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Abstract

1 Introduction

Formally, an elementary cellular automaton (CA) is defined by a local function f : {0, 1}3 → {0, 1},
which maps the state of a cell and its two immediate neighbors to a new cell state. There are 223

=
256 CAs and each of them is identified with its Wolfram number ω =

∑
a,b,c∈{0,1} 24a+2b+cf(a, b, c)

(see [7, 8]). Sometimes, instead of expliciting function f , we refer to fω.
The dynamics is defined in the one-dimensional cellspace. Following the CAs paradigm, all the

cells change their states synchronously according to f . This endows the line of cells with a global
dynamics whose links with the local function are still to be understood.

After n time steps the value of a cell depends on its own initial state together with the initial
states of the n immediate left and n immediate right neighbor cells. In fact, for n = 1 we define
f1(z−1, z0, z1) = f(z−1, z0, z1) and for n ≥ 2 :

fn(z−n . . . z1, z0, z1 . . . zn) = fn−1(f(z−n, z−n+1, z−n+2) . . . f(z−1, z0, z1) . . . f(zn−2, zn−1, zn)).

If we were capable of giving a simple description of fn (for arbitrary n) then we would have
understood the behavior of the corresponding CA. In order to achieve this crucial goal we perform
2 steps.

First step. We represent fn as two families of 0−1 matrices depending on whether the central
cell begins in state c = 0 or c = 1. These square matrices M c,n

f of size 2n are defined as follows (see
Figure 1).

M c,n
f (x, y) := fn(x, c, y) with x = xn . . . x1 and y = y1 . . . yn in {0, 1}n.

Note that the first matrix of each family, standing for n = 1, defines completely the local
function. One can think of these matrices as seeds for the families. We should emphasize also that
the space-time diagram shows the evolution of only a single configuration, while the matrix covers
all configurations.

∗Partially supported by Programs Conicyt “Anillo en Redes” (I.R.), Fondap on Applied Mathematics (I.R.) and
Fondecyt 1070022 (E.G.).
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Figure 1: The two families of binary matrices M c,n
f54

of Wolfram rule 54 cellular automaton.

Second step. In this step -which is obviously the most important- we try to prove and interpret
the behavior of M c,n

f for arbitrary values of n. Fortunately, these 0− 1 matrices reveal themselves
to be a striking representation. For instance, let us consider rule 105. In Figure 2 we show on the
left the space-time diagram of rule 105 for some arbitrary initial configuration, and on the right
the matrix M0,6

f105
. In contrast with the space-time diagram, the matrix looks simple. Indeed, we

are going to mention the reason for such phenomenon later.

Figure 2: A space time diagram for rule 105 (left) and matrix M0,6
f105

(right). In the diagram every
row is a configuration and time goes upward (it shows only those cells on which the center cell
depends).

Our working hypothesis is the following: the language of classical mathematics does not provide
us with the flexibility we need in order to explain the structure of these matrices. We think that
this is why the CAs (classification) problems encountered by the dynamical system community turn
out to be so hard [].

We claim that the language of computer science is much more flexible and adequate for studying
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the CAs. Therefore, instead of formulas or equations, we are going to exhibit simple protocols
describing fn. More precisely, assuming that x = xn . . . x1 ∈ {0, 1}n is given to one party (say
Alice) and that y = y1 . . . yn ∈ {0, 1}n is given to another party (say Bob), we are going to look for
the simplest communication protocols that compute both fn(x, 0, y) and fn(x, 1, y).

Rule 218. In a previous paper we began to explore the connections between CAs and com-
munication complexity [2]. Nevertheless, in that work we were more interested in giving a formal
classification than in understanding particular CAs behavior. In fact, if we denote by d(M) the
number of different rows of a matrix M , then the only CAs we managed to explain were those
we called bounded (where d(M c,n

f ) was constant) and linear (where d(M c,n
f ) grew as Θ(n)). All

the other CAs were grouped together using a mainly experimental criterion. We conjectured the
existence of polynomial and exponential classes. Here we prove the existence of a CA for which
d(M c,n

f ) grows as Θ(n2)). This rule 218 CA is the following:

0
0 0 0

1
0 0 1

0
0 1 0

1
0 1 1

1
1 0 0

0
1 0 1

1
1 1 0

1
1 1 1

Notice that the global dynamics of rule 218 is represented by the two (beautiful) matrices of
Figure 3. Notice also that rule 218 and rule 164 are the same (0s behave as 1s and viceversa).

Figure 3: M0,9
f218

(left) and M1,9
f218

(right).

Linear and bounded rules are easy to explain. The goal of this work is to show that the
underlying protocol of rule 218, on the other hand, is rather sophisticated. It will become clear in
next section why this fact is related to the Θ(n2) behavior. Notice that this is the first rule for
which we can prove such a behavior.

Rule 218 is very interesting. It is a kind of palindrome-recognizer and, despite the fact that it
belongs to class 2 (according to Wolfram’s classification [7, 8]), it mimics rule 90 (class 3) for very
particular initial configurations. Authors in [4] were surprised when they found, ”unexpectedly”,
that the rule exhibited 1/fα spectra. Rule 218 has also been proposed as a symmetric cipher [6].

2 Two-party protocols

The communication complexity theory studies the information exchange required by different actors
to accomplish a common computation when the data is initially distributed among them. To tackle
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that kind of questions, A.C. Yao [9] suggested the two-party model: two persons, say Alice and
Bob, are asked to compute together f(x, y), where Alice knows x only and Bob knows y only (x
and y belonging to finite sets). Moreover, they are asked to proceed in such a way that the cost
–the total number of exchanged bits– is minimal in the worst case.

Different restrictions on the communication protocol lead to different communication complexity
measures. Whereas most studies concern the many-round communication complexity, we focus only
on the one-round.

Definition 1 (One-round communication complexity). A protocol P is an AB-one-round f-protocol
if only Alice is allowed to send information to Bob, and Bob is able to compute the function solely on
its input and the received information. The cost of the protocol cAB(P) is the (worst case) number
of bits Alice needs to send. Finally, the AB-one-round communication complexity of a function f is
cAB(f) = cAB(P∗), where P∗ is an AB-one-round f-protocol of minimum cost. The BA-one-round
communication complexity is defined in the same way.

The following fact throws light on the interest of the one-round communication complexity
theory for our purpose: we can infer the exact cost of the optimal AB-one-round protocol by just
counting the number of different rows in the matrix.

Fact 1 ([3]). Let f be a binary function of 2n variables and Mf ∈ {0, 1}2n×2n
its matrix represen-

tation, defined by Mf (x, y) = f(xy) for x, y ∈ {0, 1}n. Let d(Mf ) be the number of different rows
in Mf . We have

cAB(f) =
⌈
log

(
d(Mf )

)⌉
.

Example 1. Consider rule 90, which is defined as follows: f(a, b, c) = a + b + c (the sum is mod
2). This is an additive rule and it satisfies the superposition principle. More precisely, for every
xn . . . x1 ∈ {0, 1}n, x̃n . . . x̃1 ∈ {0, 1}n, y1 . . . yn ∈ {0, 1}n, ỹ1 . . . ỹn ∈ {0, 1}n, c, c̃ ∈ {0, 1}:

fn(xn . . . x1, c, y1 . . . yn)+fn(x̃n . . . x̃1, c̃, ỹ1 . . . ỹn) = fn(xn + x̃n . . . x1 + x̃1, c+ c̃, y1 + ỹ1 . . . yn + ỹn).

Therefore, there is a simple one-round communication protocol. Alice sends one bit b to Bob.
The bit is b = fn(xn . . . x1, c, 0 . . . 0). Then Bob outputs b + fn(0 . . . 0, 0, y1 . . . yn). The same
superposition principle holds for rule 105 of Figure 2. This simple protocol (together with Fact 1)
explains why the number of different rows is just 2.

3 The protocols of rule 218

Since rule 218 is symmetric we are going to assume, w.l.g, that Alice is the party that sends
the information. Moreover, we are going to refer simply to one-round protocols or one-round
communication complexity (because the AB and BA settings are in this case equivalent). We are
going to denote f218 simply by f .

Notice that for we can easily extend the notion of t iterations to blocks of size bigger than
2t + 1. In fact, for every m ≥ 2t + 1 and every finite configuration z = z1 . . . zm ∈ {0, 1}m

we define f0(z) = z, f1(z) = (f(z1, z2, z3), . . . , f(zm−2, zm−1, zm)) ∈ {0, 1}m−2 and, recursively,
f t(z) = f t−1(f(z)) ∈ {0, 1}m−2t.

Let c ∈ {0, 1}. Let x, y ∈ {0, 1}n. From now on in this section, in order to simplify the notation,
we are always assuming that these arbitrary values (i.e, n, c, x, y) have already been fixed.
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Definition 2. We say that a word in {0, 1}∗ is additive if the 1s are isolated and every consecutive
couple of 1s is separated by an odd number of 0s.

Lemma 1. If xcy ∈ {0, 1}2n+1 is additive, then fn(x, c, y) = fn(x, c, 0n) + fn(0n, 0, y).

Proof. Being additive is an invariant property: an additive configuration stays additive forever.
Moreover, in this case, rule 218 behaves like the additive rule 90 (see Example 1). Therefore the
superposition principle applies.

Definition 3. Let α be the maximum index i for which xi . . . x1c is additive. Let β be the maximum
index j for which cy1 . . . yj is additive. Let x′ = xα . . . x1 ∈ {0, 1}α and y′ = y1 . . . yβ ∈ {0, 1}β.

Lemma 2. If x′cy′ is additive, then

fn(x, c, y) = fn(1n−αx′, c, y) = fn(x, c, y′1n−β) = fn(1n−αx′, c, y′1n−β).

Proof. By symmetry it is clear that it is enough to prove fn(x, c, y) = fn(1n−αx′, c, y). If α = n
then it is direct. If α < n then there is a non-negative integer s such that xα+1 . . . xα−2s = 102s1.
It follows that fs(102s1) = 11. Notice that a word 11 acts as a wall through which information
does not flow. Therefore we conclude that the result is independent of the information to the left
of position α + 1 and we can assume, w.l.g, that xn . . . xα+1 = 1n−α.

Definition 4. A string z is called strongly additive if z = 0 . . . 0 or if it is additive while 1z is not.

Lemma 3. Let 1 ≤ s ≤ n. If z ∈ {0, 1}2n+1−s is strongly additive then f(1sz) = 1su with
u ∈ {0, 1}2n−1−s being strongly additive.

Proof. First we need to prove that the block of 1s moves to the right (see Figure 4 (left)). More
precisely, that f(1, z1, z2) = 1. We know that 1z1z2 6= 101 because in that case 1z would have been
additive. Therefore f(1, z1, z2) = 1. On the other hand, since f(z) = u, we know that u is additive.
Now we need to prove that u = 0 . . . 0 or that 1u is not additive. Let us analyze some cases.

• Case z1 = 0. If z = 0 . . . 0 then u = 0 . . . 0. The other possibility is that z1 belogs to an even
length block of 0s (bounded by two 1s). If the length is 2 then u1 = f(z1, z2, z3) = f(0, 0, 1) =
1 and therefore 1u is not additive. If the length is even but bigger than two then the block
shrinks in its two extremities and it remains even. Therefore, 1u also is not additive.

• Case z1 = 1. If z2 = 1 then u1 = 1 and 1u is not additive. So we can assume that z2 = 0. If
z3 = 0 then again u1 = 1 and therefore can assume that z3 = 1 (see Figure 4 (right)). This
means that it remains to consider the subcase z = (10)m02l1 is a prefix of z (with m ≥ 2 and
l ≥ 1). It follows that 02m−21 is a prefix of u and therefore 1u is not additive.

Lemma 4. Let 1 ≤ s ≤ n. If x = 1sx′ and if x′cy is additive (in particular y′ = y), then
fn(x, c, y) = 1.

Proof. Direct from Lemma 3. In fact, xn = 1 and it propagates to the right. Therefore, fn(x, c, y) =
xn = 1.
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Figure 4: f(1sz) = 1su (left) and 02m−21 is a prefix of u (right).

Lemma 5. If x′cy′ is additive, then

1. If |α− β| ≥ 1 then fn(1n−αx′, c, y′1n−β) = 1.

2. If α = β = k then fn(1n−αx′, c, y′1n−β) = fk(x′, c, y′) = fk(x′, c, 0k) + fk(0k, 0, y′).

Definition 5. Let l be the minimum index i for which xi = 1. If such index does not exists we
define l = 0. Let r be the minimum index j for which yj = 1. If such index does not exists we
define r = 0.

Lemma 6. If r 6= 0, l 6= 0, |r − l + 1| is even and r ≤ l + 1, then

fn(x, 0, y) =

{
fn(1n−l+10l−1, 0, y) if r < l,
1 if r = l + 1.

Lemma 7. If r 6= 0, l 6= 0, |r − l + 1| is even and r ≥ l + 3, then

fn(x, 0, y) =

{
fα(x′, 0, 0α) if r = α + 1,
1 if r 6= α + 1.

3.1 Case c = 0

We are going to define a one-round protocol P0 for the case where the central cell begins in state
0. Recall the Alice knows x and Bob knows y. P0 goes as follows. Alice sends to Bob α, l, and
a = fα(x′, 0, 0α). The number of bits is therefore 2dlog(n)e+ 1. Notice that if α = n then Bob can
easily decide: if y is also additive he outputs a + fn(0n, 0, y); otherwise he outputs 1 (Lemma ??).
On the other hand, if α < n and β = n he outputs 1. Therefore, we can assume from now on that
neither x nor y are additive. The way Bob proceed depends mainly on the parity of |r − l + 1|.

The case |r − l + 1| is odd. In this case x′0y′ is additive and Bob can apply Lemma 4. In
fact, if |α− β| ≥ 1 he outputs 1. If α = β = k he outputs a + fk(0k, 0, y′).

The case |r − l + 1| is even. Bob computes r with l. If r ≤ l + 1 then he applies Lemma 6.
More precisely, he outputs fn(1n−l+10l−1, 0, y) if r < l and 1 otherwise. If r ≥ l +3 then he applies
Lemma 7. More precisely, he outputs fn(x′, 0, 0α) if r = α + 1 and 1 otherwise. We conclude the
following proposition.

Proposition 1. P0 is a one-round f -protocol for c = 0 and its cost is 2dlog(n)e+ 1.
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3.2 Case c = 1

We are going to define a one-round protocol P1 for the case where the central cell begins in state
1. Alice sends to Bob α and a = fα(x′, 1, 0α). The number of bits is therefore dlog(n)e+ 1. Notice
that x′1y′ ∈ {0, 1}α+β+1 is additive and therefore Bob applies Lemma 4. More precisely, if α 6= β
then fn(x, 1, y) = 1. On the other hand, if α = β = k then fn(x, 1, y) = fk(x′, 1, y′) and Bob
outputs a + fk(0, 1, y′). We conclude the following proposition.

Proposition 2. P1 is a one-round f -protocol for c = 1 and its cost is dlog(n)e+ 1.

4 Optimality

Here we are going to exhibit lower bounds for d(M c,n
f ), the number of different rows of M c,n

f . If these
bounds are tight then, from Fact 1, they can be used for proving the optimality of our protocols.

4.1 Case c = 0

Let us consider the following subsets of {0, 1}n. First, S1 = {1n−10}. Also, S3 = {1n−3000, 1n−3010}.
In general, for every k ≥ 1 such that 2k + 1 ≤ n, we define

S2k+1 = {02k+11n−2k−1} ∪ {1n−2k−10a10b| a odd, b odd, a + b = 2k}.
Lemma 8. Let xn . . . x1 ∈ S2k+1 and x̃n . . . x̃1 ∈ S2k̃+1 with k 6= k̃. It follows that the rows of M c,n

f

indexed by xn . . . x1 and x̃n . . . x̃1 are different.

Proof. We can first easily prove (by induction on n) that every zn . . . z1 ∈ {0, 1}n satisfies
fn(zn . . . z1, 0, z1 . . . zn) = 0. Let xn . . . x1 ∈ S2k+1 and x̃n . . . x̃1 ∈ S2k̃+1 (with k 6= k̃). From
Lemma 4, fn(xn . . . x1, 0, x̃1 . . . x̃n) = fn(x̃n . . . x̃1, 0, x1 . . . xn) = 1.

Lemma 9. Let x = xn . . . x1, x̃ = x̃n . . . x̃1 ∈ S2k+1 with x 6= x̃. It follows that there exists
y = y1 . . . yn ∈ {0, 1}n such that fn(x, 0, y) 6= fn(x̃, 0, y).

Proof.

Proposition 3. The cost of any one-round f-protocol for c = 0 is at least 2dlog(n)e − 4.

Proof. From Lemmas 8 and 9 we know that the number of different rows in M0,n
f is at least

∑

1≤2k+1≤n

|S2k+1| =
dn

2
e∑

i=1

i ≥ 1
8
n2.

Therefore d(M0,n
f ) ≥ dlog(2n− 3)e ≥ 2dlog(n)e − 4.

4.2 Case c = 1

Proposition 4. The cost of any one-round f-protocol for c = 1 is at least dlog(n)e.
Proof. Consider the set T = {1n−k0k|a + b = n, 1 ≤ k ≤ n}. All we need to prove now is that
the rows indexed by any two different strings in T are different (the result would follow because
|T | = n). Let x = 1n−a0a and x′ = 1n−a′0a′ with 1 ≤ a, a′ ≤ n and a 6= a′. Notice first that it is
easy to prove (by induction on n) that fn(1n−a0a, 1, 0a1n−a) = fn(1n−a′0a′ , 1, 0a′1n−a′) = 0. On
the other hand, by Lemma 4, fn(1n−a0a, 1, 0a1n−a′) = fn(1n−a′0a′ , 1, 0a1n−a) = 1.
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