8888888

CDMTCS
Research
Report
Series

On Universal Computably
Enumerable Prefix Codes

Cristian S. Calude', Ludwig Staiger?

'University of Auckland, NZ
>Martin-Luther-Universitiit, Germany

CDMTCS-312
October 2007

Centre for Discrete Mathematics and
Theoretical Computer Science

On Universal Computably Enumerable
Prefix Codes

Cristian S. Calude*
Department of Computer Science
The University of Auckland, Private Bag 92019
Auckland, New Zealand
Email: cristian@cs.auckland.ac.nz

Ludwig Staiger
Martin-Luther-Universitit Halle-Wittenberg
Institut fiir Informatik

D - 06099 Halle, Germany
Email: staiger@informatik.uni-halle.de

Abstract

We study computably enumerable (c.e.) prefix codes which are capa-
ble of coding all positive integers in an optimal way up to a fixed constant:
these codes will be called universal. We prove various characterisations of
these codes including the following one: a c.e. prefix code is universal iff
it contains the domain of a universal self-delimiting Turing machine. Fi-
nally, we study various properties of these codes from the points of view of
computability, maximality, and density.

1 Introduction and notation

We study computably enumerable prefix codes which are capable of coding all
positive integers in an optimal way up to a fixed constant: these codes will be
called universal. Our arguments combine elementary facts from coding theory,

*Work done in Halle; the support of Martin-Luther University and Institute of Informatics is
gratefully acknowledged. Part of this project was supported by UARC Grant 3607895/2006.

2 C. S. Calude, L. Staiger

algorithmic information theory and formal language theory. We prove various
characterisations of these codes including the following one: a c.e. prefix code is
universal iff it contains the domain of a universal self-delimiting Turing machine.
Then various properties of these codes are presented.

We will follow the notation in [3]. By IN = {0, 1,2,...} we denote the set of
positive integers. The cardinality of a set A is denoted by |A|. Let us fix X =
{0,...,r— 1} an alphabet of cardinality r; by X* we denote the set of finite strings
(words) on X, including the empty string A. The length of the string w is denoted
by [w|,and by X' = {w e X* | |w| =i}, XS = {w e X*| |w| <i}and X=' = {w €
X* | |w| > i} we denote the sets of strings having lengths exactly i, not larger than
i, or not smaller than 7, respectively. If v is a prefix of w we write v C w; we write
v wifvCwand v # w. A natural ordering of X* is the quasi-lexicographical (or
length-lexicographical) ordering “<giex” Where strings are ordered first according
to their length and strings of the same length are ordered lexicographically (w.r.t.
some ordering of the alphabet X)*. By string,(n) we denote the nth string in
the quasi-lexicographical ordering of X* = {0,...,r — 1}*, e.g. string,(0) = 4,
string, (1) =0, string,.(2) =1, ..., string,(r+ 1) =00, ..., etc.

Moreover, we fix a prefix-free encoding of strings in X* as e.g. in [18], for
w=2x1---x;wherex; € X, [> 0wesetx]---x; := 0x10xp---0x;1.

For V,W C X*, VW denotes the set {vw | v € VA € W} of concatenations of
strings from Vwith strings from W. For V = {u} we write uW instead of {u}W.
A prefix code is a prefix-free subset of strings. Prefix codes over X satisfy Kraft’s
inequality:) ,,ca <.

A self-delimiting Turing machine (shortly, a machine) is a Turing machine
C processing binary strings such that its program set (domain) dom(C) = {7 |
m € X* AC(7) halts} is a prefix-free set of strings. As usual we define the self-
delimiting (prefix, or program-size) complexity of a string w w.r.t. a machine C as
He(w) :=inf{|n| | # € X* AC(7w) = w}. See more in [5, 3, 6].

A prefix code is computably enumerable (c.e.) iff it is the domain of a self-
delimiting Turing machine.

We can effectively construct a machine U (called universal) such that for
every machine C, there exists a constant k (depending only on U and C) such
that for every string © € dom(C) there exists a string 7’ € dom(U) such that
U(n') = C(r) and |7’| < ||+ k. A prefix-universal machine U is a special uni-
versal machine defined by the following property: for every self-delimiting Turing
machine C there exists a string w (depending only on U and C) such that for every
string 7 € dom(C) we have U(wr) = C(x). We can effectively construct prefix-
universal machines; there exist universal machines which are not prefix-universal.

2This ordering is not to be confused with the lexicographical ordering where the string 1 is
preceded by all strings starting with 0.

On Universal Computably Enumerable Prefix Codes 3

All quantifiers in the definition of universality and prefix-universality are effective.

2 Motivation

Consider the binary alphabet X = {0, 1}. The computable prefix code S = {1"0 :
n > 0} codes every integer n > 0 with a string of n+ 1 bits. A better solution is
given by the computable prefix code S = {1'°¢"0string, (n) : n > 0} which codes
every integer n > 0 with a string of 2logn + 1 bits. An even better solution is a
computable prefix code T that codes every integer n > 0 with a string of length
logn+2lognlogn + 1 bits. In [9] two prefix codes for the natural numbers are
introduced and shown to: a) have an asymptotically minimal redundancy, and b)
be computable by a Turing machine with a minimal delay.

Is there a best way for representing integers with computable prefix codes,
or, more generally, with c.e. prefix codes? There are various ways to define op-
timality; here we will focus on set-theoretic maximality, information-theoretic
(rate/capacity) and computable one-to-one translations (embedability).

3 Properties of universal c.e. prefix codes

In this section we define and characterise universal c.e. prefix codes. We start with
a theorem which characterises universal c.e. prefix codes. Then we give a non-
computability result, and the last subsection is devoted to some consequences.

3.1 A characterisation theorem
Here we prove the following equivalences:

Theorem 1 Let V C X* be a c.e. prefix code. Then, the following statements are
equivalent:

1. There exists a universal machine U such that V O dom(U).

2. For every partial computable one-one function g : IN — X* having a prefix-
free range, there exist a partial computable one-one function f :IN — X*
and a constant k € IN such that

a. f(dom(f))CV,
b. dom(g) C dom(f) and |f(n)| < |g(n)|+k, for every n € dom(g).

4 C. S. Calude, L. Staiger

3. For every computable one-one function g : IN — X* having a prefix-free
range, there exist a computable one-one function f : IN — X* and a constant
k € IN such that

a. f(IN)CV,
b. |f(n)| <|g(n)|+k, for every n € IN.

4. For every c.e. prefix code D C X* there exist a partial computable one-one
function ¢ : X* — X* and a constant k € IN such that:

a. D Cdom(¢), (D) CV, and
b. |@(u)| < |u|+k, for every u € dom(@).

Proof. For the implication 1 = 2 we assume that U is a universal machine and
V O dom(U). Assume also that g is a partial computable one-one function from
positive integers to strings having a prefix-free range. Define C(g(n)) = g(n), for
every n € dom(g).

Clearly, C is a machine, so by virtue of the universality of U there exists a
constant k € IN such that for every n € dom(g) there exists a string x, € dom(U) C
V such that U (x,) =C(g(n)) = g(n) and |x,| < |g(n)|+k. Now, using the constant
k from above, define

f(n) = pyw(|w| < [g(n)| +kAU(w) = g(n)), (1)

where w is the first string satisfying the condition taken with respect to some com-
putable enumeration Y of dom(U). Clearly, f is partial computable. According to
the choice of the constant k, f(n) is defined whenever g(n) is defined, and more-
over, in this case U(f(n)) = g(n), and |f(n)| < |g(n)| + &, for all n € dom(g).
Thus dom(f) O dom(g), and f(dom(f)) C dom(U) C V.

For the implication 2 =- 3 we just observe that f is total because g is total and
dom(g) C dom(f).

If D is finite the implication 3 = 4 is trivial, just take as images of the strings
w € D the first |D| strings in V.

Now let D C X* be an infinite c.e. prefix code and take a computable one-one
function g : IN — D which enumerates D. In view of 3, there exists a constant k
and a computable one-one function f : IN — X* such that f(IN) CV, and | f(n)| <
|g(n)| + k, for each n. Next define the mapping ¢ by ¢(v) = f(g~'(v)). The
mapping ¢ is well-defined (because both functions g, f are one-one) and partial
computable; moreover, dom(¢) 2 g(IN) = D and @(v) € V, forall v € D.

Forevery v e D, |o(v)| = |f(g7'(v)| < |g(g7 (v))| +k = |[v| + &, because of
condition 3.b, and @ (D) C V.

On Universal Computably Enumerable Prefix Codes 5

Finally, for the implication 4 = 1 we consider a universal machine U’ and put
D = dom(U’). In view of 4, there exist a partial computable one-one function
¢ : X* —V, and a constant k (each depending upon V, D) such that conditions 4.a,
4.b are satisfied. Define U (u) = U’ (¢~ (u)).

We have: dom(U) = ¢(X*) C V, by 4.b, a prefix code. To show that U is a
universal machine we show that Hy (w) < Hy(w) + k for each w € X*.

Let w € X*. Then there is a v € dom(U’) such that U’(v) = w and
[v| = Hy/(w). Since, by definition, w = U’(v) = U(¢(v)), we have
Hy(w) < [@(v)| < |v[+k = Hy:(w) +k. Q

For the case V = dom(U), U being a universal machine, we can strengthen the
condition 4 in Theorem 1 in the following way.

Corollary 2 For every c.e. prefix code D C X* and every universal machine U
there are a partial computable one-one function ¢ : X* — X* and a constant
k € IN such that:

a. D Cdom(¢), ¢(D) C dom(U),
b. |@o(u)| < |u|+k, forall u € D, and
c. U(o(u)) =u, forallu € D.

Proof. Again the case of finite prefix codes is trivial; map v € D to a shortest
u € dom(U) such that U (u) = v.

If D is infinite consider the implication 1 = 2 of the proof of Theorem 1. If
we choose g : IN — X™ as a function enumerating exactly the set D and define
fiIN—X*asinEq. (1) we get U(f(n)) = g(n) and |f(n)| < |g(n)|+ k. Now let,
as above, @(u) := f(g~'(n)), and we obtain U(¢@(u)) = u and |@(u)| < |u| +k
for u=g(n) € D. a

Definition 3 We say that a c.e. prefix code is universal if it satisfies one of the
equivalent conditions 1 — 4 in Theorem 1.

As an immediate consequence of Theorem 1.4 or Corollary 2 we obtain the
following.

Lemma 4 Let V C X* be a universal c.e. prefix code. Then for every c.e. prefix
code D C X* there is a constant k € IN such that for all | € IN the inequality
IDNXS! <|VNXSFR| holds.

6 C. S. Calude, L. Staiger

For domains of prefix-universal machines U we have the following characterisa-
tion simpler than the one given in Theorem 1.

Fact5 LetV C X* be a c.e. prefix code. Then, the following statements are equiv-
alent:

1. There exists a prefix-universal machine U such that V = dom(U).

2. For every c.e. prefix code D C X* there exists a string w € X* such that
wD =V NwX*,

Proof. The implication 1 =- 2 follows the definition of a prefix-universal
machine. For the converse implication we consider a universal machine U’ and
put D = dom(U’). As D is a c.e. code there exists a string w € X* such that
wD =V NwX*. We now define U by the formula:

U'(u), ifv=w-u,
Ulv)=< A, ifwlZvandv eV, and
undefined, otherwise.

Clearly, U is a universal machine; if U’ is prefix-universal, then so is U. M|

3.2 A non-computability result

Although every c.e. prefix code can be in a one-to-one manner effectively embed-
ded into any universal c.e. prefix code, it turns out that no universal c.e. prefix code
is contained in a computable prefix code. To this end we consider the language-
theoretic density of (prefix) codes.

Lemma 6 IfV C X* is a prefix code and |X| = r then for every | € IN there is an
m € IN such that |V N XM < ™,
Proof. Since V C X* satisfies Kraft’s inequality ¥,y |X|~"l < 1, it has density

vox=n| _ 0 (cf. [2]). From this the proof immediately follows. Q

limm_,oo W

Universal c.e. prefix codes have the following property:

Theorem 7 (Nies) Every universal c.e. prefix code is Turing complete.

A recursion-theoretic proof—communicated in [10]—can be found in [11,
Section 2.2]).

Lemma 6 and the results of the previous section allow us to give an elementary
direct proof of the weaker fact that no universal c.e. code can be computable.

On Universal Computably Enumerable Prefix Codes 7

Corollary 8 No universal c.e. prefix code is computable.

Before proceeding to the proof let us briefly sketch its idea. Under the as-
sumption that the universal c.e. prefix code V C X* is computable from V we
construct a computable code D such that for every k € IN there is an /; € IN such
that [DNX=/k| > |V N X=l+k| This is done by choosing a computable sequence
(Vi)kew of strings vy €V, |vi| < |vi+1], and replacing in V the string v by a suit-
ably large set of strings vy - X"*. Then we show that D is computable if V' is com-
putable and finally we argue that V cannot be computable in view of Lemma 4.

Proof. Assume the universal c.e. prefix code V C X* to be computable. We
construct a sequence of finite prefix codes (D;);en and a sequence of numbers
(l;)ieN such that

1. Dy C Dy,

2. Dy C X<k,

3. Dy U (V ﬂXZ(lk“)) is a prefix code, and
4. |DyNXSh| > |V N XStk

We start with vy := min<__V, that is, vq is the minimum of V C X* with respect

>qlex

to the quasi-lexicographical ordering,® and put [y := lvo| + 1 and
Dy := (VNX=lo)\ {vo} Uvy-X.

Then it is obvious that conditions 2 and 4 are fulfilled and, since V is a prefix
code, also condition 3 is fulfilled.

Next, suppose D;_1 has already been constructed in such a way that condi-
tions 1 to 4 are fulfilled. We construct D; in the following way:

We let v; := min<, (VNX=(i-1+1)) and define the number m; as the smallest
number m € IN such that

IDi—1 Uvi- X" U{v [ve V\ i} Av| < | < vl +m}| > |V nxsilmei)

The number m; exists because in view of Lemma 6 we have already

vi- X" = 7" > v nx sl

for some m € IN.

bSince V is assumed to be computable, vy and the subsequent v; can be effectively computed.

8 C. S. Calude, L. Staiger

Observe also that the three sets D;_1, vi-X"™ and {v[v e V\ {vi} Alvi| < v] <
|vi| +m} are pairwise disjoint.
Then we set [; := |v;| +m; and

D; = D,~_1le~-X’”fU{v | VGV\{W}/\|V,’| < |V| Sl,}

It remains to verify that D; fulfils conditions 1 to 4. Conditions 1 and 2 are
easy to see, and condition 4 follows from the definition of the number m;. In order
to verify the third property observe that

D;U (Vvnx=Uth) = piyu (vnx=UsrtDy L)) U X™,

where D;_; U (V NnX 2(li—'“)) is, by the induction hypothesis, a prefix code. As-
sume now w [v for some strings w,v € D; U (V ﬂXz(liH)).

The case that both strings w,v do not belong to v; - X" is impossible by the
hypothesis. In case v € v; - X" we obtain w v; or v; C w, contradicting the fact
that D;_; U (V N X=Ui1+D) s a prefix code. The case w € v; - X" yields v; T v,
also contradicting the hypothesis.

Finally, from the above construction it is obvious that D := [J;cnD; is
computable if V' is computable, and according to Lemma 4, the code V cannot be
universal c.e. 3

3.3 Non-maximality of c.e. prefix codes

In Section 3.1 we have seen that a universal c.e. prefix code V is large in the sense
that every c.e. prefix code can be one-to-one and computably embedded into V.
In this section we are going to investigate how large universal c.e. prefix codes are
if we consider set-theoretical containment rather than embeddability. To this end
we recall that a prefix code V C X* is called maximal provided for every prefix
code W CX*,V C W implies W =V.

The following result in [2] gives an alternative characterisation of maximal
prefix codes:

Lemma 9 A code V C X* is a maximal prefix code iff V is a prefix code and for
everyv € X* there isaw €V such thatv C w orw C v.

Next, we note that for c.e. prefix codes, maximality implies computability.

Lemma 10 [fV C X* is a c.e. maximal prefix code, then 'V is computable.

Proof. In order to decide whether v € X* belongs to V we enumerate V as
long as a string w € V with v C w or w C v appears. Thenv € V iff v = w. a

On Universal Computably Enumerable Prefix Codes 9

With Corollary 8 we obtain the following corollary.

Corollary 11 No universal c.e. prefix code is (contained in) a maximal c.e. prefix
code.

It should be noted that the property in Corollary 11 is not typical for universal
c.e. prefix codes, it can hold also for certain computable prefix codes: We give
an example of a computable prefix code which is not contained in a computable
maximal prefix code.

Example 12 Let X = {0, 1} and consider a set K C IN which is infinite c.e. but not
computable. Then there is a one-to-one computable function IN — K enumerating
K. Since the graph of f is computable, the prefix code Vg := {Of(‘w‘) 1w we
{0,1}*} C {0,1}* is also computable but not maximal.

Assume Vg C V for some computable maximal prefix code V C {0,1}*. Ob-
serve that, since V is a prefix code and K is infinite, 0* NV = @. Thus, for every
n € IN, V contains a string of the form 0" - 1 - v.

Therefore, in order to decide whether n € K one enumerates V as long as a
string of the form 0" - 1 - v appears and tests whether f(|v|) = n. 0

If V is a prefix code which satisfies Kraft’s inequality with equality, that is,
for which), cy r~Wl = 1, then it is maximal; the converse implication is true for
finite codes, but false in general. See more in [2].

It should be mentioned that, unlike the case of finite codes, for every function
f:IN — IN with ¥ 7~/ < 1, there is a maximal prefix code Vi=A{w;i|i>
0} C X* such that |w;| = f(i), see [15]. If f is computable and monotone, then
also V¢ is computable. (More precisely, if f is monotone, then V; is computable
in f.)

On the other hand, from the Kraft-Chaitin.Theorem (see e.g. [3]) it is known
that for every computable function f : IN — IN with } ;> =10 <1 there is a
universal c.e. prefix code Vy = {w; | i > 0} C X* such that |w;| = f(i).

There is, however no computable procedure assigning to a (non-monotone)
computable function f : IN — IN with } ;- r~/) <1 ac.e. maximal prefix code
Vi ={w; | i > 0} such that |w;| = (i), for every i > 0.

To show this we use the following property.

Proposition 13 [fV C X* is c.e. (computable), then its set of lengths {|w| | w €
V} C N is also c.e. (computable).

Assuming now that a computable function fx which enumerates {i+2 |i € K},
where K C IN is c.e. but not computable, yields, in a computable way, a maximal

10 C. S. Calude, L. Staiger

prefix code Vy, we can, by virtue of Lemma 10 and Proposition 13, compute K,
contradicting the uncomputability of K.

4 Information-Theoretic Size

In the preceding section we have shown that universal c.e. prefix codes are not
maximal with respect to set inclusion, so they are in some sense not large. This
observation is supported by the fact mentioned in the proof of Lemma 6 that their
language-theoretic density is 0.

Here we derive results on universal c.e. prefix codes which show that they
are large in some information-theoretic respect. To this end we consider the a
different quantity which measures the amount of information necessary to print a
string of length n in a certain language:

Let, for a language W C X* be sy : [0,00) — [0,00] where sy (f) := Y ,,.en|[W N
X"| -t" its structure generating function (cf. [8, 13, 14]). Then

5W(r_a) = ZWEW r—DHW\)
and sy (r~% = co means that the function sy (n) := |W N X"| cannot be upper-
bounded by r*”.

4.1 The structure generating function of a c.e. prefix code

From Kraft’s inequality it is known that for any code D C X* and @ = 1 we
have the bound) ,,cp r~W <1, 1f sp is a rational function, in particular, when
D is a regular language, then SD(% + €) < oo for some € > 0. This amounts to
Yepr %W < oo for some o < 1.

In this section we are going to show that universal c.e. prefix codes do not
have this behaviour, that is, they satisfy sp(r %) = ¥,,cpr %"l = oo for all
o, 0 < a < 1. We will also investigate some reasons and consequences of this
behaviour.

We start with a consequence of Theorem 1: a technical result from which we
derive a simplification of the proof of Theorem 3.2.(b) in [17].

Lemma 14 Let D C X* be a c.e. prefix code, o € (0,00), and let U be a universal
machine. If D is finite or a0 > 1, then there is a constant k such that we have:

—o-|wl ok —a-Hy(w) ok —a-|v|
ZWGD r sr ZWGD r sr Zvedom(U) r ’

On Universal Computably Enumerable Prefix Codes 11

Remark. It should be mentioned that for infinite D and @ < 1 the sum
Yoepr ®Hu) is always infinite. The more general fact that ¥, oy r— @ v ()
diverges for o < 1 and arbitrary infinite c.e. W C X* was derived in Eq. (49) of
[17]. For the sake of completeness we prove it as Lemma 15 below.

Proof of Lemma 14. We use the one-one function ¢ of Corollary 2. In
order to verify the first inequality, observe that the third condition of Corollary 2
implies Hy (w) < |@(w)| < |w|+k, for w € D. Now the second inequality follows
immediately from the fact that {v |U(v) e DA|v|=H(U(v))} Cdom(U). 4

Lemma 15 Let W be an arbitrary infinite c.e. subset of X* and 0 < o« < 1. Then

Z rm O HU W) — o
weWw

Proof. Let f:IN — X* be a computable one-one function enumerating W.
Then every string w € W has a unique pre-image n € IN. Hence

Z . p0Hy(w) _ Z N p—0Hy (f(n))

Now, Hy (f(n)) <log,n+2-log,log,n+c, for n > r, and if ny, depending on

o, 0 < a < 1, is large enough we have 2a -log, log,.n < (1 — a) -log, n, whenever
n > ng. Thus we obtain

p—@Hy(f(n)) > . 1

n

and the series diverges. Q

9

As a corollary to Lemma 15 we obtain Theorem 3.2.(b) of [17].

Theorem 16 For 0 < o < 1 and every universal machine U, the series
Y vedom(U) r~ %l diverges.

Our proof of Lemma 15 shows that every infinite c.e. subset W of X* is
enumerated starting with low complex strings. This observation is supported by
Kolmogorov’s result (cf. [18, Theorem 1.3] or [13, Theorem 2.9]) that a string
w of length n in every c.e. subset W C X* has a complexity H(w) bounded by
log, [WNX"|+o(n).

The ‘conclusion’ that the complements of c.e. subsets consist of only highly
complex strings is, however, not true. We will use Theorem 2.9 of [13] that proves
a result analogous to the above mentioned Kolmogorov theorem for complements
of c.e. subsets of X*. We will exploit this construction to show that an analogue
of Lemma 15 is true also for a large class of complements of c.e. subsets of X*.

As usual, a language W C X* is called sparse provided there is a polynomial
p(n) such that W NX"| < p(n) for every n € IN.

12 C. S. Calude, L. Staiger

Theorem 17 Let W C X* be the complement of c.e. subset of X*, and let W be
non-sparse. Then, for all 0 < o < 1 we have:

Z FHy(w) _ o
weW

Proof. In the proof of Theorem 2.9 of [13] it is shown that if W C X* is
the complement of c.e. subset then there is a computable partial function y :C
X* x IN — X* such that

1. |y(m,n)| = n whenever (7r,n) € dom(y), and
2. forevery w e W thereisa 7, |x| < [log, [W NX"|] such that w (7, |w|) = w.

This function v is transformed into a computable prefix (partial) function ¢ as
follows:

y(m,n), if v =string.(n)-string,.(|7|) -7
o) = for some (7,n) € X* x IN, and
undefined, otherwise.

Clearly, our construction shows that dom(¢) is prefix-free. Moreover, for
every w € W N X" there is a ' with

7’| <log,|WNX"|+2-log,log, [WNX"|+2-log,n+6,
such that (') = w.¢ Since log, [W N X"| < n, we obtain that
Hy(w) <log,|[WNX"|+4-log,n+c,

for all w € W N X" where the constant c is suitably chosen. Then

—a-Hy(w) nil—o 1 —oc
- = [WnXx"| A

whenever W N X" #£ (.
Next we use the assumption that W is non-sparse. Then, for every o, 0 < o0 <
1, there are infinitely many n such that [W N X"| > nK(®) where k() := (14;—0& :

Thus
—a-Hy (w) —o-c
Zwemen r =

for infinitely many n € IN, hence the series

—o-Hy(w) _ —a-Hy (w)
ZWEW r o ZnGIN wewnxn r

diverges. a

As a corollary to Lemma 15 and Theorem 17 we obtain the following generalisa-
tion of Theorem 16.

“Here it is understood, that log, ot := 0 for o < 1.

On Universal Computably Enumerable Prefix Codes 13

Corollary 18 Let U be a universal prefix machine, let W C X* be computably
enumerable or a non-sparse complement of a computably enumerable language
andletD={n: 1w € dom(U)AU () € W}. Then ¥ pcpr~ %" = oo for all a < 1.

4.2 The entropy of c.e. prefix codes

As it was mentioned above the convergence of the series sw (%) = ¥,,cw r~ * ",

for 0 < o0 < 1, depends on the numbers |W NX"|. The unique value Hy € [0, 1]
such that), cw ralwl converges for all & > Hy is known as the entropy of the
language W. It can be calculated as follows (see [8, 13, 14]).

| wWnNnX"+1
Hy = limsup og, ([+) (2)

n—o0 n

Now Corollary 16 yields the following.

Corollary 19 Let V C X* be a universal c.e. prefix code. Then Hy = 1.

Moreover, for a universal c.e. prefix code V C X*, the function fy (&) :=

Y r~ %" has the following typical plot.
weV

fv(a)

A

OO

0 ‘ —
0 1

Y

We can substitute the upper limit in Corollary 19 by the lower one.

Theorem 20 Let V C X* be a universal c.e. prefix code. Then, the lower entropy
of Vis 1:

1iminf110g,(\vmxﬁ”] +1)=1.

n—oo n

14 C. S. Calude, L. Staiger

Proof. Consider a universal prefix machine U such that dom(U) C V, and
consider the one-to-one mapping which maps every string w € X* to a shortest 7,,
such that U (m,,) = w. It is known that |m,,| < |w|+2-log, |w|+ ¢ for some ¢ € IN.
Consequently, [dom(U) N X =(#+210gn+¢)| > 41 and the assertion follows. a

The property of Theorem 20 is, however, not only fulfilled by universal c.e.
prefix codes. There are even languages of low complexity, more precisely, simple
deterministic context-free languages (for a definition see [1]) which have also a
lower entropy of 1. We give an example generalising Theorem 10 of [4] to the
case |X| > 2.

Example 21 Asin [8, 14] we consider the Lukasiewicz-language L., C X* defined
by the equation
L. ={1,...,r—1}UO-LI.

Considering Raney sequences (cf. [7]) in [8] it was shown that for the lan-
guage W, C {0, 1} defined by the equation W, = 1UQ- W, we have

sl (n-r)! B 1 n-r
Wr0{0.1} +1‘—nx-<(r—1)n+1>!_(r—l)-n+1(n)’

and |W,N{0,1}/| =0 if I # 1 (mod r). Moreover, every string w € W, of length
|lw| =n-r+1 has exactly n occurrences of the letter 0.

The strings of L., can be obtained by substituting the letter 1 by letters from
{1,...,r—1}. Thus

1 n-r
SR D (L [E U Sy — 1=+
| | (r—l)-n—I—l(n) (r=1)

Using the inequality

n-r 1 rr(n—l)—H
() o e

for n > 3, from [16, Corollary 2.9], we obtain

—1\" 1
£, mXPn—H > r . ol
| '—(p) (r—1)nt1)-vn "

which proves lilm inf }log, |[£, NX<!| = 1.

In connection with Lemma 4 our Example 21 yields an alternative proof of Theo-
rem 20.

On Universal Computably Enumerable Prefix Codes 15

Acknowledgment

We thank A. Nies and the anonymous referee for comments which improved the
presentation of this paper.

References

[1] J.-M. Autebert, J. Berstel, L. Boasson. Context-free languages and push-
down automata, in: [12], Vol. 1, pp. 111-174.

[2] J. Berstel, D. Perrin. Theory of Codes, Academic Press, New York, 1985.

[3] C.S. Calude. Information and Randomness. An Algorithmic Perspective, 2nd
Edition, Revised and Extended, Springer Verlag, Berlin, 2002.

[4] C.S. Calude, M. A. Stay. Natural halting probabilities, partial randomness,
and zeta functions, Inform. and Comput. 204 (2006), 1718 — 1739.

[5] G.J. Chaitin. Algorithmic Information Theory, Cambridge University Press,
Cambridge, 1987 (3rd printing 1990).

[6] R. Downey, D. Hirschfeldt. Algorithmic Randomness and Complexity,
Springer, in preparation.

[7] R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science, Addison-Wesley, Reading 1989.

[8] W. Kuich. On the entropy of context-free languages, Inform. and Control 16
(1970), 173 — 200.

[9] V. 1. Levenstein. The redundancy and delay of decodable coding of natural
numbers, Problemy Kibernet. 20 (1968), 173-179.

[10] A. Nies. Personal communication, February 2007.

[11] A. Nies. Computability and Randomness, Oxford University Press, to ap-
pear.

[12] G. Rozenberg, A. Salomaa (eds.). Handbook of Formal Languages,
Springer, 1997.

[13] L. Staiger. Kolmogorov complexity and Hausdorff dimension, Inform. and
Comput. 103 (1993), 159 — 194.

16 C. S. Calude, L. Staiger

[14] L. Staiger. The entropy of Lukasiewicz languages, RAIRO — Theoretical In-
formatics and Applications 39, 4 (2005), 621 — 640.

[15] L. Staiger. On maximal prefix codes, Bull. EATCS 91 (2007), 205 — 207.

[16] P. Stdnicd. Good lower and upper bounds on binomial coefficients, J. Inegq.
in Pure and Appl. Math. 2 (2001), 1 - 5.

[17] K. Tadaki. A generalization of Chaitin’s halting probability € and halting
self-similar sets, Hokkaido Math. J. 31 (2002), 219 — 253.

[18] A.K. Zvonkin, L. A. Levin. Complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory
of algorithms, Russian Math. Surveys 25 (1970), 83 — 124.

