and Nash, G. J. Conceptualizing and

Measuring knowledge change due to writing. Research in
the teaching of English, vol 25, pp. 67-96, 1991

[16] Shilman, M. and Viola, P. Spatial recognition and

grouping of text and graphics. EUROGRAPHICS
Workshop on Sketch-Based Interfaces and Modeling 2004.
Eurographics digital library

[17] Takahiro, K., Tashiro, N., Ozono, T., Ito, T., and Shintani,

T. Web Page Marker: a web browsing support system
based on marking and anchoring. WWW 2005, May 10-14.
Chiba. Japan. ACM, 1012-1013

[18] Wolf, J. L. Effects of annotations on student readers and

writers. Digital Libraries, San Antonio, TX, ACM Press
(2000) 9-26

INTELLIGENT MIND-MAPPING

Vincent Chik, Beryl Plimmer

ABSTRACT

Current computer based mind-mapping tools are much
slower to use than pen and paper because users are
distracted by tool operations such as finding and arranging
widgets. The shift in focus from brainstorming to tool
management interrupts the rapid brainstorming process
that mind-maps are intended to support. Our pen based
mind-mapping software that includes intelligent ink
recognition, editing and export alleviates these intrusions
as the user only has to worry about writing on the canvas,
yet usual digital document support is provided. The digital
ink recognition and manipulation techniques described
here will be of interest to others working with informal
documents. .

1. INTRODUCTION

A mind-map is a sketchily structured visual representation
of one’s thoughts which may lead to a train of related
ideas. It is based on radiant thinking, a concept which
describes how the human brain processes ideas and
information, whereby different ideas are associated to each
other through relationship hooks [5]. The four main
features of a mind-map (figure 1) are as follows:

• Each mind-map has a starting location, the center
node that contains the central theme or idea.

• The ideas of the mind-map “radiate” from the
central node as branches with sub-nodes
connected to each other in parent-child
relationships.

• The final structure of the mind-map becomes a
hierarchy of linked nodes.

• Each connector/branch has keywords or an image
associated with it.

Mind-maps are traditionally hand drawn and used for
critical thinking tasks such as strategic planning. They are
an effective way of rapidly jotting down and arranging
information, affording reinforced association of ideas and
recall.
Compared with normal note taking or brain-storming,
mind-maps have several advantages. For instance, time is
saved by just noting down relevant key words.
Associations between key points are highlighted while
passively creating a hierarchy of ideas. Reviewing a mind-
map takes considerably less time than to overview a set of
written notes as the mind-map is effective in displaying the
relevant keywords associated with a particular topic. By
providing a visually stimulating environment, the retention
of information by the brain is made easier.

Figure 1. Basic mind-map structure of:

a centre node and branches that connect nodes
together in a hierarchy.

There are a number of computer applications for mind-

mapping. However these are widget-based tools that
require the user to select an appropriate node widget or
connector before they can enter data. We hypothesize that
these tools will adversely affect the idea generation
process in the same way as widget-based design tools have
been shown to adversely affect the design process [8]. In
contrast, this adverse affect of the computer is minimal
with sketch-based computer tools [3, 13].

In order to explore the validity of our hypothesis we
must first build a computer-based mind-mapping tool that
more closely matches traditional pen and paper
environments. Sketch-based computer design tools must
also provide usual computer editing and archiving support.
Here we report on the design and development of our pen-
based mind-mapping software.

2. RELATED WORK

As a background to this project we have reviewed the
functionality available in current widget-based mind-
mapping tools and compared that with the functionality
provided in sketch-based tools designed for other tasks.
From these we have formulated a list of the technical
challenges that this project must address and related
research on those topics.

2.1. Mind-mapping Tools

Mind Manager 6 [1] (figure 2) is typical of current mind-
mapping tools. The user clicks on the canvas to create a
new node. Text can be added to a pre-selected node via the
keyboard. Connections are made by dragging nodes on top
of other nodes. Once the connection is made the layout is

automatically imposed by the software. For example the
distance between nodes is restricted and prevents the user
from utilizing all the canvas space. A useful function of
mind-mapping tools is support for moving a branch and its
associated sub-branches to a different location. The
advantage of an electronic environment for creating mind-
maps over paper is the support for editing, exporting and
archiving.

Figure 2. An example of a mind-mapping tool is the

Mind Manager 6 Pro.

Although these computer based mind-mapping tools
possess many capabilities, much time is consumed with
dragging and dropping nodes and connectors from the
toolbar before the user can start filling in the nodes with
information and form a comprehendible diagram. Research
from design domains [3, 8, 13] suggests that users become
distracted with arranging the interface as opposed to
concentrating on the problem solving process.

2.2. Sketch Tools

Rough design is often performed with pen and paper. The
advantage of using such a medium is the unconstrained
drawing space and low cognitive load [8]. There is no
restriction as to the layout of the document. Studies
comparing pen and paper with widget-based computer
tools and sketch-based computer tools have found that
using ink is preferable to widgets for design tasks such as
UI design [13], multi-media design and graphic design [3].
There are two attributes of sketches that are believed to be
important in early design. First, the creation of documents
with ink is quicker and using the pen requires less
cognitive effort than a widget based design tool. Second,
the hand-drawn appearance of the ink implies
incompleteness, which in-turn suggests that the document
can and should be reviewed and changed [12]. While
mind-mapping is a problem solving technique rather than a
design technique, there is significant similarity between

the two tasks that suggest that sketch tools may be more
useful than widget based tools.
A pen-based computer tool that recognizes the user’s
intention intelligently, has the advantages of both
computer technology (for editing and so on) and the
simplicity of pen & paper to alleviate distractions.

2.3. Challenges

The technical challenges that this project poses consist of
three parts: ink recognition and grouping; structural
analysis; and ink reflow.

• Ink recognition is vital to discerning the elements
of a mind-map. It is a precursor to understanding
the structure of the mind-map by correctly
identifying text from drawings. As a part of the
recognition, individual ink grouping is required to
group related ink strokes into nodes.

• The structure of the mind-map can be established
once the nodes and drawing elements have been
identified. This structure must be known to
support intelligent editing and exporting into
other formats.

• Intelligent editing includes the ability to move a
branch and its sub-branches to another position
on the mind-map. Ink reflow is essential when
users make adjustments to the mind-map,
maintaining the look of the mind-map by
rearranging the Ink into a more suitable shape or
position.

Existing research suggests techniques we can adopt and
modify for ink recognition algorithms [11, 14], grouping
[6, 10], structure [7] and ink reflow [2, 4, 9].

3. OUR APPROACH

We have developed a mind-mapping tool for the Tablet PC
that is able to recognise text and annotations that are made
by the user and treat them as objects as opposed to just a
visual representation (figure 3). This allows the mind-
mapping tool to generate an internal logical representation
of the user’s mind-map with the intent of enabling the user
to revise its structure.

In addition, in order to allow user flexibility, the system
adapts as the user deletes, moves or creates additional data
on the existing map. For example, when a user selects a
branch of annotations and moves them to another section
of the mind-map, the system intelligently reflows the ink
to reflect the new orientation and rearranges adjacent
branches as necessary to create space for the newly
transplanted branch.

Figure 3. Screenshot of Current Prototype.

3.1. Features

The following are features that were deemed necessary for
this mind-mapping application.

Table 1. Mind-mapping Features

Ink
recognition

The system must be able to correctly
recognize the ink strokes the user
writes.

Eager
Recognition

The system should be able to recognize
the text or drawing as the user writes so
that editing is continuously supported

Structure
Analysis

The system must be able to determine
the hierarchical structure of the mind-
map

Editing
(Undo /
Redo)

The system should support the user to
add, or delete ink. Also, if recognition
errors occur, the system should allow
the user to manually change the type of
component an ink/group of ink
represents.

Move +
Reflow

The user must be able to select a
connector and be able to move it to
another node

Branch
Collision
Detection

The system should intelligently detect if
ink objects overlaps other objects when
moved

Auto Colour
Wheel

Segmented

Each connector that branches off the
central node can be colour coded
relative to its position to the central
node

Load & Save The system should be able to save and
reload an existing mind-map

Export
Capability

The system should allow the user to
export the mind-map into another
format

3.2. System Architecture

The following is a flow diagram of the back end of the
system. Each ink stroke drawn by the user is first parsed
by the ink divider.

Ink Divider

Ink Grouper

Structure Analyser

Ink Strokes

Mind-map Structure

Ink Drawing

Text

Divider

Line Circle

Divider

Figure 4. Mind-mapping Tool system architecture.

The ink is divided into 3 categories, text, circle or line.
Upon stroke division, the ink is then passed into the ink
grouper which takes strokes that are geographically close
to each other and groups them together as a node. After
grouping, a hierarchical order of the nodes is established.
As new ink strokes are added the software may alter the
categorization of previously entered strokes.

3.3. Ink Divider

The Ink divider is based on the divider from [11] to
separate text and drawing ink. The divider looks at specific
features of each ink stroke and categorizes them using a
binary tree structure. We replaced the bounding box width
feature specified in [11] with the ink bounding box
diagonal as mind-maps differ from the diagrams used in
their training set, with frequent use of sloping lines for
connectors. Once the ink stroke is classified as text stroke
or drawing, text is passed to the OS recognizer. The
drawing strokes are then separated again into lines or
circles by a filter [14]. For a circle, the start and end points
of the stroke are generally in close proximity as opposed to
a line. The bounding box height and width are again
somewhat similar for a circle while a line stroke may not

be. The filter consists of two checks; the distance between
the start and end points of the stroke is checked to see if it
is below 1200 hi metric units and that the ratio of the
longest bounding box side and the distance between the
start and end points of the stroke is less than 0.5. This
ensures ellipses are also categorized as a circle. The
recognized writing and drawing strokes are then piped to
the ink grouper.

3.4. Ink Stroke Grouping

The ink grouper takes the recognized strokes and groups
them into coherent entities of node or connector. Ink
classified as lines and circles are automatically categorized
as connectors and nodes respectively. All strokes that
reside in a circle are automatically grouped together and
are put into the same node as the circle. Remaining text
strokes must be grouped together into words and groups of
words to form uncontained nodes. Text strokes are
grouped by examining the top, bottom and sides of each
stroke’s bounding box. If the bounding boxes top values
are within 200 hi metric units of each other and the sides
are within 500 hi metric units, the strokes are grouped
together. We have arrived at these values with informal
testing and will check their validity as a part of our
usability testing.

3.5. Mind-map Structure

The mind-map is sorted hierarchically. The first node that
is drawn is typically the central node and all other nodes
connected to it via connectors are its sub nodes. On this
basis, the system implements a recursive algorithm,
starting by finding the sub nodes of the central node. This
is carried out by finding the branches linked to the main
node. The first branch is determined by the first connector
that is drawn and its subsequent branches are found until
there is none left before coursing down the next branch
linked with the main node. With recursion down the tree,
the complete structure of the mind-map can be found. With
this structure, the mind-map can be easily exported into
ordered digital formats. At times people create mind-maps
with cross connections. This causes our recursive
algorithm to loop endlessly. Hence a checklist was
implemented that records the nodes that the system has
traversed and skips the nodes already analyzed.

3.6. Editing and Reflow

To support the relocation of a branch to another part of the
mind-map basic reflow has been implemented. The
relocated nodes repel other nodes away should they
overlap. The area around the relocated node’s bounding
box is divided into 8 sectors. A starburst metaphor is used
to move existing nodes. The relative positions of the centre

point the relocated and existing nodes determines the
movement direction. The distance nodes are pushed back
is calculated by the overlap amount. The connectors that
link the nodes are then elongated or compressed. The
amount of compression and elongation is found by the
distance and direction the node was shifted and the
connector transformed and rotated accordingly.

4. CONCLUSIONS

Sketch-based mind-mapping tools offer an alternative to
paper or widget-based tools. Our first prototype presented
here concentrates on text nodes to reduce recognition
problems. It can formulate a hierarchy of nodes and
supports basic restructuring. We have conducted some
informal evaluations and participants have commented
favourably on the similarity of the tool to mind-mapping
on paper. Some recognition errors occurred, which
annoyed them, but they were satisfied with manual
correction functionality.

Upon completing the initial system, a formal usability
study will be undertaken and a second prototype
developed. The mind-mapping tool can then be compared
with other computer/paper oriented mind-mapping
techniques to test our hypothesis on the affect of tools on
mind-mapping.

5. ACKNOWLEDGMENTS

We would like to thank Microsoft Research Asia for their
support of this project.

6. REFERENCES

[1] Mindjet: Software for Visualizing and Using

Information, Retrieved on 27th June 2007 from:
http://www.mindjet.com

[2] Arvo, J., Novins, K., Appearance-preserving
manipulation of hand-drawn graphs, Proceedings of
the 3rd international conference on Computer
graphics and interactive techniques in Australasia and
South East Asia, ACM Press, (2005),

[3] Bailey, B. P., Konstan, J. A., Are Informal Tools
Better? Comparing DEMAIS, Pencil and Paper, and
Authorware for Early Multimedia Design, in proc
CHI 2003, ACM, (2003), 313-320

[4] Bargeron, D., Moscovich, T., Reflowing digital ink
annotations, Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM Press,
(2003),

[5] Buzan, T., Buzan, B., The Mind Map book, BBC
Worldwide Limited, (2000), 269

[6] Chung, R., Mirica, P., Plimmer, B., InkKit: a generic
design tool for the tablet PC, Proceedings of the 6th
ACM SIGCHI New Zealand chapter's international

conference on Computer-human interaction: making
CHI natural, ACM Press, (2005),

[7] Freeman, I. J., Plimmer, B., Connector semantics for
sketched diagram recognition, Proceedings of the
eight Australasian conference on User interface -
Volume 64, Australian Computer Society, Inc.,
(2007),

[8] Goel, V., Sketches of thought, The MIT Press,
(1995),

[9] Golovchinsky, G., Denoue, L., Moving markup:
repositioning freeform annotations, Proceedings of
the 15th annual ACM symposium on User interface
software and technology, ACM Press, (2002),

[10] Moran, T. P., Melle, W. v., Chiu, P., Spatial
interpretation of domain objects integrated into a
freeform electronic whiteboard, Proceedings of the
11th annual ACM symposium on User interface
software and technology, ACM Press, (1998),

[11] Patel, R., Plimmer, B., Grundy, J., Ihaka, R., Ink
Features for Diagram Recognition, Sketch Based
Interfaces and Modeling IEEE, (2007),

[12] Plimmer, B., Apperley, M., Evaluating a sketch
environment for novice programmers, CHI '03
extended abstracts on Human factors in computing
systems, ACM Press, (2003),

[13] Plimmer, B. E., Apperley, M., Software for Students
to Sketch Interface Designs, in proc Interact, (2003),
73-80

[14] Priest, R., Plimmer, B., RCA: experiences with an
IDE annotation tool, Proceedings of the 6th ACM
SIGCHI New Zealand chapter's international
conference on Computer-human interaction: design
centered HCI, ACM Press, (2006),

MULTI-HEURISTIC EFFICIENT SEARCH

Santiago Franco

ABSTRACT

This research is on Artificial Intelligence,
planning. We are interested on how to most
efficiently solve a planning problem given a
list of admissible heuristics and a problem
description including an initial state and a
goal.

Our list of available heuristics is derived
from pattern databases abstractions. This
heuristic family has been the focus of a lot of
research recently due to their very efficient
reduction of the search space. However, our
research should apply to any group of
admissible heuristics.

Heuristic performance is a function of the
heuristic accuracy, evaluation time and the
solution length. The problem optimal distance
(OD) is unknown until solved.

We use Iterative Deepening A* (IDA*) as
our search algorithm. IDA* iterative nature
allows us to use the information collected
from previous iterations to make an informed
decision on how to most efficiently use
available heuristics on the next IDA* iteration.

1. INTRODUCTION

1.1. Heuristics

Heuristics are created to reduce the time it
takes to solve problems with large search
spaces. Admissible heuristics are used to
perform informed searches(A*,IDA*,etc.) to
find optimal solutions to problems.

Fig. 1. Informed Search Diagram

n is the current state.
g(n) is the OD from I to n.

h(n) is the OD from n to G.
ĥ is the heuristic estimate OD from n to G.
F(n)=g(n)+h(n)=OD.
Each dot represents a problem state in the

optimal path from initial state I to goal state
G. Informed search on planning expands all
nodes from I to G whose F n≤OD . If the
node is not expanded it is called culled. When
no heuristic is used all the nodes whose
distance to G is less or equal to the OD would
be expanded. This tree is called Brute Force
Search Tree (BFST).

ĥ is admissible iff: ∀nĥ n≤h n Eq. 1.
Admissible heuristics are lower bounds on the
optimal distance.

ĥ is consistent for any choice of problem
states n, m iff:

∀n,mĥn≤distanceminn,mĥm Eq
2.

Informed search algorithms which use
admissible heuristics are guaranteed to find
an optimal solution (eventually). Consistency
guarantees that when node n is expanded it
has already found an optimal path to n. All
admissible heuristics can be made consistent.

The text book standard for characterizing
the effect of admissible,consistent heuristics
on search performance is to model the search
for an optimal solution as the expansion of a
Heuristic Search Tree(HST), from initial state
to goal state, on which each node represents
a list of successive actions taken from the
initial state. HST is a sub-tree of the BFST
and thus smaller [1][2]. The quality of the
heuristic is defined by how small the HST is.

1.2. IDA*

Among the informed search algorithms
IDA* is of particular interest to us. IDA* is a
iterative, depth-bounded version of A*. It is a
depth-first search algorithm which culls the
search path and backtracks when the cost

F n of a node n on the path exceeds a F
bound C for that iteration. The initial F
bound Co is the initial state heuristic value,
and is increased in each new iteration to the
lowest cost of all the nodes culled on the
previous iteration, until a goal node is

I G

 g(n)=4 h(n)=3

ĥ(n)=2

n

expanded. Each successive IDA* iteration
expands all the previously expanded nodes
plus it expands the previously culled nodes to
the new F bound. IDA* guarantees an
optimal solution if the heuristic function is
admissible.[3].
The main difference between IDA* and other
informed search algorithms is IDA*'s iterative
nature, which is depth bounded.

Each iteration of IDA* generates a depth
bounded HST which is a sub-tree of the next
IDA* iteration's HST. The effect of each
successive iteration is to raise the depth-
bound, adding nodes to the HST's until the
final iteration. Earlier IDA* iterations can be
used to predict the performance of the
different heuristic combinations on the next
IDA* iteration till the solution is found.

By using IDA* it is not necessary to know
the problem optimal distance a priori to
choose which combination of heuristics will
solve the problem in the smallest possible
time.

1.3. PATTERN DATABASES HEURISTICS

Of recent interest to AI planning are
automation of pattern database heuristics [4].
Pattern Databases divide the search space
into smaller sets (for the N-puzzle these are
tile groups) and then build databases solving
all instances of the simpler abstracted space.
If only the moves concerning the tiles
belonging to a set are counted then we can
build a group of disjoint databases sets whose
admissible solution lengths can be added
together forming a new admissible
heuristic[5].

Pattern databases work quite well at
reducing the search space but their accuracy
depends on the unaccounted interactions
between elements in different sets.

There is no selection rules for how to best
divide the search space as unaccounted
interactions between the groups depend on
the current problem state. Korf recommends
to have as few sets as possible in order to
maximize heuristic accuracy but with the
constraint of not to keep so many elements on
each set that the evaluation time makes it too
costly (in evaluation time and memory space)
to store a lookup database of all heuristic
values[5].

2. PROBLEM DESCRIPTION

Our objective is to minimize the time it
takes to solve a planning problem given a list
of pattern database heuristics, a problem
description including an initial state and a
goal and IDA* as a search method.

The time it takes to solve a planning
problem depends on several factors but the
most important ones are the search method,
the accuracy of the heuristics used and their
evaluation time.

Combining heuristics can increase
accuracy but at the cost of increasing
heuristic evaluation time per search node.

Each combination of heuristics is treated
as a new heuristic. Unless the component
heuristics are known to be completely
independent, the only way to guarantee the
optimality of combined heuristics is to take
the maximum value of the individual
heuristics on each search node as the
combined heuristic value for that node.

We are interested in the case of how to
best combine heuristics which are both more
accurate and costly. This is the case for the
pattern databases family of heuristics. The
smaller the sets the faster is the heuristic
evaluation time but the less accurate is the
heuristic.

So the problem is: if we have a group of
heuristics ordered by decreasing accuracy
which is also increasing computational cost,
how do we combine them to minimize total
search time?

Our approach is to build a formula which
will predict the time cost associated to any
heuristic combination. We are in the process
of creating an automated problem solver
which utilizes this formula to minimize the
time it takes to solve a given problem
instance.

3. COST FORMULA

The formula above describes the total time
it takes to finish an IDA* iteration using a
heuristic combination. None of the time
parameters are constant or even linear except
perhaps tgoal eval. Analysis follows:

Nexp is the number of nodes expanded on
the search. Every node expanded has been
tested for whether it should be expanded.

t iteration=Nexp∗tprunning testt goalevalt heuristicevaltnodeexpansion
Nculled∗tprunningtheuristicevalNprunned∗tprunning

This requires to test whether is the goal node,
whether the state is pruned and finally there
is a time cost associated to expanding the
node.

Nodes culled are those nodes whose
expansion is delayed till the next iteration
because their F value is less than the
current depth bound.

Nodes pruned will never be expanded
because of search control rules like cyclic
paths, inverse operator check, duplicate
check, etc.

All time costs can be assumed to be
constant except:

theurtisitc eval depends on the cost of the
heuristic. For closed formulas like Manhattan
the cost is constant. For abstraction based
heuristics it is is a function of how complex
the abstracted space is. For pattern
database heuristics with large groups the cost
can be quite high.

tnodeexpansion depends on the search method.
If the search method stores visited states
then as soon as the visited states database is
bigger than available RAM the node
expansion time cost sky-rockets. We should
be able to use our the predicted size formulas
developed in this research to predict this
event. Normally it is a constant cost.

tprunning test is constant as long as an efficient
hashing function can be built. Otherwise, the
cost is linearly dependent of the size of the
pruning database to check against. Normally
a hashing function can be build for any State
of a domain.

4 HEURISTIC COMBINATION EFFECT
ON COST FORMULA

Our aim is to combine different pattern
database heuristics so we can solve a PDDL
problem in the shorter time possible.

Combined heuristics search space savings
is the intersection of all the individual
heuristic savings as some savings might
overlap. Combined heuristic time cost is not
the addition of all the individual heuristic
evaluation time costs.

The way we combine individual heuristics
is to evaluate them on a predetermined order
until the current search node is either culled
or expanded. For node culling it is sufficient
for one of the individual heuristics to cull the
node. However, it is necessary to evaluate all

individual heuristics on the current node to
expand it.

As most of the nodes in any HST are culled
nodes, we need to estimate the average time
cost for culling a node when combining
heuristics.

5 A NEW WAY TO COMBINE PATTERN
DATABASES HEURISTICS

The current approach is to try different
sets until the best overall pattern database is
found for the domain. So no heuristics are
combined, the best one overall is used.

In this research we are trying a new way to
minimize the search time by combining
different heuristics at different levels.

 Korf found out that if he divided the n
puzzle for n=15 in 2 halves he got the best
time results. But as he increased n the
search space exponentially increased until the
heuristics search space was computationally
too expensive. The workaround was to divide
the search space in more sets so the
abstracted search space was manageable .

The accuracy of the pattern databases
suffered and eventually heuristics like
Manhattan did better.
Our idea is to have a dynamic list of possible
candidate heuristics. Each of this heuristics
is a pattern database which divide the search
space in different sets sizes,i.e. dividing the
search space in 2, 3,... groups. We would
apply them sequentially from cheaper to more
expensive. The order is justified by the fact
that when culling it is sufficient for the
cheaper heuristic to cull the node. As the
cost of each heuristic grows exponentially
with the set sizes it is a good idea to start
with the cheaper heuristic.

The list of candidate heuristics is dynamic
because some of the more expensive
heuristics would only be available to the lower
levels of the search. To explain why consider
the case on which a more expensive heuristic
h2 culls a node which cheaper heuristic h1

does not. The time savings would be:

t comb heuristic evaluation, node expanded=∑
i=1

i=n

t i

tcomb heuristic culling=t1P ¬h1 t2P ¬h2∣¬h1 t3

...P ¬hn−1∣¬h1∪¬h2...∪¬hn−2∗t n

time savings h2,h1=P h2 |¬h1∗Nh1 expanded∗t1

−tevaluation h2

Time savings is linearly dependent on how
many nodes h1 would expand. So we can
afford to use more expensive heuristics if
enough nodes are culled.

Our time savings formula is the number of
nodes saved from expanding by h1 times their
total expansion time cost minus the time cost
of heuristic h2. Time savings of h1 is weighted
by the probability of h2 culling the node while
h1 does not. h2 culling a node which h1 does
not is not a guarantee. The evaluation time
of h2: will be added to the time cost regardless
of whether the node is culled or not. So
assuming we know the culling probabilities of
the heuristics, a decision still has to be made
on whether is it worth it to try a more
expensive heuristic which could cull the node.

This decision depends on the potential
nodes saved, so as the search depth gets
closer to the search frontier the potential
nodes saved decreases. At some threshold
depths it will not be worth even trying some
of the available expensive heuristics as the
potential savings do not justify it. This
threshold can be adjusted empirically.
 We need to estimate how many nodes could
potentially be saved from expansion. As
previously said any part of the HST is a
subtree of the BFST. So the maximum size
savings would be if h1 would expand all nodes
to the depth bound as the BFST would. This
is not going to be the case if h1 is any good.

Most of our previous research has been on
how to predict the sizes of HST[6] . The
traditional view is to model both the BFST
and the HST as uniform search trees with a
reduced Effective Branching Factor(EBF) or
more recently reduced Effective Depth(ED).
Our research indicates that both models are
valid on the limit of large depth.

But when looking at trees whose depth is
not very large we discovered that the initial
state and the heuristic used changes the way
the EBF and ED converge to their asymptotic
values. We have different methods to predict
this convergence. The two most successful
ones are:

1. modelling the HST EBF and ED as a
system of 2 non linear equations which
we can solve after two iterations.

2. Calculating the HST EBF as an
arithmetic mean of nodes created vs

fertile nodes and then solving for ED
on the uniform Search formula.

We use the previous iteration of IDA* to
acquire statistics to estimate the conditional
culling probabilities and also the EBF and ED
for each heuristic needed to estimate
potential savings.

6 CONCLUSIONS

It is not trivial how to combine more
informed heuristics but computationally more
expensive.

Disjoint pattern databases heuristics are an
example of this behaviour. The current
solution of using only one heuristic which
divides the space in as few parts as possible
as long as it fits on a lookup table is not the
best solution as it is not scalable nor its is
necessarily the fastest pattern database
combination.

We introduce a novel solution. We propose
to use different heuristics depending on
which search level we are. The higher the
potential savings the more worth it is to try
more accurate but more expensive heuristics.
We derive a statistical model which allows us
to divide available heuristics on sets which
applied on the right search depths should
minimize the search time. We also account
for the time costs derived of trying more
expensive heuristics and also the time costs
of statistics gathering. We are in the process
of implementing a solver using this principles.
We have done most of our previous research
regarding HST size predictions. Time costs is
the new element on this research and is a
work in progress.

7. REFERENCES
[1] Stuart Russel and Peter Norvig, Aritificial
Intelligence: A modern approach Journal, Prentice
Hall,2003.
[2] Nils J Nilsson. Artificial intelligence: a new
synthesis. Morgan Kaufmann Publishers Inc,
1998.
[3] Richard E. Korf. Recent Progress in the Design
and Analysis of Admissible Heuristic Functions. In
AAAI/IAAI:1165-1170. 2000.
[4] S. Edelkamp. Planning with pattern databases.
In European Conference on Planning (ECP), 2001
[5] A Felner, RE Korf, S Hanan. Additive Pattern
Database Heuristics. Journal of Artificial
Intelligence Research, 2004.
[6] Franco,Santiago. Topological Analysis of
Admissible Heuristics in IDA*.Computer Science
Graduate Workshop, Auckland University.2006.

NT=
EBFED1

−1
EBF−1

;UniformSearchFormula

AUTOMATICALLY EXTENDING THE COVERAGE OF HIERARCHICAL TASK NETWORK
PLANNERS

Andrew William Hay

ABSTRACT

Hierarchical Task Network (HTN) planning has the widest
use in practical planning systems because of its speed in dis-
covering solutions. One of the biggest obstacles in the devel-
opment of HTN planners is the difficulty in obtaining domain
dependent knowledge that guides the planning system. By au-
tomatically discovering HTN methods, the main knowledge
artifacts in HTN planning, we seek to increase the coverage
of an HTN planner without requiring a domain expert to craft
the HTN methods.

This paper describes a system that extends the coverage of
an HTN planner to include a set of problems currently uncov-
ered, given only the set of problems and the solutions to those
problems (the plans). The current progress in implementation
of this system and what remains to be done are also discussed.

1. INTRODUCTION

Planning systems have three performance attributes. How
many problems in a domain they can plan for (or domain
coverage), optimality of solutions found and speed of find-
ing solutions. No planning system can be both optimal, have
complete coverage and be tractable [1].

For practical planning applications, speed of finding solu-
tions is essential. Classical planners are optimal and complete
but are intractable, and are therefore not practical planning
systems.

HTN planners solve this problem by sacrificing complete
coverage of the domain for speed of planning. This is done by
utilizing domain dependent information to guide the planning
process, in the form of HTN methods.

1.1. Overview of HTN planning

HTN planning is similar to STRIPS-style planning in that
both use state based representations of the world, and the ac-
tions in HTN planning are similar to those of STRIPS-style
planning. The difference between HTN planners and STRIPS-
style planners is in what they plan for and how they plan for
it.

Classical planners, or STRIPS-style planners plan by find-
ing a sequence of actions (operators with preconditions) that
satisfies certain conditions or ”attainment goals”. Planning
usually proceeds by finding operators that have the desired

effects, and by making the preconditions of those operators
into subgoals[2].

HTN planners, on the other hand, search for plans that ac-
complish task networks, which can include goals other than
just attainment goals. They plan via task decomposition, in
which tasks are decomposed into smaller and smaller sub-
tasks until primitive tasks (which correspond to actions) are
reached that can be executed directly.

An HTN planning problem consists of the following[3]:
an initial state, the initial task network and a domain descrip-
tion containing:

• A set of operators that describe how to execute prim-
itive tasks by adding and deleting items in the current
state of the world. These differ from STRIPS operators
in that they have no preconditions. The preconditions
are enforced in the decomposition methods.

• A set of decomposition methods (or simply: methods)
that describe the ways of decomposing non-primitive
tasks into task networks containing possibly both non-
primitive tasks and primitive tasks. Methods usually
have a set of constraints, or preconditions that need to
be satisfied in order to be applicable.

• Optionally, various information such as definitions of
axioms for inferring conditions not mentioned explic-
itly in states of the world.

An HTN method contains three items, a non-primitive
task to decompose, a set of preconditions which need to be
satisfied in the current world in order use the method, and a
task network which replaces the decomposed task. To learn
an HTN method, all three need to be discovered.

HTN methods contain domain specific knowledge that guides
the HTN planner through the planning process. There is cur-
rently no way of learning these methods without using plan
traces, which contain information about the planners (e.g., a
human expert) decisions as well as the final solution[3]. Or a
domain expert constructing the methods by hand.

By only using the classical solution (plan) of a problem
that is not currently covered by an HTN planner to learn HTN
methods, it requires less input from an domain expert. This
allows learning of HTN methods to become more automatic
than the current state of the art.

1.2. Current Method Learning Algorithms

HTN method learning algorithms could first only learn the
preconditions of methods[3]. More recently now algorithms
can learn methods without any prior information on the methods[4].

These algorithms all require multiple plan traces to dis-
cover the HTN methods. Plan traces contain not only the
correct solution to a planning problem but also information
about inferences derived and decisions made while the plan
was generated. To make these plan traces requires either a
domain expert or an HTN planner with the set of HTN meth-
ods that are to be learned.

The current state of the art algorithms cannot automati-
cally extend the coverage of an HTN domain, they require
inputs that come from domain experts such as plan traces de-
scribed above.

We propose a system that can extends the coverage of an
HTN planner to cover a set of problems currently uncovered,
given only the set of problems and the solutions to those prob-
lems (the plans). By not using plan traces, this system does
not require a domain expert unlike the current state of the art
method learning algorithms.

2. METHOD LEARNING SYSTEM

Consider a set of HTN methods M for solving problems in
the HTN domain D, and an HTN planner. When the HTN
planner is run using the method set M some problems are in
the planners coverage and some are not.

Let P be a currently uncovered problem that is required
to be in the coverage of the planning system. To achieve this
for an HTN planner, a new method or methods need to be
constructed and added to the current method set to expand the
coverage of the planner.

Let M ′ ⊃ M be the set of methods that when run on
the HTN planner covers the problem P (in other words, the
planner can find the problems solution).

Looking at the plan trace of the HTN planner using method
set M ′ while solving P will generate a tree of tasks, the top
of the tree being the initial task network (as specified in the
problem) and the leaves being the primitive tasks (for exam-
ple: Figure 1a). In between tasks are methods which take a
task and decompose it into a task network (a set of tasks).

The methods that need to be constructed are in the set
M ′ −M , if those methods are removed from the plan trace,
gaps in the plan trace appear (for example: Figure 1b). By
finding this plan trace with the gaps using only the method set
M , all three items that make up a method can be discovered.
Methods in the set M ′ −M are called missing methods.

With only the methods in the set M , the input to the sys-
tem, the correct plan trace with gaps cannot be directly com-
puted. But by doing both top-down planning from the initial
task network in the problem, and also bottom-up parsing us-
ing the solution to the problem, the plan trace with gaps can

(a) Plan Trace of problem covered by method set.

(b) Plan Trace of problem not covered by method set.

Fig. 1. Figure 1: Example of plan trace with a) all HTN meth-
ods, and b) missing one HTN method. Single non-primitive
tasks get decomposed by a method into a set of subtasks, in
this task 2 primitive tasks.

be constructed.
The top of the gap (or Gap Problem) is the non-primitive

task that the missing method decomposes, and the bottom of
the gap (or Gap Solution) is the task network that the missing
method decomposes the top of the gap into. These consti-
tute two out of the three required items to construct a method,
finding the final item (the preconditions) means the method
has been learnt. Discovery of preconditions will be discussed
later in the paper.

The method learning system consists of three parts:

• Finding the Gap Problem via the Gap Problem algo-
rithm.

• Finding the Gap Solution via the Gap Solution algo-
rithm.

• Finding the preconditions.

2.1. HTN planner and assumptions

The HTN planner that is being used is the JSHOP2 planner[5].
JSHOP2 is an domain-independent HTN planning system that

is based on ordered task decomposition, which involves plan-
ning for tasks in the same order as they will be later executed.

There is one assumption that is used throughout the rest
of the paper, that there is only one missing method, and thus
only one Gap Problem and Gap Solution. However, it is our
belief that the Gap Problem and Gap Solution algorithms will
work even if there are multiple missing methods but for now
the simpler problem will be tackled.

2.2. Gap Problem algorithm

The Gap Problem (or GP) is the task at the top of the gap, the
non-primitive task that is decomposed by the missing method.
The GP algorithm does not find the GP but a set of candidate
GPs. The reason for will be explained below.

The inputs to the GP algorithm are the initial task network
for the uncovered problem P , the set of incomplete methods
M and the correct problem solution (the plan) S for the un-
covered problem.

Consider how the HTN plans for P using method set M ,
assuming there is only one GP then the HTN will plan as nor-
mal until it tries to decompose the GP. A number of things
can happen:

• The GP could have no applicable methods.

• The GP could have 1 or more applicable methods.

When there are no applicable methods, the planner will
backtrack. Thus when the planner backtracks is a good in-
dication that the non-primitive task thats being backtracked
from is the GP.

When there is 1 or more applicable methods, the planner
will decompose the GP with one of them and continue plan-
ning. However it will be the wrong decomposition, which
will result in the planner backtracking to the GP and trying
another decomposition if possible.

There is no assurance that the first occurrence of back-
tracking in the HTN planner is the GP for two reasons. First
is the one mentioned above, the GP may have 1 or more appli-
cable methods (but incorrect ones) so the backtracking would
not first happen on the GP. Secondly, the planner may back-
track even if there is no GP.

What this means is that every time backtracking occurs in
the GP algorithm, the algorithm must both backtrack at the
task and also add the task to the set of candidate GP’s.

The end result is a set of candidate GP’s and each candi-
date GP has a partial plan trace. The partial plan trace is the
plan trace of the planner at the time the candidate GP was the
task being backtracked from. The partial plan trace has also a
partial plan Sp ⊂ S, this is the partial plan that was found by
the HTN planner.

The partial plan trace has a remaining task network t which
is the task network that had not been decomposed by the plan-
ner at the time, the GP is also inside t.

When these partial plan traces are combined with the Gap
Solution algorithms result, this will result in a plan trace with
gaps which represents a candidate missing method.

2.3. Gap Solution Algorithm

The Gap Solution (or GS) algorithm finds the task network at
the bottom of the gap, the set of primitive and non-primitive
tasks that the missing method decomposes the GP into. By
then matching the partial plan trace from the GP algorithm
and the bottom-up parse of the GS algorithm, a set of can-
didate missing methods can be constructed. The last part is
to select from the set of candidate missing methods, the best
missing method.

The inputs to the GS algorithm are the set of candidate GP
and partial plan traces from the GP algorithm, along with the
set of incomplete methods M and the correct problem solu-
tion (the plan) S for the uncovered problem.

For this algorithm, a bottom-up parse of the remainder
plan is done to reconstruct the other part of the correct plan
trace with gaps. The remainder plan of a partial plan trace
is the plan S − Sp, in other words the part of the problems
solution that the planner could not find before hitting the can-
didate GP.

The first part of the GS algorithm is to turn each of the
methods in M into a grammar rule. The left hand side being
the non-primitive task that the method decomposes and the
right hand side being the decomposition of the grammar rule.

Then, using this set of grammar rules, a bottom-up parser
will generate all the possible parse trees for the remainder
plan.

The difference between these grammar rules and normal
rules is that since these rules represent methods, so the pre-
conditions have to be checked before the rule can be applied.
This is a simple process, as every state is known (the algo-
rithm has the entire plan for the problem). Also, there is no
start symbol, the parser simply tries every possible combina-
tion of rules.

This parse is run on each candidate GP and its partial
plan trace, and for each candidate GP will have a number of
bottom-up parse trees.

Before the algorithm can decide which is the best GP and
GS, the top-down partial plan trace and the bottom-up parse
trees need to be matched. At the end of matching the actual
GP and GS merge will result in a correct plan trace with gaps.

Matching is done by matching the bottom of the top-down
partial plan trace with the top of the bottom-up parse tree.
This is the remaining task network t for the top-down partial
plan trace. And the tasks that have no parents in the bottom-
up parse tree. These are called the top and bottom remaining
lists respectively.

Each task that is in both top and bottom remaining lists
and in the correct position, becomes a place where the top-
down and bottom-up parses meet. The end result will be 1

or more tasks in the top-down remaining list and some in the
bottom-up remaining list (sometimes none) that will not be
matched. After matching, the partial plan trace and the parse
tree become one single plan trace with gaps in it.

These tasks that are not matched are the GP and GS for
the missing methods, GP if its in the top-down list and GS if
its in the bottom-up list. Though these are still candidate GP
and GS, as there will be more than 1 plan trace with gaps in
it.

The last job of the GS algorithm is to decide which of
the number of candidate GP and GS pairs is the best one,
the heuristic metric for this is complexity. The least complex
solution is the best, if the GP is the initial task, and the GS is
the entire plan S, that is clearly the worst method to learn for
it is very specific.

The primary metric is how many primitive tasks are in
the candidate GS, the less primitive tasks the better. Sec-
ondary metrics for tiebreakers could include the number of
non-primitive tasks in the candidate GS (less is better). The
complete heuristic metrics are still being developed.

2.4. Finding Preconditions

After the GP and GS are decided, there still is the third item
of a method to deal with, its preconditions. This is a task not
yet tackled in detail enough to go over in this paper.

3. CONCLUSIONS

Because planning systems cannot be optimal, have complete
coverage and be quick, HTN planners choose to sacrifice cov-
erage for quickness. This means that HTN planners are the
most widely used planning system for practical planning ap-
plications where speed is essential.

This paper describes a system that extends the coverage of
an HTN planner by discovering new HTN methods from un-
covered problems and their solutions. It takes method learn-
ing a step beyond the current state of the art by not relying on
information packed plan traces for input and only requiring
the solution or plan of an uncovered problem.

By discovering the correct plan trace with gaps, the Gap
Problem and the Gap Solution can be found. The Gap Prob-
lem is the non-primitive task that the missing method decom-
poses into task network that is also the Gap Solution.

At this point in time, the Gap Problem algorithm has been
completed and tested to run correctly. The Gap Solution al-
gorithm is currently being implemented, and we have some
ingenious ideas in how to tackle the problem of finding the
preconditions of the method.

4. REFERENCES

[1] Tom Bylander, “The computational complexity of propo-
sitional STRIPS planning,” Artificial Intelligence, vol.
69, no. 1-2, pp. 165–204, 1994.

[2] Kutluhan Erol, Hierarchical task network planning: for-
malization, analysis, and implementation, Ph.D. thesis,
1996.

[3] Okhtay Ilghami, Dana S. Nau, Hector Muñoz-Avila, and
David W. Aha, “Learning preconditions for planning
from plan traces and HTN structure,” Computational In-
telligence, vol. 21, no. 4, pp. 388–413, november 2005.

[4] Okhtay Ilghami, Dana S. Nau, and Hector Muñoz-Avila,
“Learning to do HTN planning,” in Proceedings of the
Sixteenth International Conference on AI Planning and
Scheduling, Cumbria, UK, June 2006, AAAI Press.

[5] Okhtay Ilghami, “Documentation for JSHOP2,” Tech.
Rep. CS-TR-4694, Department of Computer Science,
University of Maryland, February 2005.

GOAL­ORIENTED TESTING OF SEMANTIC WEB SERVICES

M. Shaban Jokhio, Gill Dobbie, Jing Sun

ABSTRACT

Semantic Web services (SWS) has been emerging
for past few years. It provides a semantic version of
current syntactic Service­Oriented Architecture
(SOA). SWS aims at the automation of services
process tasks such as web services discovery,
selection and invocation etc. This research proposes
the methodology of a goal­oriented testing for SWS
that shall enable service consumers to test the
functionality of services as opposed to the usual
service­provider method of software testing.
Moreover, the proposed research is based on the
emerging Web Services Modelling Ontology
(WSMO) framework, which has strong conceptual
design basis and is probably to lead the SWS in
future.

1. INTRODUCTION

Software testing is one of the main phases of the
software development process which consumes an
average of 30% to 70% of an organization’s
resources. [1] Much like common software testing,
the web services (WS) testing aims at finding the
syntactical or logical errors that may occur
potentially in a WS specification or in the backend
program to which the web service provides an
interface. However, the WS testing is different and
more challenging than normal software testing
because of following reasons.
1. WS only has application interface and no user

interface (UI). The absence of UI causes lack of
controllability and difficulty for the testing
process.

2. Dynamic nature of WS including dynamic
publication, discovery, selection, invocation and
monitoring needs the test­process be dynamic.

3. Test­case need to be documented in XML for
WS consumption.

4. No internal details of program are known.
WS are an important paradigm in current era of

Web computing. A web service defines an interface
to a program that is accessible through internet via
XML. Although current WS technologies such as
WSDL, SOAP and UDDI [2,3,4] have made Web
services practical, but the syntactical basis and the
lack of machine understandable semantics have
caused involvement of great manual work for
different Web Services such as manual publication,
discovery, invocation and composition. To realize
the actual aim of SOA, the SWS adds a layer of
semantics to existing web service technologies so
that the manual work can be replaced by machine
automation. SWS have emerged by combining the
semantic web technologies like RDF, RDFS and
ontologies etc, with WS technologies as in Fig.1. [5]

Fig. 1. Evolution of web from syntactic WS to SWS.

Web Services Modelling Ontology (WSMO) is
an emerging framework of SWS being developed in
DERI research Labs, Innsbruk Austria, since 2004. It
is based on strong design principles of scalable
mediation and strict decoupling between its
elements. WSMO defines four top level elements for
Web service modelling, including “ontology” to
formally specify the terms to be used by other web
service elements, “webservice” to model the
description of computational entities or services,

“goal” to formally specify the user objectives that
are to be achieved in a web service market place and
“mediator” which link any of these four components
and resolve any potentially occurring mismatches at
different levels such as data, process or function
levels. Web Services Modelling Language (WSML)
provides the base ontology modelling language and
Web Services Execution Environment (WSMX) is
an execution environment for WSMO as in Fig. [6].

Fig. 2. WSMO overview.
No research has yet been done in WS testing area for
testing the semantic web services, especially for
WSMO­based semantic web services. The proposed
research shall enable the user­oriented testing of
semantic web services. Rest of this paper is
organized as follows. Section 2 briefly describes
related work, Section 3 described the problem
definition that is addressed, Section 4 describes the
Proposed Solution and Section 5 describes
Conclusions and Future Work briefly.

2. RELATED WORK

A lot of researches such as [7, 8, 9, 10, and 11]
mainly, were done by the WS testing research
community. The advantages of these research
methods were the ease of testing procedure with
WSDL specification and automated testing tools
such as Coyote and WSDLTest etc, but the
disadvantages were that all of these testing methods
are limited to the provider’s view of testing web
services and are restricted to only the current form of
web services based on WSDL testing. Very little
research has been done so far that aims at testing the
SWS.
Wang, Y, et al. [12], however, took a step for SWS
testing, proposing a methodology for ontology­based
test case generation for WS testing. The service

specification in OWLS is given input to the tool and
the specification was parsed for the input/output
information and operational behaviours of composite
service. The operational behaviour was converted to
state­machine and the full state­machine ontology
was obtained, combining the operational semantics
and input/output information. Finally the test­case
generation algorithm parses different paths of the
state­machine, analyzing the inputs and outputs of
every atomic process and generated the test cases.
The approach is quite feasible and generates the
effective test­cases but it is again provider’s view of
testing the service that may not be visible to the
service user.

3. PROBLEM DEFINITION

Goal­oriented design is considered to be one of the
best practices of software designing. [13]. User goals
have primary importance throughout the software
development process. A good software must identify
the user goals properly, fulfil them completely and
then test for their fulfilment.
The user goals become more important in an open
WS market place where users find a web service,
invoke it and consume its functionality. Therefore it
is important to have a method which can let the users
to test the functionality of a web service from the
goal­fulfilment point of view.
For SWS that adds semantics to automate the WS
usage such as WS discovery, selection and
invocation etc., it becomes more important to have
such a testing methodology. The testing of service
from user point of view may help in appropriate
service selection and invocation. For example, a user
goal such as “Buy a book” can be fulfilled by several
services whereas the user may select only that
service which is tested by user and found to be
functioning correctly on all user inputs. In other
words this can help users find, select or invoke a
user­reliable service i.e. a service which the user
trusts to operate correctly. An analogy would be the
beta­testing of software which is done by the end­

users and reveals more errors than the alpha­testing
done by the software developers.

The existing WS testing frameworks test a
web service only from a given service specification
(WSDL or OWLS) which is only visible to the
service provider and not to service client.
Unfortunately no research in WS testing research
area has been done so far that proposes to test the
web services from user point of view.

This research aims to propose such a
methodology for WS testing which can let the users
test the services from their goal perspectives and let
them ensure the fulfilment of their goal before the
actual service usage.

4. PROPOSED SOLUTION

To achieve the goal­oriented testing of semantic web
services as described above, the WSMO framework
is chosen due to following reasons:

1. WSMO is the only framework of SWS
which provides the formal specification of
the user objectives as the goals. Moreover,
these user goals are modelled as first class
citizens or top level elements in WSMO.

2. WSMO provides a strong conceptual basis
for SWS and is probably to be the W3C
recommendation in future when the
semantic web services shall be used as in
real.

4.1 High level Methodology
An abstract high level methodology for goal­oriented
testing is shown in Fig. 4. The goal specification
given as input to the tool can be parsed for extracting
goal capability and interface information with help
of tools such as WSMO4j­ (an API for building
applications with WSMO). Next, the test­case
generator can generate test­cases from capability or
interface specification as described above. Ontology­
base that contains domain ontologies, sample test
data in WSML and Knowledge Base (KB) for test
rules, can be established from importsOntology part
of goal specification. An ontology reasoner for
WSML such as MINS/IRIS can be employed to
generate the test­data inferred from ontologies for

more efficient testing purpose. Thus the test cases
generated in this way can be used for WSMO­based
semantic web service testing. The test­results can be
analyzed and the feedback can be supplied to the
ontology­base for updating the knowledge­base for
test­case generation rules to generate more efficient
test­cases for next time.

Fig. 4. Overview of High Level Methodology for goal­
oriented testing of SWS.

4.2 WSMO goal specification
WSMO goal specifies the requested view of the
service. A typical WSMO goal specification is given
in listing 1.

Class goal
 hasNonFunctionalProperties type

nonFunctionalProperties
 importsOntology type ontology
 usesMediator type {ooMediator,

ggMediator}
 requestsCapability type

capability
 requestsInterface type interface

Listing. 1. WSMO goal specification.
Within above goal­specification two elements
“requestsCapability” and “requestsInterface”
elements can be used to generate the test­cases. We
discuss how these two elements can be used for the
purpose of generating test cases. The capability
element is further specified as the set of four sub­
elements:

1. precondition: defines the constraint on the
information that must be available for
successful fulfillment of the goal.

2. assumption: defines the condition on real
world that holds true for successful
fulfillment of the goal.

3. postcondition: defines the information
produced after the goal is achieved.

4. effect: define the real world changes after the
successful achievement of this goal.

The “requestsInterface” element defines the
requested view of the interface to achieve this goal in
the form of the requested choreography­ (a desired
format of interaction with the service that fulfills the
particular goal) and a requested orchestration­ (a
desired format of how the service should compose
other services to achieve the particular goal). Each of
the choreography or orchestration further defines
two sub­elements: i.e. state or state­signature­
(defining the states of concepts which are used to
interact with the requested service) and the
transition­rules (dictate how the states of the
concepts are changed based on different condition).
A pseudo code example of the BuyBookGoal is
given in Listing 2.
goal BuyBookGoal
importsOntology

BuyBookOntology,
CreditCardOntology
capability
precondition

- purchaseRequest
- creditiCard

 postcondition
 - bookReceipt
 assumption

- credit card is valid
 effect

- credit card charged with the
price of the book

interface
choreography

 state
in
 purchaseRequest
 creditCard
out
 failureNotice
 bookReceipt
controlled

 tempReceipt
transitionRules
 if (purchaseRequestInstance is

received)
 then
 create(new tempReceiptInstance)
 endIf
 if (tempReceiptInstance exists)

and creditCardInstance valid)
 then
 create new BookReceiptInstance)
 endIf
 if (purchaseInstance is received)
 and (creditCard is not valid)
 then

 (create new FailureInstance)
 endIf

Listing. 2. A BuyBook Goal Example.

4.3 Generating Test­Cases from goals
The critical analysis reveals that WSMO

goal specification is capable to be used for
generating test­cases to test the service functionality
that fulfils the specified goal. Test cases from goals
can be generated in two ways: From requested
capability specification and from requested interface
specification. This is shown in figure. 3 below

Fig. 3. Test case generation from goals.

In the requested capability, “preconditions”
provides an input space that can be used to generate
the test­input data, “postconditions” specifies the
constraints on information space after successful
achievement of goal and can be used to record the
expected output, “assumptions” can be used to
generate a negative test­case that violates the
important real world condition and the effect can

optionally be used to record the expected result after
the successful achievement of the goal.

In “requested interface” specification, the
state signature specifies the “in” state and can be
used to generate the test­input data and the “out”
state together with “transition rules” can be used to
record the expected outputs in a test­case.

4.3 Evaluation of Test­cases
Effectiveness of test­cases generated can be
measured on the basis of capability coverage and
interface coverage. Capability coverage specifies the
number of precondition, assumption, postcondition
and effect parts covered; where as interface coverage
specifies the state signature coverage (number of in
and out states covered) and transition rules coverage
(number of transition rules covered).

5. CONCLUSION & FUTURE WORK

The proposed research “Goal­Oriented Testing of
semantic web services” is entirely a new concept of
web service testing, which shall let the service users
ensure the functionality before selecting and actually
consuming the service functionality. It can be
implemented by WSMO framework. We have yet
worked out only the high level solution for the
simplified case however we intend to do following in
future.

1. Design a concrete high level methodology.
2. More effective way of test­case effectiveness

measurement.
3. Solutions for complex issues like mediators.
4. Implementing prototype system to evaluate

proposed research.

6. REFERECES

[1] Phadke, M.S, “Planning Efficient Software
Tests”,1997
http://www.stsc.hill.af.mil/crosstalk/1997/10/pla
nning.asp

[2] Chinnici, R, Moreau, J.J., Ryman, S. “Web
Services Description Language (WSDL)”

http://www.w3.org/TR/wsdl20/wsdl20­z.html,
2006

[3] Mitra, N, “SOAP V1.2 Part­0: Primer”,
http://www.w3.org/TR/2002/WD­soap12­
part0­20020626/, June 2002

[4] Rogers, T, Clement, L, Kumar, R, “OASIS
UDDI Specification”, http://www.oasis­
open.org/,

[5] Stollberg, M “Semantic Web Services, Realizing
SOA vision”, SWS tutorial Industry workshop,
DERI Innsbruk, February 2007, page. No. 2, 3

[6] Raman D, Lausen, H, Keller, U, “Web Services
Modelling Ontology”, D2V1.3,
http://www.wsmo.org/TR/d2/v1.3/, 2006

[7] Tsai, W. T, Paul, R, Wang, Y, Fan, C, Wang, D,
“Extending WSDL to Facilitate Web Service
Testing“, pp 1­2, 2002.

[8] Tsai, W. T, Paul, R, Song, W, Cao, Z, “Coyote:
An XML­based Framework for Web Services
Testing“, pp 1­2, 2002

[9] Siblini, R, Mansour, N, “ Testing Web Services”,
pp1­6, 2005

[10] Bai, X, Dong, W, “WSDL­Based Automated
Test Case Generation for Web Services Testing”,
pp 1­6, 2005

[11] Sneed, M, H, Huang, S, “WSDLTest, Tool for
Testing Web Services”, pp 1­8, 2006

[12] Wang, Y, Bai, X, Li, J, Haung, R, “Ontology­
based Test Case Generation for Testing Web
Services”, pp 1­8, 2007

[13] Schnabel, I, Pizka M, “Goal­Driven Software
Development”, pp 1­6

http://www.wsmo.org/TR/d2/v1.3/
http://www.oasis-open.org/
http://www.oasis-open.org/
http://www.w3.org/TR/2002/WD-soap12-part0-20020626/
http://www.w3.org/TR/2002/WD-soap12-part0-20020626/
mailto:nilo.mitra@ericsson.com
http://www.w3.org/TR/wsdl20/wsdl20-z.html
http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp%20%20%20
http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp%20%20%20

VERIFYING NORMALIZATION ALGORITHMS FOR SEMISTRUCTURED DATA

Scott Uk-Jin Lee

ABSTRACT

The rapid increase in semistructured data usage has resulted
in various developments in database systems for semistruc-
tured data. Many web services and applications that utilize
large amounts of semistructured data require the developed
database systems to minimize redundancies and update anoma-
lies. Several normalization algorithms for semistructured data-
base systems have been proposed to satisfy the demands. How-
ever, currently proposed normalization algorithms lack veri-
fication to ensure the preservation of the data and the con-
straints on the data. It is critical for the correctness of these
normalization algorithms to be verified. Otherwise the data
and the constraints between the data could be lost or corrupted
during the normalization process. In this paper, we propose a
declarative methodology to verify the correctness of normal-
ization algorithms developed for semistructured data in the
ORA-SS data modeling language. The verification methodol-
ogy is developed by adapting the concept of dependency pre-
serving and lossless join properties from the relational database
systems into the semistructured data context. The methodol-
ogy verifies the correctness of the normalization algorithms
by checking whether the functional dependencies are preserved,
data is not lost, and spurious data is not created during the ap-
plication of normalization algorithms.

1. INTRODUCTION

The rapid growth of the World Wide Web and its technologies
has resulted in enormous amounts of data being used over the
Internet by Web Services and Web-based applications. The
increase in semistructured data usage is not limited to Web
applications but expands into various other applications such
as digital libraries, biological databases and multimedia data
management systems. This expansion of semistructured data
usage creates the need for effective and efficient utilization of
semistructured data [1].

With such a rapid increase in its usage semistructured
data needs to be stored, manipulated, and queried to be uti-
lized properly by various applications and tools. For these
purposes, many researchers have proposed to design and de-
velop adequate database systems for semistructured data. As
a result, several database systems have already been devel-
oped for eXtensible Markup Language (XML) [2], which is
a common representation for semistructured data, while tra-
ditional database companies, such as Oracle, have provided
XML support for their existing database systems.

As with widely used database systems such as relational
database systems, redundant data stored in XML database
systems must be minimized otherwise it can cause data incon-
sistency and anomalies [3]. Several normalization algorithms
have been proposed and used to minimize redundancies in
semistructured database systems by transforming the schema
of the semistructured data. It is possible for the schema trans-
formation in the normalization process to lose or corrupt the
semistructured data or the dependencies between the data if
normalization algorithms are designed incorrectly. The con-
sequences of losing or corrupting data or the constraints be-
tween the data are devastating especially for databases used
for online banking applications, credit card transactions, gov-
ernment’s legal applications, and any other applications deal-
ing with critical information.

However, currently developed normalization algorithms
for semistructured data lack verification that would ensure
preservation of the data and the constraints on the data. The
normal form for semistructured data (NF-SS) developed by
Wu et al. [4], XML normal form (XNF) developed by Emb-
ley and Mok [5], and normal form for XML documents devel-
oped by Arenas and Libkin [6] are examples of the algorithms
and rules for normalizing semistructured data. These nor-
malization algorithms use different methods to minimize re-
dundancies in semistructured database systems. Without ade-
quate verification, these algorithms could cause more damage
than the promised benefits since the process of minimizing
redundancies is useless if it corrupts the data.

In widely adopted database systems, one of the features
that is used to prove the correctness of the normalization al-
gorithms is the mathematical foundation. For example, in
relational database systems, a mathematical foundation has
been extraordinarily useful in the definition of normalization,
to prove that lossless and dependency preserving algorithms
[7] can be defined. Such verification support for normaliza-
tion and its algorithms ensures the consistency of the data and
the constraints on the data.

Therefore, this research proposes an adequate verification
methodology that proves the correctness of normalization al-
gorithms for semistructured data. The verification will be pro-
vided through an establishment of the mathematical founda-
tion for the semistructured data. The derived mathematical
foundation will verify whether normalization algorithms that
transform the schema of semistructured data preserves the
data and the constraints on the data. Furthermore, the well
defined mathematical foundation will provide various addi-

tional benefits to the database for semistructured data.

2. PROPOSED RESEARCH

The main objective of this research is to provide verification
methodology that proves the correctness of normalization al-
gorithms used for semistructured data. A well defined math-
ematical foundation will be establish to satisfy this objective
since it is proven to provides effective verification for the nor-
malization algorithms in widely used database systems.

The mathematical foundation for semistructured data re-
quires two main components to provides an adequate verifi-
cation methodology for proving the correctness of normaliza-
tion algorithms. A formally defined and verified semantics of
an adequate data modeling language for semistructured data
is one component and a formally defined and verified schema
transformation operators with its verification criteria for nor-
malization process and algorithms is the other.

The formal semantics for semistructured data must be de-
fined first to provide a standard representation of schemas.
Then the formal definition for transformation operators with
its verification criteria for normalization processes and algo-
rithms can be defined on top of the formal semantics. Also to
provide the correct verification methodology for the normal-
ization algorithms, the formally defined mathematical foun-
dation must be supported with adequate formal verification
tools for its verification. Hence, to define a mathematical
foundation for semistructured data, a standard representation
of schemas and the normalization of schema for semistruc-
tured data must be formally specified and verified using ade-
quate data modeling languages and formal languages.

2.1. Formal Semantics for Semistructured Data

In mathematical foundation for semistructured data, formal
semantics for semistructured data must be defined to provide
standard representation for schema and the data of semistruc-
tured data. Also it is essential requirement for defining schema
transformation operators to represent and prove normalization
process and algorithms.

There has been many other researches which proposed
a formal semantics for semistructured data. For example,
the formalization of DTD (Document Type Definition) and
XML declarative description documents using expressive de-
scription logic has been presented by Calvanese et al. [8].
Anutariya et al. presented the same formalization using a
theoretical framework developed using declarative descrip-
tion theory [9]. Also spatial tree logics have been used to
formalize semistructured data by Conforti and Ghelli [10].
More recently, hybrid multimodal logic was used to formalize
semistructured data by Bidoit et al. [11]. While these works
have helped us develop a better understanding of the seman-
tics of semistructured data, none of them have applied ade-
quate and automated verification. Furthermore, none of these

researchers have considered providing specification and veri-
fication for operations and algorithms that transforms semistruc-
tured data schema.

As a result of examining related work and intensive back-
ground research, Object Relationship Attribute model for semi-
structured data (ORA-SS) data modeling language [12, 3]
will be adopted as a data modeling language. The ORA-SS
data modeling language is used because it not only captures
the constraints that are represented in textual languages such
as XML Schema [13] but also it is a diagrammatic notation
which can be used for conceptual modeling.

With ORA-SS, we also applied a similar approach to for-
malize semistructured data using Z/EVEs [14] and Alloy [15].
But the approach using Z/EVEs had problems with compli-
cated and time consuming verification and the approach using
Alloy had a scalability problem. Considering these problems,
the research will use Prototype Verification System (PVS) [16]
and its theorem prover as the formal specification language
and verification tool. Also PVS has proven its effectiveness
by providing precise formal definitions and powerful auto-
mated verification support in various other research projects [16].

With ORA-SS data modeling language and PVS formal
language the following tasks has been conducted to provide
formal semantics of semistructured data.

• Specifying formal definition of schema representation
in ORA-SS data model using PVS formal specification
language

• Verifying the formally defined ORA-SS schema dia-
gram

• Specifying formal definition of data representation in
ORA-SS data model using PVS formal specification
language

• Verifying the formally defined ORA-SS instance dia-
gram

• Specifying formal definition for relationship between
schema and data in ORA-SS data model using PVS for-
mal specification language

• Verifying the formally defined relationship between the
schema diagram and the instance diagram in ORA-SS

At the completion of the above formal definition and veri-
fication, the formally defined and verified semantics for semi-
structured data is represented. It provides a standard represen-
tation for schema and data of semistructured data. Addition-
ally, the above formal definition provides a verification for
the schema instance and the data instance of semistructured
data against the semantics of ORA-SS data model language.
The verification for the data instance of semistructured data
against its schema is provided as well through the above defi-
nitions.

The formally defined ORA-SS semantics also enables the
formal definition of verification methodology for normaliza-
tion processes and algorithms. On top of the above defini-
tions, the verification criteria for the correct normalization can
be formally defined and verified. The formally defined veri-
fication criteria can then be used to formally define transfor-
mation operators to complete the methodology for verifying
normalization process as well as its algorithms.

2.2. Verification of Normalization Algorithms

The verification methodology for normalization algorithms of
semistructured data will be defined on top of the ORA-SS for-
mal semantics defined in PVS formal language. The method-
ology will consists of verification criteria for the normaliza-
tion process and verified schema transformation operators for
normalization algorithms.

The verification criteria adapts the concepts and rules for
dependency preserving and lossless property [7] from rela-
tional database systems. However, the dependency preserv-
ing and lossless properties of relational database systems are
defined specifically for relational database systems. In order
to utilize these properties for semistructured data systems, de-
pendency preserving and lossless properties specific to semi-
structured data context need to be defined. The dependency
preserving property ensures that the business logics of the
data represented in functional dependencies are preserved.
The lossless properties ensure that the transformed schema
does not lose data nor create spurious data. The combination
of the two properties provides a definition for data equiva-
lence that can be used to verify the correctness of normaliza-
tion algorithms for semistructured data.

A declarative definition of dependency preserving and loss-
less properties provides an appropriate and effective way to
verify the correctness of normalization processes for semistruc-
tured data. These properties provide reliable verification since
the dependency preserving and lossless properties are proven
to ensure the equivalence of the data and verify the correct-
ness of normalization algorithms in relational database sys-
tems.

With the declarative definition of dependency preserving
and lossless properties the following tasks will be conducted
to provide verification methodology for normalization of semi-
structured data.

• Specifying formal definition of dependency preserving
and lossless properties for semistructured data accord-
ing to the specification of ORA-SS formal semantics

• Verifying the formally defined dependency preserving
and lossless properties for semistructured data

• Specifying formal definition of transformation opera-
tors according to the specification of ORA-SS formal
semantics

• Applying formally defined dependency preserving and
lossless properties for semistructured data to the trans-
formation operators as constraints

• Verifying the correctness of the normalization and its
algorithms using transformation operators (whether they
maintain lossless and dependency preserving property)

For the verification methodology described in several tasks
above, verification criteria for normalization process will be
applied as constraints for every schema transformation op-
erators defined. With the constraints applied, the series of
schema transformation operators will be used to represent the
normalization algorithms where it will be proved using PVS
verification support. The algorithm is proved to be correct,
if every constraints of the transformation operator series, rep-
resenting the algorithm, is satisfied. Hence, the completion
of the formal definitions and verification described above will
provide an adequate verification methodology for normaliza-
tion algorithms. Additionally, the research can compare dif-
ferent normalization algorithms derived for each database con-
cept based on its performance to find the best algorithms using
the verified representations of the database concepts.

This part of the research extends the defined mathematical
foundation even further by enabling its practical applications
on utilization of semistructured data in various applications
and in its database systems. Also by representing the nor-
malization algorithms and verifying their correctness, the re-
search will demonstrate the correctness and applicability of
the mathematical foundation.

At the completion of all these tasks, the research will have
provided an adequate verification methodology for proving
the correctness for normalization algorithms through the defi-
nition of a mathematical foundation. The defined mathemati-
cal foundation of the research, that consists of verified formal
specification of ORA-SS data model semantics, incorporated
schema transformation operators and the verified representa-
tion of the best algorithms for each database operations, will
be powerful enough to ensure the correct, effective, and ef-
ficient use of semistructured data in various applications as
well as its database systems. In addition, the research will
also help the ORA-SS data model to evolve and provide a
possibility for real Web-based applications to be developed
from the ORA-SS data model.

3. CONCLUSIONS

This proposed research will provide a verification methodol-
ogy for semistructured data to prove the correctness of nor-
malization algorithms. The verification methodology will be
provided through the establishment of mathematical founda-
tion for semistructured data. The advantages of having such
a mathematical foundation includes providing formal seman-
tics for semistructured data design, enhancing the discovery

of inconsistencies in the data, providing verification for cor-
rectness of database operations such as normalization and view
definitions, and maintaining lossless and dependency preserv-
ing properties of algorithms for database systems. Also the
generic nature of the defined mathematical foundation allows
it to be applied to any applications or database systems that
use semistructured data.

Currently, the formal semantics of ORA-SS data model
language has been specified and verified using PVS and its
verification support. Also lossless and dependency preserving
properties for semistructured data has been formally defined
on top of the ORA-SS formal semantics and used as correct-
ness criteria for normalization algorithms. Using the formally
specified and verified ORA-SS semantics and normalization
correctness criteria, basic transformation operators will be de-
fined and verified. Furthermore, based on the defined se-
mantics of the ORA-SS data model and basic transforma-
tion operators, various normalization algorithms developed
for semistructured data will be defined and verified. Then the
verification methodology defined through mathematical foun-
dation will be evaluated through several case studies.

For the future works of the research, other various database
concepts such as view creation can be defined and verified
based on the defined semantics of the ORA-SS data model
and basic transformation operators. Also this addition to the
mathematical foundation can be evaluated through several case
studies of conducting verification for view definitions and their
algorithms.

4. REFERENCES

[1] Xiaoying Wu, Tok Wang Ling, Mong Li Lee, and
Gillian Dobbie, “Designing Semistructured Databases
Using the ORA-SS Model,” in WISE ’01: Proceed-
ings of 2nd International Conference on Web Informa-
tion Systems Engineering, Kyoto, Japan, 2001, IEEE
Computer Society.

[2] Elliotte Rusty Harold and W. Scott Means, XML in a
Nutshell, O’Reilly, Sebastopol, 3rd edition, 2004.

[3] Tok Wang Ling, Mong Li Lee, and Gillian Dobbie,
Semistructured Database Design, vol. 1, Springer-
Verlag, 2005.

[4] Xiaoying Wu, Tok Wang Ling, Mong Li Lee, Sin Ye-
ung Lee, and Gillian Dobbie, “NF-SS: A Normal Form
for Semistructured Schemata,” in In Proceedings of
International Workshop on Data Semantics in Web In-
formation Systems (DASWIS-2001), Yokohama, Japan,
November 2001, Springer-Verlag.

[5] David W. Embley and Wai Yin Mok, “Developing XML
Documents with Guaranteed “Good” Properties,” in ER
’01: Proceedings of the 20th International Conference

on Conceptual Modeling, London, UK, 2001, pp. 426–
441, Springer-Verlag.

[6] Marcelo Arenas and Leonid Libkin, “A normal form for
XML documents,” ACM Trans. Database Syst., vol. 29,
no. 1, pp. 195–232, 2004.

[7] Ramez Elmasri and Shamkant B. Navathes, Fundamen-
tals of Database Systems, Addison-Wesley, 4th edition,
2004.

[8] Diego Calvanese, Giuseppe De Giacomo, and Maur-
izio Lenzerini, “Representing and Reasoning on XML
Documents: A Description Logic Approach,” Journal
of Logic and Computation, vol. 9, no. 3, pp. 295–318,
1999.

[9] Chutiporn Anutariya, Vilas Wuwongse, Ekawit Nanta-
jeewarawat, and Kiyoshi Akama, “Towards a Founda-
tion for XML Document Databases,” in EC-Web, 2000,
pp. 324–333.

[10] Giovanni Conforti and Giorgio Ghelli, “Spatial Tree
Logics to reason about Semistructured Data,” in SEBD,
2003, pp. 37–48.

[11] Nicole Bidoit, Serenella Cerrito, and V. Thion, “A First
Step towards Modeling Semistructured Data in Hybrid
Multimodal Logic.,” Journal of Applied Non-Classical
Logics, vol. 14, no. 4, pp. 447–475, 2004.

[12] G. Dobbie, X. Wu, T. Ling, and M. Lee, “ORA-
SS: Object-Relationship-Attribute Model for Semistruc-
tured Data,” Tech. Rep. TR 21/00, School of Comput-
ing, National University of Singapore, 2001.

[13] Henry S. Thompson, C.M. Sperberg-McQueen,
Noah Mendelsohn, David Beech, and Murray Mal-
oney, “XML Schema 1.1 Part 1: Structures,”
http://www.w3.org/TR/xmlschema11-1/.

[14] Scott U. Lee, Jing Sun, Gillian Dobbie, and Yuan Fang
Li, “A Z Approach in Validating ORA-SS Data Mod-
els,” in 3rd International Workshop on Software Veri-
fication and Validation, Manchester, United Kingdom,
2005.

[15] Lin Wang, Gillian Dobbie, Jing Sun, and Lindsay
Groves, “Validating ORA-SS Data Models using Al-
loy,” in 17th Australian Software Engineering Confer-
ence (ASWEC 2006), Sydney, Australia, 2006.

[16] S. Owre and J. M. Rushby and and N. Shankar, “PVS:
A Prototype Verification System,” in 11th International
Conference on Automated Deduction (CADE), Deepak
Kapur, Ed., Saratoga, NY, jun 1992, vol. 607 of Lecture
Notes in Artificial Intelligence, pp. 748–752, Springer-
Verlag.

DESIGN OF A MODULAR GPU-BASED DIRECT VOLUME RENDERING FRAMEWORK
FOR SCALAR AND MULTIVARIATE DATA SETS

Felix Manke (supervised by Burkhard Wünsche)∗

ABSTRACT
Direct Volume Rendering (DVR) is a technique for displaying
volumetric data sets without generating intermediate repre-
sentations. Traditionally, DVR has only been applied to scalar
data sets, such as Computed Tomography (CT) scans. How-
ever, dramatic advances in biomedical imaging and other re-
search areas have resulted in ever increasingly complex data.
So far, no DVR techniques have been developed that support
the interactive exploration of arbitrary volumetric data sets.

We discuss the design of an interactive rendering frame-
work that is capable of dealing with arbitrary volume data
sets and visualisation methods. We utilise advanced features
of programmable consumer graphics cards to gain both flexi-
bility and performance.

1. INTRODUCTION

In many scientific research areas three-dimensional (3D) dis-
crete data arrays need to be analysed. The visualisation of the
internal structures of the data helps researchers to investigate
and understand the data.

In DVR, the input volume data set is considered to con-
sist of a “virtual” gaseous material which interacts with the
incoming light [1]. The optical properties of the virtual mate-
rial are modelled by a transfer function that maps data values
to colours and opacities. In this way internal structures and
objects of interest can be classified and emphasised.

Modern graphics processing units (GPUs) make interac-
tive DVR on consumer hardware possible. Current research
mainly concentrates on improving efficiency and perception
of DVR [2, 3, 4]. This is not surprising, as visual quality and
performance is always an important issue. For the purpose of
demonstrating their achievements, researchers usually imple-
ment specialised renderers which are not flexible enough to
interactively explore arbitrary volumetric data.

Especially when dealing with higher-dimensional data,
new information has often to be derived before the volume
can be displayed (for example gradient vectors or eigenval-
ues). The ability to combine several data sets is also de-
manded, since insights can often be gained by comparing the
difference or correlation between data sets.

In this paper, we discuss the design of an interactive and
flexible GPU-based direct volume renderer. The aim is to sup-
port an easy integration of arbitrary data into the rendering

∗Graphics Group, Department of Computer Science.

framework — regardless of its dimensionality or representa-
tion (for example scalar, vector, or tensor data). Moreover,
user-defined visualisations of the internal structures have to
be possible. Here, our main focus is to develop mechanisms
that easily allow the derivation of new values out of existing
data and the combination of data sets. Generally, as much of
the computation as possible is to be performed on the GPU to
benefit from its enormous computational power.

2. THE DVR PROCESS

Figure 1 illustrates the steps that are performed in direct vol-
ume rendering. At first, input data sets are loaded. When
dealing with multivariate data, meaningful entities often have
to be derived or data sets have to be combined. Note that con-
ventional rendering applications usually only support to load
scalar volume data and to derive the gradient vector from it.

In the next step a transfer function is evaluated. A selec-
tion of data values and derived entities serves as input for the
classification. The transfer function maps this input to colours
and opacities. As explained above, objects are differentiated
by assigning different colours and opacities, which happens
at exactly this stage.

During the rendering, shading and illumination effects
can be applied to achieve a better perception of the three-
dimensional structures. Finally, the volume is projected onto
the image plane and displayed.

The actual realisation of this general DVR pipeline de-
pends on the selected algorithm. In the last 20 years many
different DVR approaches have been proposed [5, 6, 2]. How-
ever, in the end they all follow the steps shown in figure 1.

3. REALISATION OF A MODULAR RENDERING
FRAMEWORK

We concentrate on utilising the computational power of mod-
ern GPUs. Thus, DVR algorithms, the derivation of entities,
and visualisation techniques are all executed on GPU. How-
ever, GPU programming is very restricted, because GPUs are
highly specialised stream processors. They do not offer the
same flexibility as general purpose central processing units
(CPUs). A developer can write short micro-programs called
vertex and pixel shader. Nowadays, three high level shading
languages are in use, which are generally very similar in syn-
tax and functionality. However, to realise our goals we make

Fig. 1. The stages of the DVR process. For multivariate data sets especially the pre-processing and classification is usually
more complex than in the case of scalar data.

use of advanced features that only the language C for Graph-
ics (Cg) provides [7].

When comparing our research objectives with the DVR
process (figure 1) it becomes clear that flexibility is needed at
each stage of the process:

Data initialisation stage: It has to be possible to integrate
and load arbitrary volume data sets and file formats. Addi-
tionally, the user must be able to derive whatever entities are
needed and to freely combine different data.

Classification stage: The framework must be flexible
enough to support any classification that is suitable for the
current domain and data set. The design of a transfer function
largely depends on the data values and entities selected as in-
put. Additionally, a reasonable classification of structures is
only possible with knowledge of the data.

Rendering stage: New DVR algorithms must be integrat-
able into the framework. More importantly, it must be possi-
ble to define and switch between visualisation techniques so
that the user can emphasise different aspects of the data and
improve the visual perception.

3.1. Flexibility for Developers

We can observe that both the integration of new data formats
and DVR algorithms are tasks for developers, since they have
to be done before a user can work with the framework. From
this observation we derived a unified scheme that makes ex-
tending the framework as straightforward as possible.

First of all, a generic template factory lets developers reg-
ister new implementations in a single line of code. After reg-
istration, a sub-class is instantiable throughout the applica-
tion using a unique identifier, without the need of knowing
the concrete data type.

In order to easily initialise objects at start-up, we devel-
oped a unified design for initialising all possible state vari-
ables. Two fundamental problems arise when dealing with
state variables of unknown objects (as they may be present in
the framework due to sub-classing by other developers): The
state variables themselves are unknown (that is, their “name”
or signature) and their data type may differ.

To be able to initialise the state variables of the unknown
objects we introduce a design which we call parameter design

pattern: Every pair of a Get... and a Set... method is
encapsulated by a “parameter” object that hides the data type
of the state variable using a standardised string representation,
which is used by the application during initialisation.

With these two concepts, the generic factory and the pa-
rameter design pattern, we are able to automatically instanti-
ate and initialise new implementations.

3.2. Flexibility for Users

The most important user-specific aspects of the rendering
framework are the specification of data to load, the process-
ing of the data, and finally the specification of visualisation
techniques and shading effects.

As already mentioned, the derivation of new entities is to
be done on the GPU. We call the Cg code blocks or modules
that implement this derivation operators. The main input of
an operator are volume data sets and the output is a texture
object that holds the derived values. Note that, by specify-
ing operators in the CgFX syntax, the full capabilities of the
graphics hardware is available for the execution (vertex and
fragment shaders, multiple render targets, etc.).

Note that loaded data is exclusively used by operators and
visualisation effects, which both run on the GPU and there-
fore will be implemented by the user as Cg shader programs.
Hence, to facilitate a practicable work with the framework,
we keep the specification of resources and the pixel-shader
definition at the same location.

Further on, we can observe that the Cg shader code ex-
ecuted during rendering can be separated into code that is

Fig. 2. The volume rendering module that manages the Cg
code and resources.

Fig. 3. The main components of the volume rendering appli-
cation. Note that VolumeRenderingEffect combines
Cg shaders and manages the specified resources.

specific to the DVR algorithm on the one hand (written by
developers) and code that is specific to a user-defined visual-
isation technique on the other hand (written by the user). To
make arbitrary combinations possible, the two types of code
are physically and conceptually separated.

As shown in figure 2, our framework contains a module
that assembles the Cg code of the DVR algorithm and the
user’s Cg code and manages the specified resources (volume
data sets or textures). During the initialisation, the compiled
Cg code is analysed using the Cg Core Runtime API, data sets
are loaded and operators executed.

By making use of Cg interfaces, the implementation of
a visualisation technique (which we call evaluator) is held
abstract and the user can define as many different evaluators
as desired using several implementations of the abstract inter-
face. The volume rendering module makes interactive switch-
ing of evaluators possible.

3.3. Components of the framework

The main components of our rendering framework are shown
in figure 3. Besides the concepts and modules discussed so
far, the framework contains a controller object that controls
the entire program execution (initialisation, rendering and ter-
mination). During the start, a configuration file is parsed. It
contains settings that specify global states of the application.
Further on, a renderer is introduced that renders all graphical
objects and updates the camera according to the user input.

4. RESULTS

To demonstrate the applicability of the discussed concepts,
our prototype implements two different DVR algorithms as
well as support for different data formats. In three case stud-
ies we show how to define resources, operators and evalua-
tors. At first, we used a scalar CT scan of the head of the Visi-

ble Male (acquired by [8], downloaded from [9]). Renderings
of different evaluators are shown in figure 4. Then, we used a
CT and a Positron Emission Tomography (PET) data set of a
monkey (acquired by [10], downloaded from [9]) to demon-
strate how to combine several volumes (see figure 5). In the
third case study, we procedurally generated a 3D vector field
with an operator and visualised it using an interactive 3D Line
Integral Convolution (LIC) technique (see figure 6).

Note that, besides the multitude of implemented evalua-
tors and besides implementing several different operators, the
source code is very well structured and short (between two
and 16 lines per evaluator), because the Cg code for the DVR
algorithm is separated.

For a detailed discussion of the design of our framework
and the results we outlined in this paper, please see [11].

5. CONCLUSION AND FUTURE WORK

We have presented a direct volume rendering framework that
is GPU-based and, at the same time, flexible enough to inte-
grate arbitrary data sets and DVR algorithms and to imple-
ment customised visualisation techniques. In contrast to ex-
isting visualisation tools our solution enables the user to in-
teractively process, display and investigate complex data sets.
We use advanced mechanisms of the Cg language to provide a
flexibility that is usually difficult to achieve on the specialised
and restrictive graphics hardware.

In the future, our implementation could be further ex-
tended to provide more functionality (for example, volume
clipping). Additionally, the usage of the framework could be
simplified by creating a graphical user interface which offers
menus and dialogues for loading data and for deriving entities
using operators. Cg source code could be created on-the-fly
according to the user’s demands.

6. REFERENCES

[1] P. Sabella, “A rendering algorithm for visualizing 3d
scalar fields,” in SIGGRAPH ’88: Proceedings of the
15th annual conference on Computer graphics and in-
teractive techniques. New York, NY, USA: ACM Press,
1988, pp. 51–58.

[2] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl, “Interactive volume on standard pc graph-
ics hardware using multi-textures and multi-stage ras-
terization,” in HWWS ’00: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware. New York, NY, USA: ACM Press, 2000,
pp. 109–118.

[3] J. Kniss, S. Premoze, C. Hansen, and D. Ebert, “Interac-
tive translucent volume rendering and procedural mod-
eling,” in VIS ’02: Proceedings of the conference on Vi-

Fig. 4. Different renderings of a CT data set. Top-left: Use of a basic 1D transfer function. Bottom-left: Additional diffuse
lighting. Top-centre: Gradient shading that shows the direction of the gradient vectors. Bottom-centre: Artistic shading that
enhances the silhouette of rendered structures. Right: 2D transfer function using the scalar data value and gradient magnitude.

Fig. 5. Combined rendering of a CT (top-left) and a PET
(bottom-left) data set of a monkey.

Fig. 6. Renderings of a 3D vector field. Left: Color-encoded
procedural vector field (normalized vectors are mapped into
RGB range [0, 1]3). Right: Interactive LIC rendering. The
opacity is proportional to the vector length.

sualization ’02. Washington, DC, USA: IEEE Com-
puter Society, 2002, pp. 109–116.

[4] S. Röttger, S. Guthe, D. Weiskopf, T. Ertl, and
W. Strasser, “Smart hardware-accelerated volume ren-
dering,” in VISSYM ’03: Proceedings of the symposium
on Data visualisation 2003. Aire-la-Ville, Switzerland:
Eurographics Association, 2003, pp. 231–238.

[5] M. Levoy, “Efficient ray tracing of volume data,” ACM
Trans. Graph., vol. 9, no. 3, pp. 245–261, 1990.

[6] P. Lacroute and M. Levoy, “Fast volume rendering us-
ing a shear-warp factorization of the viewing transfor-
mation,” in SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics and interac-
tive techniques. New York, NY, USA: ACM Press,
1994, pp. 451–458.

[7] NVIDIA R© Corporation. (2005) Cg language specifica-
tion. [Online]. URL: http://developer.download.nvidia.
com/cg/Cg 1.5/1.5.0/0019/Cg Specification.pdf

[8] N. I. o. H. National Library of Medicine. (2007) The
visible human project R©. [Online]. URL: http://www.
nlm.nih.gov/research/visible/visible human.html

[9] S. Röttger. (2006) The volume library. [On-
line]. URL: http://www9.informatik.uni-erlangen.de/
External/vollib/

[10] U. S. o. M. Laboratory of Neuro Imaging. (2007)
Monkey atlas. [Online]. URL: http://www.loni.ucla.edu/

[11] F. Manke, “A Modular GPU-based Direct Volume
Renderer for Visualising Scalar and Multi-dimensional
Data,” Oct. 2007, CompSci 780 project report. [To be
published].

USING GAME ENGINES AS A BASIS FOR VIRTUAL REALITY SURGERY SIMULATORS

Stefan Marks∗

ABSTRACT

The increase of complexity and costs of surgical training
and the constant development of new surgical procedures has
made virtual surgical training an increasingly important tool
in medical education. Unfortunately, commercial tools are
very expensive and mainly offer training only for individuals.
Game engines offer unique advantages for the creation of in-
expensive, highly interactive and collaborative environments.

This paper examines the suitability of currently available
game engines for developing applications for medical educa-
tion and simulated surgical training. We formally evaluate
available game engines for stability, availability, the possibil-
ity of custom content creation and the interaction of multiple
users via a network.

1. INTRODUCTION

Training tools using virtual reality (VR) simulations are be-
coming increasingly important in healthcare, in particular for
applications which involve complex procedures and tasks,
such as surgical training (a list of the most common simu-
lators is given in [1]). The drivers for this include the im-
provement of quality in medical care and training, the need
to reduce errors and costs [2], the requirement of quality stan-
dards and assessment methods for the performance of medical
staff, and the desire to increase patient safety.

We identified four major drawbacks for commercial sim-
ulators:

1. Although teamwork and cooperation is considered an
important dimension of simulation [3], most commer-
cial products only train individuals.

2. Training focuses mainly on technical aspects, which
only form a part of the total range of skills of a well
trained and experienced surgeon [4].

3. Simulators are expensive, mainly due to the high-end
hardware and specialised input and output devices (e.g.
for force feedback).

4. For every newly developed simulator, the vendors
“reinvent the wheel” constantly, because all simulators
require at least the basic components depicted in fig-
ure 1(a).

There have been attempts to create extensible frameworks
for building surgical simulators upon (SPRING [5], GiPSi [6],
SOFA [7], ESQUi [8], [9]). They all incorporate the above

∗Division for Biomedical Imaging and Visualization, Department of
Computer Science

Input Devices

Graphics

Physics

Sound

Surgical Simulator

Content

● Models
● Movies
● Pictures
● Sounds
● Tasks

(a) Surgical Simulator

Input Devices

Graphics

Physics

Sound

Game Engine
Game

Content

● Models
● Animations
● Movies
● Pictures
● Sounds
● Scenarios
● Storyline
● DialoguesNetworking

Game Console / Computer

…

(b) Game Engine

Fig. 1. Functional components of a surgical simulator and a
game engine.

mentioned components and a variety of mathematical mod-
els for the physical simulation and interaction. But except for
SPRING (ironically the oldest project in the list) they all lack
the capability of networking with other simulators to build
collaborative scenarios. Even worse, sound support is not
built into one of them.

Modern game engines are structured similar to surgical
simulators (see figure 1(b)) and also incorporate the network-
ing and sound component. Game engines are well tested, ro-
bust and usually available at low costs.

The use of games or game engines for medical educa-
tion is a little explored research subject with many areas still
undiscovered. Projects like the “Serious Game Initiative” [10]
focus on offering help to “organize and accelerate the adop-
tion of computer games for a variety of challenges facing the
world today.” The subproject “Games for Health” focuses
mainly on games used in various health care sectors.

Previous authors have so far concentrated on applications
where the game content was about learning facts, rather than
tasks and procedures. For example, Wünsche et al. have ex-
amined how game engines can be used for visualising medical
datasets [11], and Mackenzie et al. utilise a game engine for
anatomical education [12]. However, so far nobody has fo-
cused on the cooperative aspect in the simulation of complex
medical procedures.

(a) Human Skeleton (b) Human Heart

Fig. 2. Custom medical models in the 3D editor. The black
lines show the “bone” structure used to allow movement of
parts of the model.

2. GOALS

The goal of our work is the evaluation of commercially avail-
able game engines for their suitability as a basis for surgical
simulators.

To achieve this, we have to identify the necessary techno-
logical prerequisites for surgical simulation, select the most
suitable engines for further evaluation and explore their capa-
bilities by constructing test scenarios.

3. METHODOLOGY

We started our selection of suitable game engines with an
evaluation of an internet game engine database [13]. We dis-
regarded engines still in an early development state, those that
were not developed or maintained any more, engines without
sound or other essential components, and engines without in-
built means of creating new game environments (maps).

After the reduction of the formerly 278 engines (as of June
2007) by this selection process, we chose from the remain-
ing engines those which were inexpensive and in our opinion
most popular and widely distributed:

• Unreal Engine 2 [14]
• id Tech 4 [15]
• Source Engine [16]
A first step in our evaluation process was the creation of

multiplayer maps with simple physical objects to test the ba-
sic physical interaction with several users.

In a second step, we created mass-spring systems, and im-
ported articulated medical models (human skeleton and heart,
see figure 2) into the test maps to further evaluate the stability

(a) View of the user on the server. (b) View of user on the client.

Fig. 3. The Unreal Engine 2 is unable to synchronise the po-
sition and the state of the skeleton model on the server and the
client.

Fig. 4. Manipulation of the mass-spring model in the multi-
player map.

and precision of the physical simulation, as well as the suit-
ability for more complicated physical models.

4. RESULTS

The first evaluation step resulted in the discarding of the Un-
real Engine 2 and the id Tech 4 engine due to major restric-
tions in their physical simulation. Despite both engines were
capable of simulating physical objects in single user mode,
they were not able to reliably represent the state and move-
ments of the objects simultaneously for all connected users in
multi user scenarios (see figure 3 for an example).

Only the Source Engine was capable of simulating simple
physical objects and the cooperative interaction with them by
multiple users over the network, e.g. pushing, pulling, rotat-
ing. We thus continued the evaluation with only this engine.

The more complicated models were also simulated with-
out difficulty. A 4x4 mass-spring model was simulated with-
out signs of instability and could be moved and deformed (see
figure 4). In addition, we utilised the extensive material sys-
tem of the engine to create a custom texture of a rough, shiny
surface to give the mass-spring system an organic look.

The skeleton model reacts realistically to applied forces
(see figure 5). Both users can move the legs, arms or other
parts of the skeleton with the other user directly being able to
see the result of that operation.

The vessels of the heart model can be moved and bent
with the scalpel and deform in an intuitive manner (see fig-

(a) View of the acting user.

(b) View of the observing user.

Fig. 5. Manipulation of the skeleton model in the multiplayer
map.

ure 6). We discovered an instability in the physical simula-
tion when the heart model is moved too quickly. It starts to
oscillate in a chaotic manner and can only be stopped when
its degrees of freedom get restricted, e.g. by pushing it into a
corner or onto the table.

5. CONCLUSION

Our results show that, in general, game engines can be used
for collaborative virtual reality surgical simulation, although
the physical simulation capabilities do not yet allow for the
complicated simulation of, e.g., soft bodies like organs, and
cutting and suturing tissue.

Mass-spring models can act as a basic model for soft bod-
ies, and their simulation is stable and fast enough for real-
time interactivity. Articulated structures built with the help of
bones (see figure 2) allow for a certain amount of deformabil-
ity, though only restricted to rotating, bending and twisting.
Other deformations like stretching or pressing are not possi-
ble.

Nevertheless, game engines could compensate this lack
of simulation features with their means of playing back pre-
defined animations. These could be put together to form a
scenario where actions have to be triggered by the users by
pointing on the right locations and then choosing from a range
of optional actions. Artificial intelligence, already built into
game engines, could enhance the immersion by controlling
additional characters that react to the users actions, e.g. giv-
ing advise or creating additional stress by distraction.

(a) View of the acting user.

(b) View of the observing user.

Fig. 6. Manipulation of the heart model in the multiplayer
map.

6. FUTURE WORK

In our upcoming research, we will investigate into the extensi-
bility of game engines for the incorporation of enhanced sim-
ulation models, e.g. [17, 18, 19].

We also will keep an eye on next generation game engines
like CryEngine 2 [20] or Unreal Engine 3 [21], to see if their
physical capabilities have improved and allow for new simu-
lation features.

Furthermore, We will evaluate other aspects of modern
game engines that could be used to enhance the educational
impact, e.g. the use of pre-animated models, or computer con-
trolled characters that react to the users actions and decisions.

7. ACKNOWLEDGEMENTS

We would like to thank the company Go Virtual Medical
Ltd. (http://www.govirtualmedical.com) for sup-
plying us with the 3D model and the texture of the heart.

http://www.govirtualmedical.com

8. REFERENCES

[1] B. Dunkin, G. L. Adrales, K. Apelgren, and J. D.
Mellinger, “Surgical simulation: a current review,” Sur-
gical Endoscopy, vol. 21, no. 3, pp. 357–366, Mar. 2007.

[2] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, Eds.,
To Err is Human: Building a Safer Health System.
Washington, DC, USA: National Academy Press, Nov.
2000. [Online]. Available: http://www.nap.edu/catalog.
php?record id=9728

[3] D. M. Gaba, “The future vision of simulation in health
care,” Quality and Safety in Health Care, vol. 13, no.
Suppl 1, pp. i2–i10, Oct. 2004.

[4] F. C. Spencer, “Observations on the teaching of opera-
tive technique,” Bulletin of the American College of Sur-
geons, vol. 3, pp. 3–6, 1983.

[5] K. Montgomery, C. Bruyns, J. Brown, S. Sorkin,
F. Mazzella, G. Thonier, A. Tellier, B. Lerman, and
A. Menon, “Spring: A General Framework for Col-
laborative, Real-time Surgical Simulation,” Studies in
Health Technology and Informatics, vol. 85, pp. 296–
303, 2002.

[6] M. C. Çavuşoğlu, T. G. Göktekin, and F. Tendick,
“GiPSi: A Framework for Open Source/Open Archi-
tecture Software Development for Organ Level Surgical
Simulation,” IEEE Transactions on Information Tech-
nology in Biomedicine, vol. 10, no. 2, pp. 312–322, Apr.
2006.

[7] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer,
C. Duriez, H. Delingette, and L. Grisoni, “SOFA –
an Open Source Framework for Medical Simulation,”
in Medicine Meets Virtual Reality (MMVR 15), Long
Beach, USA, February 2007.

[8] M. A. Rodriguez-Florido, N. Sánchez Escobar, R. San-
tana, and J. Ruiz-Alzola, “An Open Source Framework
for Surgical Simulation,” Insight Journal, Jul. 2006.
[Online]. Available: http://hdl.handle.net/1926/219

[9] S. Tuchschmid, M. Grassi, D. Bachofen, P. Früh,
M. Thaler, G. Székely, and M. Harders, “A Flexi-
ble Framework for Highly-Modular Surgical Simula-
tion Systems,” in Biomedical Simulation: Third Inter-
national Symposium, ISBMS 2006, Zurich, Switzerland,
July 10-11, 2006, ser. Lecture Notes in Computer Sci-
ence, vol. 4072. Heidelberg: Springer Berlin, Jul. 2006,
pp. 84–92.

[10] Serious Games Initiative. (2007) Serious Games Initia-
tive. [Online]. Available: http://www.seriousgames.org

[11] B. C. Wünsche, B. Kot, A. Gits, R. Amor, J. Hosking,
and J. Grundy, “A Framework for Game Engine Based
Visualisations,” in Proceedings of Image and Vision
Computing New Zealand 2005, Nov. 2005. [Online].
Available: http://www.cs.auckland.ac.nz/∼burkhard/
Publications/IVCNZ05 WuenscheKotEtAl.pdf

[12] J. Mackenzie, G. Baily, M. Nitsche, and J. Rash-
bass, “Gaming Technologies for Anatomy Edu-
cation,” Online, May 2003. [Online]. Available:
http://www.virtools.com/news/pdf/2004/CARET.pdf

[13] DevMaster.net. (2007) 3D Game Engines Database.
[Online]. Available: http://www.devmaster.net/engines/

[14] Epic Games. (2004) Unreal Engine 2. [On-
line]. Available: http://www.unrealtechnology.com/
html/technology/ue2.shtml

[15] Wikipedia. (2007) id Tech 4 — Wikipedia, The Free
Encyclopedia. [Online]. Available: http://en.wikipedia.
org/wiki/Doom 3 engine

[16] Valve Corporation. (2004) Valve Source Engine Fea-
tures. [Online]. Available: http://www.valvesoftware.
com/sourcelicense/enginefeatures.htm

[17] A. Henriques, B. Wünsche, and S. Marks, “An investi-
gation of meshless deformation for fast soft tissue sim-
ulation in virtual surgery applications,” International
Journal of Computer Assisted Radiology and Surgery,
vol. 2, no. Suppl 1, pp. S169–S171, June 2007.

[18] M. Müller, B. Heidelberger, M. Teschner, and M. Gross,
“Meshless deformations based on shape matching,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 471–
478, Jul. 2005.

[19] A. R. Rivers and D. L. James, “FastLSM: Fast Lat-
tice Shape Matching for Robust Real-Time Deforma-
tion,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 pa-
pers, vol. 26, no. 3. New York, NY, USA: ACM Press,
Jul. 2007, p. 82.

[20] Crytek. (2002) CryEngine 2 Specifications. [On-
line]. Available: http://www.crytek.com/technology/
index.php?sx=eng2

[21] Epic Games. (2006) Unreal Engine 3. [On-
line]. Available: http://www.unrealtechnology.com/
html/technology/ue30.shtml

http://www.nap.edu/catalog.php?record_id=9728
http://www.nap.edu/catalog.php?record_id=9728
http://hdl.handle.net/1926/219
http://www.seriousgames.org
http://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ05_WuenscheKotEtAl.pdf
http://www.cs.auckland.ac.nz/~burkhard/Publications/IVCNZ05_WuenscheKotEtAl.pdf
http://www.virtools.com/news/pdf/2004/CARET.pdf
http://www.devmaster.net/engines/
http://www.unrealtechnology.com/html/technology/ue2.shtml
http://www.unrealtechnology.com/html/technology/ue2.shtml
http://en.wikipedia.org/wiki/Doom_3_engine
http://en.wikipedia.org/wiki/Doom_3_engine
http://www.valvesoftware.com/sourcelicense/enginefeatures.htm
http://www.valvesoftware.com/sourcelicense/enginefeatures.htm
http://www.crytek.com/technology/index.php?sx=eng2
http://www.crytek.com/technology/index.php?sx=eng2
http://www.unrealtechnology.com/html/technology/ue30.shtml
http://www.unrealtechnology.com/html/technology/ue30.shtml

SURFACE MANIPULATION USING A PAPER SCULPTURE METAPHOR

Glenn McCord, Beryl Plimmer

ABSTRACT

The creation of 3D computer models is an essential tool for
many applications in science, engineering and arts and is fre-
quently performed by untrained users. However, creating an
intuitive mapping between 2D input and 3D models is a non-
trivial task and is reflected in the difficulty novices have in
using current 3D modelling software. Using metaphors of
paper sculpture and pen sketching, our gesture based mod-
elling tool simplifies this interaction mapping. More intuitive
object manipulation means that an otherwise complex model
can be rapidly created by an inexperienced, non-artistic user.
To demonstrate this, we have chosen to model orchid flowers
as they offer considerable challenges to the artist due to their
complexity of shape and detail, especially the petal surfaces
which vary a great deal in curvature.

1. INTRODUCTION

Traditional 3D modeling applications offer tools powerful en-
ough to model a diverse range of creations but, unfortunately,
many potential users can be overwhelmed by the enormous
flexibility associated with them. One of the difficulties of
these tools for novice users is that they are not based on any
real world metaphor. Pencil and paper sketching, for exam-
ple, is one of the most simplest yet effective ways to exercise
some artistry, yet few modelling tools support digital pens
(stylus) to any significant degree. Other metaphors, such as
paper sculpting, can provide an interaction that makes it easier
for users to predict the results of an action. We are exploring a
blend of paper sculpture and sketching (where sketched lines
represent paper cutouts) using a stylus, as an aid to novice 3D
modelling interaction.

The proposed interface combining sketching and paper
sculpting has the goal of easing the transition from the initial
conceptual design into the final 3D model. This proposal is
supported by two observations: firstly, many users find it hard
to create 3D shapes which correspond to multiple 2D views
and secondly, they find it difficult to interact with the com-
plex and powerful mathematical surface descriptions used in
traditional 3D modelling tools.

2D sketching is a quick, intuitive and easy way to indicate
3D shapes. Using this input and mapping it automatically into
a 3D shape will help users who do not have sufficient artistic
skills or find it difficult to mentally conceptualise 3D shapes.
In order to provide a similar intuitive way for modifying the
resulting 3D shape we extend the metaphor of sketching on

paper and allow the user to interact with it as if sculpting pa-
per. This is a natural process children perform from an early
age and it facilitates the mental transition from a 2D to a 3D
object since the paper used in this metaphor is a 2D object.

A mixture of drawing and sculpting metaphors allows the
user to intuitively interact with the model because they sub-
consciously predict the effect their actions would have on the
model based on their real world experiences. To realise this
idea we have chosen to model orchid flowers as they offer
great challenges to the artist due to their complexity of shape
and detail, especially the petal surfaces which vary signifi-
cantly in curvature.

2. RELATED WORK

Our orchid modeller draws on work from three main areas
of research: sketch based modelling, flower modelling and
surface deformation.

Sketch-based tools have been explored for a number of
3D modelling domains such as transformation from sketch to
structured CAD projects. SKETCH [1] was an early research
project that turned a conceptualised sketch into a digitised 3D
scene. It exploits the ease of design afforded by sketching
and the ability to change viewing angles with the 3D digital
medium. 3D primitives are constructed with basic pen strokes
which are then extended to basic 3D objects. Complex objects
are constructed using a combination of primitives.

A common strategy for creating free form 3D objects from
sketch input is to create simple objects and then either com-
bine or deform them into other shapes. Igarishi’s Teddy ap-
plication created a 3D object by inflating 2D sketches based
on the width of the 2D object [2]. With a combination of
cutting gestures and combining objects together, it is pos-
sible to create complex, inflated (blobby) shapes. Further
research projects using similar inflation metaphors join ob-
jects smoothly together and afford shape alterations by re-
sketching parts of the silhouette [3] or by inferring 3D ge-
ometry by interpreting overlapping sketch lines [4].

Other authors [5], [6] have shown that complex 3D ob-
jects can be edited using stylus strokes that retrace an object’s
silhouette. The modification of a model’s silhouette subse-
quently rescales it so that it remaps itself to the new silhou-
ette.

An algorithmic approach to modelling plants is suggested
by Prusinkiewicz and Lindenmayer whereby plant structures
are constructed using rule based logic [7]. This abstract, bot-

tom up is, however, non-intuitive and difficult to control with-
out extensive experience, so alternative sketch-based mod-
elling of plants has been explored [8], [9]. Constraints can
help with automatically creating a 3D structure, such as the
assumption that branches seek to be as far away from their
neighbour branches as possible [10]. Ijiri et. al. have shown
that an effective way of creating a realistic flower is to sketch
and then edit each individual flower component (petals, flower
head etc), and then combine them together to form the com-
plete flower model [11].

In order to make the flower modelling process more an
artistic exercise, it has also been shown that a user can sketch
a plant in its entirety, and then have each of its sketched com-
ponents replaced with 3D equivalents [12].

Although petal like surfaces can be created from the Teddy
‘blobs’ by creating the blob and then cutting it like a potato
chip, it deviates too far from what would be intuitive to a user.
The flower modellers by Ijiri et. al. offer a much better alter-
native but their petals are restricted to a silhouette that doesn’t
form large concavities; ideally a user can sketch a petal of ar-
bitrary shape. Another limitation is that petal curvature can
only be altered by a series of modifying strokes that displace
the vertices. We believe that there are more intuitive ways of
modifying the curvature of petal-like surfaces.

3. OUR APPROACH

Paper is thin, which makes it an ideal metaphor for 3D mod-
elling of objects that consist of thin surfaces such as flowers.
Our approach uses metaphors of paper sculpture techniques
whereby the user’s sketch is a paper cut out that gets sculpted
by folding, crimpling and indenting it.

Paper is a widely used artistic medium, not just because of
its prevalence but also because of its flexibility as a modelling
medium. One of the most well known paper crafts is origami,
but there is more to paper sculpting than just folding hard
edges.

Paper can be cut, torn either with or against the grain,
creased along either a straight or curved line, coiled/rolled,
cut to form textured patterns by utilizing light sources, joined
together using tabbing, layered in relief, crimped (forming
curves by cutting the paper and then folding it in on itself),
impressing the paper and by curling edges [13]. All of these
can serve as metaphors for virtual modelling.

3.1. Interaction

Many of these aforementioned paper sculpting techniques can
be applied to surface manipulation to facilitate predictable
user interaction. The primary techniques are the ability to
cut, curve and crease paper so we have explored how these
metaphors can be used for manipulating surfaces on the com-
puter.

Besides the inherent difficulties with managing 3D ob-
jects in a 2D space, there is also the problem of working with
a single mouse cursor. We are essentially paper sculpting with
one hand. With one hand, we have to take a piece of paper,
cut it to shape and then sculpt it by adjusting its curvature.
By blending the sketching and paper sculpture metaphors to-
gether, simple interaction is achieved.

Here is an example of how the user could create a petal
of an orchid. First the user draws the outline of the petal.
The region enclosed by the sketch can be interpreted as a flat
object cut out of a sheet of paper. Immediately the software
generates and displays possible fold lines. The user selects
part of the cut out with the mouse cursor and drags/pulls at
it. As a result, the selected subpart will fold about an axis
formed depending on the geometry of the cut out.

Since mouse input only gives 2D coordinates we must find
a way to specify movements orthogonal to the screen during
folding. Since a fold backwards often leads to visibility prob-
lems due to hidden surfaces our applications always interprets
mouse drags as a pulling operation out from the screen rather
than deeper into it.

3.2. Geometry

The user requires an intuitive way to curve their original shape.
There are two generalized ways of achieving this:

1. Define a sub part of a surface to be curved and then
curve it about the rest of the surface.

2. Have the program infer areas that can be curved and
then curve these areas about the rest of the surface.

Both of these ideas are perfectly valid for paper sculpture.
We can achieve the first technique by creasing the paper, thus
creating an artificial axis from which the two areas about this
axis rotate about. Creasing and folding don’t have to be re-
stricted to a straight axis either.

The second technique takes advantage of a 2D geometric
property that defines these foldable axes automatically. Hal-
verston [14] determined that silhouettes are especially impor-
tant in determining objects. This is made evident when chil-
dren draw the most salient silhouette of objects such as ani-
mals. By taking such a silhouette, Marr and Nishihara [15]
noted that the concave sections of objects define the subparts
of an object. As can be seen in figure 3, it is these subparts
that define the foldable areas. The axes about which they fold
is defined by the path that joins one concave curve to the other.

These geometric properties can be applied to paper sculp-
ture. By picking up the paper from one of the subparts of the
object, the subpart then naturally curves about the axis de-
fined by the concave points of the silhouette that define that
subpart (figure 1).

The ability for the user to relate to this object subdivision
and paper style curvature is the basis of this interaction. Using

Fig. 1. This selection of images shows how the curvature of a real orhid petal (left) can be represented with paper (centre) and
with a digital model that uses paper folding properties.

Fig. 2. The triangulation strategy used by “Teddy” defines
different triangles as Terminal (T), Sleeve (S) or Junction (J)
depending on how many sides are shared with the silhouette
[2]

these geometric properties a predictable response will occur
when the user interacts with the surfaces.

3.3. Implementation

Realisation of these subparts was achieved with Delaunay tri-
angulation and some of the skeletonisation strategies used
in the “Teddy” application [2]. The “Teddy” tool defines
3D shapes from 2D sketches by triangulating a closed sketch
curve and computing a skeleton from it. The vertices of the
sketch curve are then rotated around the skeleton resulting in a
3D shape whose projection is the original sketch. During the
process of constructing the skeleton the triangles that make
up the triangulation are defined as either a terminal, sleeve or
junction triangle where each triangle type has either one, two
or no shared edges to the silhouette respectively (see figure
2).

The edges that make up the junction triangle define the
folding axes of a simple surface, thus isolating the sub parts
of the overall surface (see figure 3). Some of the subparts
become impractically small so the pruning method used in

Teddy for eliminating insignificant parts of the skeleton was
applied here.

More complex shapes create complications but the solu-
tions still draw on the geometric properties:

• If the triangulated surface contains multiple junction
triangles then consider a skeleton between pairs of junc-
tion triangles. The fold axis will be the shortest line to
the silhouette that is orthogonal to the skeleton (figure
3(b)).

• Sometimes the pruning algorithm eliminates all the junc-
tion triangles. However, there is usually at least one
pre-pruning junction triangle that is larger and shaped
closer to an equilateral. The shortest edge of this tri-
angle is the significant fold axis. Note that size and
closeness to being equilateral is a property of most of
the junction triangles.

• There is a special case when a surface is a consistent
width and results in no junction triangles. If the sur-
face has no concave areas then it won’t be able to utlise
the geometric properties discussed in section 3.2. How-
ever, a surface in the shape of a letter S or U does have
such concavities and should be able to fold about cer-
tain points. Because such shapes don’t exist in orchid
flowers, it has been ignored for now.

3.4. Discussion

By adopting a paper sculpture metaphor, we believe we can
facilitate the task of creating and manipulating the flat sur-
faces required by 3D flower models. However, there are still
some points that should be addressed with regards to expand-
ing the functionality and highlighting some of the issues with
the interaction strategies.

(a) (b)

Fig. 3. 3(a) shows a junction triangle (purple) that stretches
between concave sections (red), defining the subparts (blue).
For more complex surfaces a fold axis between two junction
triangles is idendified as the shortest distance across the sur-
face. The green dashed lines of 3(b) represent encapsulating
subparts.

The interaction becomes less clear when the user wishes
to fold a large subpart that encapsulates smaller subparts (fig-
ure 3(b)). If the user selects one of the smaller subparts with
the intention of folding the larger subpart, the application must
be able to realise this. The only way to differentiate between
the two areas is by the overlapping and non-overlapping re-
gions. Expecting the user to select the non overlapping region
in order to get the desired result may be optimistic. Another
possible solution is to have the larger encapsulating subpart
begin to fold once the smaller subpart has been folded to some
critical angle.

Real orchid petals can form a curvature that is very dif-
ficult to sculpt with paper unless one was to ‘collapse’ the
paper by crumpling it or using multiple tiny zigzag-like folds.
Modelling such orchid surfaces would therefore break the pa-
per scultping metaphor because simple paper folds maintain
surface area.

We have implemented the cutting and folding metaphors
but there are a multitude of other paper sculpting techniques
that can enrich the user interaction possibilities. Our next step
is to conduct usability testing in order to ascertain the effec-
tiveness of the metaphor. The eventual goal is to utilize these
techniques for the rapid creation of orchid flowers, as these
represent a good example of high curvature surfaces.

4. CONCLUSION

Paper sculpture is a promising metaphor to assist in the cre-
ation and manipulation of complex surfaces such as those
used in flower modelling. By utilizing geometric properties
and the sculptural qualities of paper, it is possible to make a
more intuitive 2D to 3D mapping. Traditional 3D modelling
tools are complex so such techniques go some way to assist
both novice and expert users to rapidly create complex mod-
els.

5. REFERENCES

[1] Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes, “Sketch: an interface for sketching 3d scenes,”
in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses,
New York, NY, USA, 2006, p. 9, ACM Press.

[2] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko
Tanaka, “Teddy: a sketching interface for 3d freeform
design,” in SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive
techniques, New York, NY, USA, 1999, pp. 409–416,
ACM Press/Addison-Wesley Publishing Co.

[3] O. Karpenko, J. Hughes, and R. Raskar, “Free-form
sketching with variational implicit surfaces,” Computer
Graphics Forum, vol. 21, no. 3, pp. 585–594, 2002.

[4] Olga A. Karpenko and John F. Hughes, “Smoothsketch:
3d free-form shapes from complex sketches,” ACM
Transactions on Graphics, vol. 25, no. 3, pp. 589–598,
July 2006.

[5] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel
Cohen-Or, “A sketch-based interface for detail-
preserving mesh editing,” in SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, New York, NY, USA, 2005,
pp. 1142–1147, ACM Press.

[6] Jing Hua and Hong Qin, “Free-form deformations via
sketching and manipulating scalar fields,” in SM ’03:
Proceedings of the eighth ACM symposium on Solid
modeling and applications, New York, NY, USA, 2003,
pp. 328–333, ACM Press.

[7] P. Prusinkiewicz and A. Lindenmayer, The algorithmic
beauty of plants, Springer-Verlag, New York, 1990.

[8] Lars Mundermann, Peter MacMurchy, Juraj Pivovarov,
and Przemyslaw Prusinkiewicz, “Modeling lobed
leaves,” Computer Graphics International, pp. 60–65,
2003.

[9] Fabricio Anastacio, Mario Costa Sousa, Faramarz
Samavati, and Joaquim A. Jorge, “Modeling plant struc-
tures using concept sketches,” in NPAR ’06: Pro-
ceedings of the 4th international symposium on Non-
photorealistic animation and rendering, New York, NY,
USA, 2006, pp. 105–113, ACM Press.

[10] Makoto Okabe, Shigeru Owada, and Takeo Igarashi,
“Interactive design of botanical trees using freehand
sketches and example-based editing,” in SIGGRAPH
’06: ACM SIGGRAPH 2006 Courses, New York, NY,
USA, 2006, p. 18, ACM Press.

[11] Takashi Ijiri, Shigeru Owada, Makoto Okabe, and Takeo
Igarashi, “Floral diagrams and inflorescences: inter-
active flower modeling using botanical structural con-
straints,” ACM Trans. Graph., vol. 24, no. 3, pp. 720–
726, 2005.

[12] T. Ijiri, S. Owada, and T. Igarashi, “Seamless integra-
tion of initial sketching and subsequent detail editing in
flower modeling,” Computer Graphics Forum, vol. 25,
no. 3, pp. 617–624, 2005.

[13] Paul Jackson, The Art and Craft of Paper Sculpture,
Apple Press, 1996, Quarto Publishing Plc.

[14] J. Halverston, “The first pictures, perceptual founda-
tions of paleolithic art,” Perception, vol. 21, pp. 389–
404, 1992.

[15] D. Marr and H. K. Nishihara, “Representation and
Recognition of the Spatial Organization of Three-
Dimensional Images,” Proceedings of the Royal Society
of London, Series B, vol. 200, pp. 269–294, 1978.

RETHINKING THE GENETIC ALGORITHM

Cameron Skinner

ABSTRACT

The Genetic Algorithm (GA) promises to be able to solve
many classes of problems, particularly those where we do not
fully understand the structure of the optimal solution. Unfor-
tunately, using a GA in practice requires much trial-and-error
in order to determine which combination of operators, selec-
tion and other parameters will result in good solutions in a
reasonable time. This paper describes a known weakness in
the GA and suggests an alternative approach to designing the
GA to eliminate this weakness.

1. INTRODUCTION

The Genetic Algorithm (GA) [1, 2] is a machine learning al-
gorithm inspired by the processes of natural selection and bio-
logical evolution. To solve a given problem the GA works by
maintaining apopulationof candidate solutions. These solu-
tions are evaluated to determine theirfitnessand some subset
of the population isselectedfor reproduction. A new pop-
ulation is generated by applying various operators to the set
of selected parents, such ascrossover, mutationandcloning.
The process is repeated for some number of generations and
the best solution found is returned to the user.

The GA’s power comes from the fact that it maintains a
population of solutions rather than a single “best-so-far”so-
lution. If the problem contains seperable sub-problems then
these sub-problems can be solved in different individuals and
then combined, via crossover, into a single, highly-fit individ-
ual. Unfortunately, the interactions between different com-
ponents of the GA are complex and subtle making it difficult
to predict how the algorithm will perform given a particular
problem, operator set and fitness function.

This paper describes a new way of thinking about the GA
that moves away from the traditional, biologically inspired
ideas of crossover and mutation in favour of concepts that di-
rectly relate to how the GA behaves in practice. It is suggested
that this change of paradigm may lead to a better understand-
ing of the GA and to variations of the algorithm that require
fewer parameters and therefore less tuning.

Section 2 gives a brief overview of theCanonical Genetic
Algorithm (CGA), followed by a description of the classical
GA model known as thebuilding block hypothesisin Sec-
tion 3 and a demonstration of a flaw in the standard GA in
Section 4. Section 5 describes an alternative approach to GA
implementation and proposes a solution to one aspect of the
new model. Preliminary experimental results are discussedin

let P = randompopulation();
while (not finished) do

Evaluate fitness of each individualPi in P

let P ′
= ∅

while |P ′| < |P | do
Select two parentsA andB from P based on fitness
With probabilityc perform crossover onA andB

to produce childrenC andD

otherwise letC=A andD=B

With probabilitym perform mutation onC andD

Add C andD to P ′

let P = P ′

Fig. 1. The standard GA

Section 6 and Section 7 concludes with a number of possible
future research directions.

2. THE CANONICAL GENETIC ALGORITHM

The standard pseudocode for a GA is shown in Figure 1.
The algorithm starts with a randomly generated popula-

tion and repeatedly evaluates fitness, selects suitable parents
and applies genetic operators to those parents to produce a
new generation of individuals. The genetic operators are usu-
ally crossover and mutation. These are designed to combine
promising candidate solutions and to perform local search re-
spectively. Crossover generally applies to two parents1 where-
as mutation is a unary operation.

Crossover is generally implemented by slicing the two
strings at acrossover pointand combining the first part of
the first parent with the second part of the second parent, and
vice versa. For example, Figure 2 shows what happens if we
cross at the third index into the string. There are many vari-
ations on this basic crossover operator, including the use of
multiple crossover points, but the general idea remains the
same: crossover is designed to take chunks of each parent in
the hope that the combination of these chunks will produce a
highly fit child.

Mutation is generally a simple bit-flip operation with each
bit mutated independently with some low probabilitym, usu-
ally m < 0.1. Mutation is intended to providegenetic diver-
sity, i.e. to prevent the situation where every individual in the

1Although there is no reason why it cannot be applied to multiple parents.

Parent 1 1 1 0 1 0 0 1 0
Parent 2 1 0 0 0 1 1 1 1
Child 1 1 1 0 0 1 1 1 1
Child 2 1 0 0 1 0 0 1 0

Fig. 2. An example of crossover. Bold entries indicate the
values that are inherited by child 1.

population has the same value for some gene, and to allow for
local search. Mutation also ensures there is some probability
(albeit an exponentially small one) of escaping local optima.

3. BUILDING BLOCKS

The building block hypothesis[2] describes how the GA is
supposed to work: suppose we have a problem defined over
fixed-length binary strings2. We can define aschemaas a
fixed-length binary string with some defined values and some
“don’t care” bits. A fully specified string is then defined to be
an instanceof a schema if the schema’s defined bits exactly
match the candidate string’s values.

For example, the string 1101 is an instance of the schemas
10, ***1 and **** (amongst others). The building block
hypothesis states that the GA will identify short, highly fit
schemata and combine them to form longer, highly fit schemata.

The classic problem devised to illustrate this hypothesis
is called theRoyal Roadproblem [3, 4]. The Royal Road
problem consists ofn blocks each ofb bits. These blocks
are concatenated to form a string of lengthn ∗ b and each
block defines a single schema withb ones. Individuals in the
population are binary strings of lengthn ∗ b and they get one
point of fitness for each schema that they are an instance of.

Figure 3 shows the schemata defined by the 4x4-bit Royal
Road problem.

s1 1111 **** **** ****
s2 **** 1111 **** ****
s3 **** **** 1111 ****
s4 **** **** **** 1111

Fig. 3. Schemata defined by the 4x4-bit Royal Road problem

On this problem the string 1101 0000 1111 1111 would
have a fitness of 2 as it is an instance of two schemata (s3 and
s4). The optimal string is 1111 1111 1111 1111.

4. PROBLEMS WITH THE STANDARD GA

Figure 4 shows a typical plot of fitness vs generation number
for a GA running on the 8x8-bit Royal Road problem (average
over 100 runs). We can see that initially the best fitness grows

2This assumption is not as restrictive as it seems. We can easilyencode
many standard problems, such as the Travelling Salesman Problem, as fixed-
length binary strings.

Fig. 4. Typical GA performance on the 8x8-bit Royal Road
problem.

very quickly, followed by a long tail where there is very little
fitness gain. What this means is that in the initial population
each individual has at most one building block, but they are
combined within a few generations to form individuals with
several blocks correct. The average fitness slightly lags the
best fitness due to the destructive effects of mutation.

This result highlights a deficiency in the algorithm: af-
ter the initial rapid progress it spends a large amount of time
achieving very little. Unless the population is sufficiently
large to start with it can spend hundreds of generations with-
out discovering any new building blocks.

Figure 4 shows, along with the best and average fitness
in the population, the total number of distinct building blocks
that exist anywhere in the population, not just in a single in-
dividual. We can see that after the first 10 generations or so
that the number of blocks in the population exactly matches
the best fitness, that is to say that the best individual in the
population contains all known blocks.

Further investigation shows that the algorithm fails to pro-
ceed quickly because it lacks the ability to efficiently discover
new building blocks and incorporate them into the population.
This realisation leads to the following proposed alteration to
the standard model of the genetic algorithm.

5. RETHINKING THE ROLES OF GENETIC
OPERATORS

Much GA research revolves around debating whether mu-
tation is more important than crossover, or which crossover
scheme to use, and so on. It is proposed that instead of fo-
cussing on mutation and crossover, GA researchers should be
looking at two abstract operators:discoveryandcombination.

A building block is said to have beendiscoveredby a ge-
netic operator if a child resulting from that operation has the
block correct but none of the parents do. A set of blocks are

said to have beencombinedif the child has all those blocks
correct and each block exists in exactly one parent. We can
now examine the GA in terms of its ability to perform discov-
ery and combination.

The standard GA fails because it is highly inefficient at
performing discovery. In fact, it can be shown that both mu-
tation and crossover are orders of magnitude less efficient at
discovery than random search. It is generally very difficultto
balance the explorative power of high mutation and crossover
rates with the corresponding increase in building block de-
struction.

For this reason it is suggested that the standard GA pseu-
docode be modified to that shown in Figure 5. We have re-
placed crossover and mutation with combination and discov-
ery, but this gives us a powerful advantage: our discovery op-
erator can be highly destructive without impacting the perfor-
mance of the rest of the GA. We also need to define “suitable”
parents for combination. Intuitively we can consider this to
mean parents that contain different sets of building blocks. If
they contain exactly the same set of blocks then crossover can
achieve nothing, so the parents are “unsuitable”.

let P = randompopulation();
while (not finished) do

Evaluate fitness of each individualPi in P

let P ′
= ∅

while |P ′| < |P | do
Select two parentsA andB from P based on fitness
If A andB are suitable perform combination to

produce childrenC andD

Otherwise perform discovery to replaceA or B

and perform combination on the replacement
to obtainC andD

Add C andD to P ′

let P = P ′

Fig. 5. Modified GA pseudocode

6. EXPERIMENTS

In order to test whether this approach shows any promise
a simple experiment was conducted. A standard GA was
adapted to the new architecture, with the widely-used 2-point
crossover operator used as the combination component. Rather
than using mutation as the discovery operator (since mutation
is known to be inefficient at discovery) random search was
used to generate an estimate of the average fitness across the
whole search space. The top few individuals from this search
were kept in aseed pool. Application of the discovery opera-
tor simply randomly chooses an individual (with replacement)
from the seed pool.

Parameter Value
Number of blocks 8
Block size 8
Population style Generational
Population size 100
Crossover rate 0.9
Crossover mode 2 point
Mutation rate 1

64

Selection 5 tournament
Seed probability (s) 1

3

Seed pool size 50
Presample size 1000

Table 1. Experiment parameters

Algorithm Generations
Canonical GA 147.32 (75.36)
Seed pool 81.17 (97.03)

Table 2. Results for the canonical GA and seed pool algo-
rithm. Standard deviations are shown in parenthesis

Identifying when two parents are “suitable” for crossover
is a difficult problem. In general, it is impossible to tell whether
two individuals contain different sets of building blocks3, so
for this experiment a random process was used: parents are
unsuitable with probabilitys.

Table 1 shows the parameters that were used for the ex-
periment. Preliminary results using this new approach are en-
couraging. Table 2 shows the number of generations required
to find a solution averaged over 100 repeats. There is nearly
a two-fold performance improvement when the seed pool is
used, and this improvement is statistically significant[5]even
when the cost of performing the seed pool presampling step
is taken into account.

Figure 6 shows the best and average fitness and the num-
ber of building blocks in the population for the new algo-
rithm. We can see why it performs so much better than the
canonical GA: the number of blocks that exist is almost al-
ways around 8, the maximum possible. This means that the
proposed algorithm is maintaining instances of all building
blocks all the time, allowing crossover to do combine these
blocks and quickly find the optimal solution. There is still a
long tail in the fitness plot so the algorithm can obviously be
improved further.

Obviously these results only apply to the Royal Road prob-
lem and should be regarded purely as a proof of concept, but
further encouraging results have been obtained from the De-
ceptive Trap and Heirarchical If-and-only-if problems[6].

3Recall that “suitable” parents are those that contain different sets of
building blocks

Fig. 6. Typical GA with seed pool performance on the 8x8-bit
Royal Road problem.

7. CONCLUSIONS AND FUTURE WORK

The Genetic Algorithm has a fundamental design flaw: it is
not suited to performing building block discovery during the
run. An alternative way of approaching the design of the al-
gorithm is proposed that explicitly splits the algorithm’sdis-
covery and combination aspects.

Preliminary experiments using this approach are highly
encouraging, however there a number of difficulties that must
be addressed before this approach can be used in general. Ef-
fective discovery and combination operators must be identi-
fied. Although random search has been suggested as a good
discovery operator it is not yet clear which combination op-
erators will be most effective on any given class of problems.
The problem of detecting when parents are “suitable for com-
bination” has not yet been addressed and only a naive, ran-
domised process has been investigated to date.

Even with a naive implementation, however, this approach
shows great promise and can result in a statistically signifi-
cant performance improvement (in terms of number of fitness
evaluations required to find the solution). This approach may
lead to a deeper understanding of how the GA behaves and to
improved performance across a variety of difficult real-world
problem domains.

8. REFERENCES

[1] John H. Holland, Adaptation in Natural and Artificial
Systems, The University of Michigan Press, 1975.

[2] David E. Goldberg,Genetic Algorithms in Search, Opti-
mization and Machine Learning, Addison-Wesley, 1989.

[3] Melanie Mitchell, Stephanie Forrest, and John H. Hol-
land, “The royal road for genetic algorithms: Fitness

landscapes and GA performance,” inTowards a Prac-
tice of Autonomous Systems: Proceedings of the First Eu-
ropean Conference on Artificial Life, 1991, Francisco J.
Varela and Paul Bourgine, Eds. December 1992, pp. 245–
254, MIT Press.

[4] Stephanie Forrest and Melanie Mitchell, “Relative
building-block fitness and the building-block hypothe-
sis,” in Foundations of Genetic Algorithms 2, L. Darrell
Whitley, Ed., pp. 109–126. Morgan Kaufmann, 1993.

[5] Cameron Skinner and Patricia Riddle, “Random search
can outperform mutation,” inProceedings of the IEEE
Congress on Evolutionary Computation, 2005.

[6] Richard A. Watson and Jordan B. Pollack, “Hierarchi-
cally consistent test problems for genetic algorithms,” in
Proceedings of the Congress on Evolutionary Compu-
tation, Peter J. Angeline, Zbyszek Michalewicz, Marc
Schoenauer, Xin Yao, and Ali Zalzala, Eds. 1999, vol. 2,
pp. 1406–1413, IEEE Press.

	chik.pdf
	ABSTRACT

	franco.pdf
	Multi-heuristic efficient search
	Abstract

	marks.pdf
	 Introduction
	 Goals
	 Methodology
	 Results
	 Conclusion
	 Future work
	 Acknowledgements
	 References

