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Abstract

In a field of network design, engineers desire better ways to design efficient

communication network. While designing such network, we are restricted with

engineering constraints such as communication delays and hardware costs. Many

construction techniques have been proposed. In this paper we focus on compound-

ing techniques and provide (∆,D) tables that contain the largest compound graphs

for given degree ∆ and diameter D. We also empirically verify a few of the recently

discovered large compound graphs.

1 Introduction

In the design of interconnection networks, we are restricted by engineering limitations
and hardware costs of adding communication links. That is, nodes of a network are
restricted to have at most a fixed number of communication links. Due to this restriction
in most cases transmitting data between two nodes require data to be traversed between
several nodes before reaching its destination node. When data is traversed between any
two nodes communication delays must happen, and it is a cost measure to minimize
the number of nodes needed to transmit data. Hence, it is desirable to optimize both
connection costs and communication delays when designing an efficient network.

Graph theory has been used to model interconnection networks, where vertices of the
graph represent nodes and edges of the graph represent communication links. Further-
more, the maximum communication delay is represented by the diameter of a graph and
the maximum connecting links for nodes is the maximum vertex degree. Constructing
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a large network under these two network constraints leads us to the following graph
problem.

The (∆, D) Problem: Construct the largest possible graph with maximum
degree ∆ and diameter at most D.

A (∆, D) graph is a graph with maximum degree ∆ and diameter at most D.

There exists an easily computable bound on the largest order of the graph for a given
maximum degree ∆ and diameter D. Such bound is given by

1 + ∆ + ∆(∆ − 1) + . . . + ∆(∆ − 1)D−1 = ∆(∆−1)D

∆−2
, ∆ > 2

This value is called the Moore bound, and a graph which satisfies the bound is called
a Moore graph. However there are only few graphs known to achieve the Moore bound.
Hence, in most cases various graph construction techniques have been used to produce a
graph whose order is closest to the Moore bound as possible.

There has been several graph construction techniques to obtain large dense graphs
(see [MS]). One popular technique1 is compounding (see [CG, GF, GFS, GM, GPB]), and
it consists of replacing vertices of given graph by graph or copies of graph and rearrang-
ing edges suitably. Compounding has been proved useful for producing a large graph,
and some of the largest (∆, D) graphs known today are produced from compounding.
Compounding has also been used in construction of minimal broadcast networks (see,
[DVWZ]). In this paper, we refer compound graphs as graphs produced from using the
compounding technique.

2 Graph theory preliminaries

This section contains some basic graph theory terms that are used in this paper. Most
of terms follow those in [CL].

A graph G = (V, E) is a finite non empty set V of vertices (the singular is vertex) and
(possibly empty) set E of unordered pairs of distinct vertices called edges. The order of
a graph G = (V, E) is the cardinality of the vertex set V . The degree of a vertex is the
number of edges incident to the vertex, and two vertices are adjacent if there is an edge
connecting them. The degree ∆G of a graph is the maximum degree over all vertices. A
path in a graph G = (V, E) is a sequence of vertices v0v1 . . . vn such that every consecutive
pair of a sequence is an edge in G and no vertex in the sequence is repeated. The length
of a path is the number n. The distance between two vertices x and y of graph G is

1We also mention there is another popular construction technique that uses Cayley graphs (see for

example [Di, DH, Ha, Lo]),
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the length of a shortest path between x and y. The diameter D of G is the maximum
distance between any two vertices of G. A graph G = (V0 ∪ V1, E) is a bipartite graph if
its set of vertices can be partitioned into two disjoint subsets, such that no vertices of a
given subset are adjacent. For any bipartite graph G = (V0 ∪ V1, E) of even diameter,
distance between two vertices x ∈ V0 and y ∈ V1 is at most D − 1, and distance between
two vertices x ∈ V0 and y ∈ V0 (or x ∈ V1 and y ∈ V1) is at most D. Similarly for any
bipartite graph G = (V0 ∪ V1, E) of odd diameter, distance between two vertices x ∈ V0

and y ∈ V1 is at most D, and distance between two vertices x ∈ V0 and y ∈ V0 (or x ∈ V1

and y ∈ V1) is at most D − 1 (see [GPB]).

3 Generalized polygons

A generalized n-gon is a connected bipartite graph whose vertices are the points and
lines of a non-degenerate quadric surface in n dimensional space PG(n, q) and have
been frequently used in the construction of compound graphs. For more information on
generalized polygons, we refer the reader to [Va, DV, Be].

Generalized n-gon with n = 3, 4, 6 are called generalized triangle (denoted by Tq),
generalized quadrangle (denoted by Qq) and generalized hexagon (denoted by Hq) respec-
tively. Generalized n-gons (Pq, Qq and Hq) only exist if and only if q is a prime power.
Degree, diameter and order of these generalized n-gons are shown in Table 1.

Table 1: Degree, diameter and order for generalized polygons.

Degree ∆ Diameter D Order N

Pq ∆ = q + 1 D = 3 N = 2(q2 + q1 + 1)

Qq ∆ = q + 1 D = 4 N = 2(q3 + q2 + q1 + 1)

Hq ∆ = q + 1 D = 6 N = 2(q5 + q4 + q3 + q2 + q1 + 1)

4 Compound graphs

Using the compounding technique, several internal configurations were constructed which
can be used to generate compound graphs. In this paper we focus on configurations G∧B,
B0ΘB1, Gκ5B, B0Σ6B1, B0Θ4B1 and B0Σ7B1 (see [CG, GFS, GF, GM, GPB, Ki]). These
configurations are used to produce large compound graphs, and some of the compound
graphs produced from these configurations still remain as largest known graph for given
degree and diameter.
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Table 2: Standard notation for compound graph configurations.

Description of graphs used in the compounding configuration.

G ∧ B G is any graph G = (V, E) with diameter DG, degree ∆G and

order NG. B is any bipartite graph B = (V0 ∪ V1, E) with even

diameter DB, degree ∆B, order NB and two disjoint subsets V0

and V1 such that |V0| = |V1| = NB

2
.

Gκ5B G is any graph G = (V, E) with diameter DG, degree ∆G and

order NG. B is any bipartite graph B = (V0 ∪ V1, E) with even

diameter DB, degree ∆B, order NB and two disjoint subsets V0

and V1 such that |V0| = |V1| = NB

2
.

B0Θ1B1 B0 is any bipartite graph B0 = (V0 ∪ V1, E) with even diameter

D0, degree ∆0, order N0 and two disjoint subsets V0 and V1 such

that |V0| = |V1| = N0

2
. B1 is any bipartite graph B1 = (V0∪V1, E)

with degree even diameter D1, ∆1, order N1 and two disjoint

subsets V0 and V1 such that |V0| = |V1| = N1

2
.

B0Σ6B1 B0 is any bipartite graph B0 = (V0 ∪ V1, E) with even diameter

D0, degree ∆0, order N0 and two disjoint subsets V0 and V1 such

that |V0| = |V1| = N0

2
. B1 is any bipartite graph B1 = (V0∪V1, E)

with even diameter D1, degree ∆1, order N1 and two disjoint

subsets V0 and V1 such that |V0| = |V1| = N1

2
.

B0Θ4B1 B0 is any bipartite graph B0 = (V0 ∪ V1, E) with even diameter

D0, degree ∆0, order N0 and two disjoint subsets V0 and V1 such

that |V0| = |V1| = N0

2
. B1 is any bipartite graph B1 = (V0∪V1, E)

with even diameter D1, degree ∆1, order N1 and two disjoint

subsets V0 and V1 such that |V0| = |V1| = N1

2
.

B0Σ7B1 B0 is any bipartite graph B0 = (V0 ∪ V1, E) with odd diameter

D0, degree ∆0, order N0 and two disjoint subsets V0 and V1 such

that |V0| = |V1| = N0

2
. B1 is any bipartite graph B1 = (V0∪V1, E)

with even diameter D1, degree ∆1, order N1 and two disjoint

subsets V0 and V1 such that |V0| = |V1| = N1

2
.
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Each of these configurations requires two graphs and produces a compound graph by
making copies of the two graphs with additional edges between vertices. The type of
graphs used in each configuration are described in Table 2.

Using the graphs, as described in Table 2, the degree, diameter and order of the
compound graphs, which are constructed from each configuration type, are shown in
Table 3.

Table 3: Degree, diameter and order for various types of compound graphs.

Degree ∆ Diameter D Order N

G ∧ B ∆ = max{∆G + 2, ∆B + 1} D ≤ DG + DB + 1 N = 3
2
NGNB

Gκ5B ∆ = max{∆G + 6, ∆B + 2} D ≤ DG + DB + 1 N = 15
2
NGNB

B0Θ1B1 ∆ = max{∆0 + 2, ∆1 + 2} D ≤ D0 + D1 N = N0N1

B0Σ6B1 ∆ = max{∆0 + 3, ∆1 + 2} D ≤ D0 + D1 N = 3N0N1

B0Θ4B1 ∆ = max{∆0 + 3, ∆1 + 3} D ≤ D0 + D1 N = 4N0N1

B0Σ7B1 ∆ = max{∆0 + 3, ∆1 + 2} D ≤ D0 + D1 N = 5
2
N0N1

All of the configurations described in this paper have similar patterns, however for a
given degree and diameter some configurations generates larger graphs than others. This
is due to the type of graphs used in the graph construction and configuration design.
As shown in Table 3, graphs produced from configurations B0ΘB1, B0Σ6B1, B0Θ4B1

and B0Σ7B1 do not require any additional path length in their diameter, hence we can
produce large graphs with diameter being the sum of diameters from the two graphs used
in construction. However, a limitation for configurations B0ΘB1, B0Σ6B1 and B0Θ4B1 is
that we can only generating graphs with even diameter, while with configuration B0Σ7B1

we can only generate graphs with odd diameter. Configurations G ∧ B and Gκ5B do
require one additional path length for the diameter, but these configurations can be used
to generate a graph of any diameter greater than four.

We now provide a concrete example of a compound graph constructed by using one of
configurations mentioned in this paper. The two graphs used in construction of the com-
pound graph is shown in Figure 1 and these graphs are used to construct the compound
graph K3∧K2,2. Such construction uses configuration G∧B and it is generated by taking
two copies of graph K3 and three copies of bipartite graph K2,2 with extra adjacencies
between copies of the graphs. The graph K3∧K2,2 has degree ∆ = max{2+2, 2+1} = 4,
diameter D = 4 and order N = 18. Construction details are shown in Figure 2.
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K3
K2,2

Figure 1: Graph K3 and bipartite graph K2,2

(0, 1, 0, 0) (1, 1, 0, 0)

(0, 1, 1, 0) (1, 1, 1, 0)

(0, 1, 0, 1) (1, 1, 0, 1)

(0, 1, 1, 1) (1, 1, 1, 1)

(0, 1, 1, 2) (1, 1, 1, 2)

(0, 0, 0)

(2, 0, 0)

(1, 0, 0) (1, 0, 1)

(0, 0, 1)

(2, 0, 1)

(1, 1, 0, 2)(0, 1, 0, 2)

Figure 2: Construction of the compound graph K3 ∧ K2,2
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5 (∆, D) tables of largest compound graphs

For each configuration Gκ5B, B0Σ6B1, B0Θ4B1 and B0Σ7B1, we provide a (∆, D) table
containing the best (largest) graphs produced from its specified configuration. These
graphs and orders for configurations Gκ5B, B0Σ6B1, B0Θ4B1 and B0Σ7B1 are shown in
Tables 4, 5, 6, 7 and 8, respectively.

Some entries given in the of tables contain notations of configurations that have
not been mentioned in the previous section. They are configurations that have been
constructed by applying modifications to the existing configurations. The modifications
involve adding additional copies of graph and adjacencies to original configuration, and
in some cases these modified configurations can generate larger graph than the original
configuration on a given degree and diameter. For configurations Gκ5B, B0Σ6B1 and
B0Σ7B1, one or more modified configurations exist and they are denoted by Gκ5B(n),
B0Σ

′

6B1, B0Σ6B1(n) and B0Σ
1
7B1, B0Σ

2
7B1 and B0Σ7B1(n). We refer readers to [GFS],

[GM] and [Ki] for construction details of these modified configurations. In these tables,
T (m, n) refers to the largest known graphs of degree m and diameter n as given in [CD]
(as of November 2007).

6 Verification of compound graphs

We empirically verified using a computer a few compound graphs given by Gómez and
Miller, [GM] and Gómez, Fiol, and Serra, [GFS]. The (14, 7) compound graph K1Σ8H11

of order 6200460 and some representatives, highlighted in Table 9, for various compound
configerations where checked. All of the parameter values from the theoretical formula
and algorithmic results on the adjacency lists2 are the same, which empirically indicates
that the construction technicques of all the compound graph described in this repository
are correct.

2These graph adjacency lists are availble by request from the authors.
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Table 4: A (∆, D) table for compound graphs B0Σ6B1, B0Σ
′

6B1 and B0Σ6B1(n).

∆\D 4 6 8 10

K3,3Σ6K4,4 K3,3Σ6Q3 K3,3Σ6H3 Q2Σ6H3

6
144 1440 13104 65520

K4,4Σ6K5,5 K4,4Σ6Q4 K4,4Σ6H4 Q3Σ6H4

7
240 4080 65520 655200

K5,5Σ6K6,6 K5,5Σ6Q5 K5,5Σ6H5 Q4Σ6H5

8
360 9360 234360 3984120

K6,6Σ6K7,7 K6,6Σ
′

6Q5 Q5Σ
′

6Q5 Q5Σ
′

6H5

9
504 13104 340704 8530704

K7,7Σ
′

6K7,7 K5,5Σ6Q7(2) K5,5Σ6H7(2) Q4Σ6H7(2)

10
686 36000 1764720 30000240

K8,8Σ
′

6K8,8 K6,6Σ6Q8(2) K6,6Σ6H8(2) Q7Σ6H8

11
896 63180 4044492 179755200

K9,9Σ
′

6K9,9 K7,7Σ6Q9(2) K7,7Σ6H9(2) Q8Σ6H9

12
1134 103320 8370180 466338600

K10,10Σ
′

6K10,10 K10,10Σ
′

6Q9 Q9Σ
′

6Q9 Q9Σ
′

6H9

13
1400 114800 9413600 762616400

K11,11Σ
′

6K11,11 K7,7Σ6Q11(3) K7,7Σ6H11(3) Q8Σ6H11(2)

14
1694 245952 29762208 1865452680

K12,12Σ
′

6K12,12 K12,12Σ
′

6Q11 Q11Σ
′

6Q11 Q11Σ
′

6H11

15
2016 245952 30006144 3630989376

K13,13Σ
′

6K13,13 K9,9Σ6Q13(3) K9,9Σ6H13(3) Q11Σ6H13

16
2366 514080 86882544 7066446912
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Table 5: A (∆, D) table for compound graphs B0Θ4B1.

∆\D 4 6 8 10

K3,3Θ4K3,3 K3,3Θ4Q2 Q2Θ4Q2 Q2Θ4H2

6
144 720 3600 15120

K4,4Θ4K4,4 K4,4Θ4Q3 Q3Θ4Q3 Q3Θ4H3

7
256 2560 25600 232960

K5,5Θ4K5,5 K5,5Θ4Q4 Q4Θ4Q4 Q4Θ4H4

8
400 6800 115600 1856400

K6,6Θ4K6,6 K6,6Θ4Q5 Q5Θ4Q5 Q5Θ4H5

9
576 14976 389376 9749376

K7,7Θ4K7,7 K7,7Θ4Q5 K7,7Θ4H5 Q5Θ4H5

10
784 17472 437472 9749376

K8,8Θ4K8,8 K8,8Θ4Q7 Q7Θ4Q7 Q7Θ4H7

11
1024 51200 2560000 125491200

K9,9Θ4K9,9 K9,9Θ4Q8 Q8Θ4Q8 Q8Θ4H8

12
1296 84240 5475600 350522640

K10,10Θ4K10,10 K10,10Θ4Q9 Q9Θ4Q9 Q9Θ4H9

13
1600 131200 10758400 871561600

K11,11Θ4K11,11 K11,11Θ4Q9 K11,11Θ4H9 Q9Θ4H9

14
1936 144320 11691680 871561600

K12,12Θ4K12,12 K12,12Θ4Q11 Q11Θ4Q11 Q11Θ4H11

15
2304 281088 34292736 4149702144

K13,13Θ4K13,13 K13,13Θ4Q11 K13,13Θ4H11 Q11Θ4H11

16
2704 304512 36848448 4149702144
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Table 6: A (∆, D) table for compound graphs B0Σ7B1, B0Σ
1
7B1, B0Σ

2
7B1 and B0Σ7B1(n).

∆\D 5 7 9

K1,1Σ
2
7Q3 K1,1Σ

2
7H3 P2Σ7H3

6
560 5096 25480

K1,1Σ7Q4(2) K1,1Σ7H4(2) P3Σ7H4

7
1360 21840 177450

K1,1Σ7Q5(2) K1,1Σ7H5(2) P4Σ7H5

8
2496 62496 820260

K1,1Σ
1
7Q5(2) K1,1Σ

1
7H5(2) P5Σ7H5

9
3120 78120 1212860

K1,1Σ7Q7(3) K1,1Σ7H7(3) P5Σ
1
7H7

10
8800 431376 7294176

K1,1Σ
2
7Q8(2) K1,1Σ

2
7H8(2) P7Σ7H8

11
14040 898776 21345930

K1,1Σ
2
7Q9(2) K1,1Σ

2
7H9(2) P8Σ7H9

12
19680 1594320 48493900

K1,1Σ7Q9(4) K1,1Σ7H9(4) P9Σ7H9

13
22960 1860040 60451300

K1,1Σ7Q11(4) K1,1Σ7H11(4) P9Σ
1
7H11

14
40992 4960368 193454352

K1,1Σ7Q11(4) K1,1Σ7Q11(4) P11Σ7H11

15
40992 4960368 235617480

K1,1Σ7Q13(5) K1,1Σ7H13(5) P11Σ
1
7H13

16
80920 13675956 641965464
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Table 7: A (∆, D) table for compound graphs Gκ5B and Gκ5B(n).

∆\D 4 5 6 7

K1κ5K4,4 K1κ5Q3 K1κ5Q3 K1κ5H3

6
60 600 600 5460

K1κ5K5,5 K1κ5Q4 K2κ5Q4 K1κ5H4

7
75 1275 2550 20475

K1κ5K6,6 K1κ5Q5 K3κ5Q5 K1κ5H5

8
90 2340 7020 58590

K1κ5K7,7 K1κ5Q5 K4κ5Q5 K1κ5H5

9
105 2340 9360 58590

K1κ5K8,8(2) K1κ5Q7(2) K5κ5Q7 K1κ5H7(2)

10
200 10000 30000 490200

K1κ5K9,9(2) K1κ5Q8(2) K6κ5Q8 K1κ5H8(2)

11
225 14625 52650 936225

K1κ5K10,10(2) K1κ5Q9(2) K7κ5Q9 K1κ5H9(2)

12
250 20500 86100 1660750

K1κ5K11,11(2) K1κ5Q9(2) K8κ5Q9 K1κ5H9(2)

13
275 20500 98400 1660750

K1κ5K12,12(3) K1κ5Q11(3) K9κ5Q11 K1κ5H11(3)

14
420 51240 197640 6200460

K1κ5K13,13(3) K1κ5Q11(3) K10κ5Q11 K1κ5H11(3)

15
455 51240 219600 6200460

K1κ5K14,14(3) K1κ5Q13(3) K7κ5Q13(2) K1κ5H13(3)

16
490 83300 416500 14078190
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Table 8: A (∆, D) table for compound graphs Gκ5B and Gκ5B(n).

∆\D 8 9 10

K1κ5H3 K1κ5H3 K1κ5H3

6
5460 5460 5460

K2κ5H4 K2κ5H4 K2κ5H4

7
40950 40950 40950

K3κ5H5 C5κ5H5 C7κ5H5

8
175770 292950 410130

K4κ5H5 T (3, 2)κ5H5 T (3, 3)κ5H5

9
234360 585900 1171800

K5κ5H7 T (4, 2)κ5H7 T (4, 3)κ5H7

10
1470600 4411800 12058920

K6κ5H8 T (5, 2)κ5H8 T (5, 3)κ5H8

11
3370410 13481640 40444920

K7κ5H9 T (6, 2)κ5H9 T (6, 3)κ5H9

12
6975150 31886400 109609500

K8κ5H9 T (7, 2)κ5H9 T (7, 3)κ5H9

13
7971600 49822500 167403600

K9κ5H11 T (8, 2)κ5H11 T (8, 3)κ5H11

14
23916060 151468380 672307020

K6κ5H11(2) T (9, 2)κ5H11 T (9, 3)κ5H11

15
26573400 196643160 1554543900

K7κ5H13(2) T (10, 2)κ5H13 T (10, 3)κ5H13

16
70390950 549049410 3921781500
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Table 9: Some computer verified (∆, D) graphs.

Compound graph Theoretical formula Verified theoretical parameters

∆ = max{∆0 + 3, ∆1 + 2} ∆ = max{2 + 3, 3 + 2} = 5

K2,2Σ6K3,3 D ≤ D0 + D1 D ≤ 2 + 2 = 4

N = 3N0N1 N = 3 × 4 × 6 = 72

∆ = max{∆0 + 3, ∆1 + 3} ∆ = max{2 + 3, 2 + 3} = 5

K2,2Σ
′

6K2,2 D ≤ D0 + D1 D ≤ 2 + 2 = 4

N = 7
2
N0N1 N = 7

2
× 4 × 4 = 56

∆ = max{∆0 + 3, ∆1 + 3} ∆ = max{2 + 3, 2 + 3} = 5

K2,2Θ4K2,2 D ≤ D0 + D1 D ≤ 2 + 2 = 4

N = 4N0N1 N = 4 × 4 × 4 = 64

∆ = max{∆0 + 3, ∆1 + 2} ∆ = max{1 + 3, 2 + 2} = 4

K1,1Σ7K2,2 D ≤ D0 + D1 D ≤ 1 + 2 = 3

N = 5
2
N0N1 N = 5

2
× 2 × 4 = 20

∆ = max{∆0 + 4, ∆1 + 2} ∆ = max{1 + 4, 3 + 2} = 5

K1,1Σ
1
7K3,3 D ≤ D0 + D1 D ≤ 1 + 2 = 3

N = 3N0N1 N = 3 × 2 × 6 = 36

∆ = max{∆0 + 5, ∆1 + 2} ∆ = max{1 + 5, 4 + 2} = 6

K1,1Σ
2
7K4,4 D ≤ D0 + D1 D ≤ 1 + 2 = 3

N = 7
2
N0N1 N = 7

2
× 2 × 8 = 56

∆ = max{∆G + 6, ∆B + 2} ∆ = max{0 + 6, 4 + 2} = 6

K1κ5K4,4 D ≤ DG + DB D ≤ 0 + 2 + 1 = 3

N = 5
2
NGNB + 5NGNB N = 5

2
× 1 × 8 + 5 × 1 × 8 = 60

∆ = max{∆G + 10, ∆B + 2} ∆ = max{0 + 10, 8 + 2} = 10

K1κ5K8,8(2) D ≤ DG + DB + 1 D ≤ 0 + 2 + 1 = 3

N = 5
2
NGNB + 10NGNB N = 5

2
× 1 × 16 + 10 × 1 × 16 = 200

∆ = max{∆0 + 5, ∆1 + 2} ∆ = max{2 + 5, 5 + 2} = 7

K2,2Σ6K5,5(2) D ≤ D0 + D1 D ≤ 2 + 2 = 4

N = 9
2
N0N1 N = 9

2
× 4 × 10 = 180

∆ = max{∆0 + 6, ∆1 + 2} ∆ = max{1 + 6, 5 + 2} = 7

K1,1Σ7K5,5(2) D ≤ D0 + D1 D ≤ 1 + 2 = 3

N = 4N0N1 N = 4 × 2 × 10 = 80
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