
CDMTCS
Research
Report
Series

The Suitability of Different
Binary Tree Obfuscations

Stephen Drape
Department of Computer Science

The University of Auckland

Auckland, New Zealand

CDMTCS-310

June 2007

Centre for Discrete Mathematics and

Theoretical Computer Science

The Suitability of Different Binary Tree
Obfuscations

Stephen Drape

Department of Computer Science

The University of Auckland, New Zealand
stephen@cs.auckland.ac.nz

Abstract

An obfuscation aims to transform a program, without affecting the functionality,
so that some secret information within the program can be hidden for as long
as possible from an adversary. Proving that an obfuscating transform is correct
(i.e. it preserves functionality) is considered to be a challenging task. We use data
refinement to specify data obfuscations, model our operations using the functional
language Haskell and consider obfuscating abstract data-types. This approach
allows us to prove properties, including correctness, of our operations easily.

In this paper our focus is on how to obfuscate a data-type of binary trees for
which we specify a set of operations and a list of properties that these operations
satisfy. We consider different tree transformations and discuss their suitability as
obfuscations. In particular we show what our tree operations would be like under
these different transformations. We also discuss various ways of defining obfuscated
operations including the use of folds and unfolds and how we can exploit properties
of Haskell to add extra confusion in our obfuscated definitions.

1 Introduction

Skype’s internet telephony client [2], SDC Java DRM (according to [15]), and most
software license-control systems rely heavily on obfuscation for their security. After the
landmark proof of Barak et al. [1], there seems little hope of designing a perfectly-secure
software black-box, for any broad class of programs. To date, no one has devised an
alternative to Barak’s model, in which we would be able to derive proofs of security for
systems of practical interest. These theoretical difficulties do not lessen practical interest
in obfuscation, nor should it prevent us from placing appropriate levels of reliance on
obfuscated systems in cases where the alternative of a hardware black-box is infeasible
or uneconomic.

In this paper we define obfuscation as a heuristic method whose objective is to trans-
form a program, without affecting relevant aspects of its functionality, in such a way
that some secret information in the program can be preserved as long as possible from

1

some set of adversaries. The second clause in our objective implies that theoretical study
of the effectiveness of an obfuscation will be impossible until we have a validated, and
theoretically-tractable, model of adversarial attack. The first clause is, by contrast, an
appropriate domain for theoretical study. We expect our compilers to accurately preserve
program semantics when they transform our source codes into object codes. We have
a similar expectation of obfuscating compilers and object-code obfuscators. Theoretical
study of the correctness of obfuscating systems is as yet in its infancy. In this paper,
we expand on previous work [8] to present a discussion of possible obfuscations for a
data-type of binary trees — this data-type consists of a type declarations and a set of
operations that can be performed on the binary trees. We consider obfuscation to be
refinement [6] and we consider obfuscating abstract data-types. This means we obfus-
cate a set of operations (contained in the data-type) rather than just individual pieces
of code. We model our operations using the functional language Haskell [14] in which
we can elegantly specify our tree data-types and operations. Our approach allows us to
establish a framework for the proving the properties, including correctness, of our tree
obfuscations. Our proof system is highly constructive, so that it may someday be used
as a method for generating obfuscated programs.

We explore some possible tree transformations and discuss their suitability as poten-
tial obfuscations. We show how our binary tree operations are changed under each of
the tree transformations. We will see that a suitable obfuscation should not produce
definitions for the tree operations that are similar to the original definitions. Also we
would like that our transformations have a degree of flexibility so that, for example, we
can have many different definitions of the same operation or we can create operations
that have bogus parts.

In [7] the following definition for obfuscation was given:

Definition 1 (Assertion Obfuscation). Let f be an operation and A be an assertion
that f satisfies. We transform f to obtain fO by using an obfuscation O and let AO

be the assertion corresponding to A which fO satisfies. The obfuscation O is said to be
an assertion obfuscation if the proof that fO satisfies AO is more complicated than the
proof that f satisfies A.

We do not give further details in this paper (in particular how to measure the com-
plexity of proofs). Thus as a proposal for an attack model we could suppose that an
adversary will be armed with proof tools (such as theorem provers) and so our goal will
be to try to make proofs harder to construct for our obfuscated operations.

2 Preliminaries

Before we describe our data-type for binary trees, we discuss some standard list operations
from Haskell which will be need later — these operations are taken from [3]. We can
define a list data-type and this is presented in Figure 1.

There are some shorthands which are commonly used with Haskell lists. Instead of
Empty we use [] and we can write Cons 1 (Cons 2 Empty) as 1 : (2 : []) or just [1, 2]

2

List α ::= Empty | Cons α (List α)

(:) :: α → List α → List α

head :: List α → α

tail :: List α → List α

length :: List α → N

(++) :: List α → List α → List α

map :: (α → β) → List α → List β

concat :: List (List α) → List α

Figure 1: Data-Type for Lists

and so x : xs ≡ Cons x xs. Note that for inductive proofs we will have two cases: one
for Empty and one for Cons.

Let us briefly describe each of the operations in our list data-type. We have already
seen that (:) is just an infix version of Cons and is often used in the definitions of oper-
ations. The operation head returns the first element of a list and tail returns everything
but the head. They are easily defined as follows:

head (x : xs) = x tail (x : xs) = xs

Note that these operations are only defined for non-empty lists.
The length of a list can be defined as follows:

length [] = 0
length (x : xs) = 1 + length xs

We can join two lists together using the concatenate operator (++):

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

The operations length and ++ satisfy:

length (xs ++ ys) = length xs + length ys

This can be proved by induction on xs.
We can apply ++ to a list of lists by using concat:

concat [] = []
concat (xs : xss) = xs ++ concat xss

A property of this operation is that

concat (xss ++ yss) = concat xss ++ concat yss

3

The operation map takes a function and a list as input and returns a list which is
obtained by applying the function to every element of the input list.

map f [] = []
map f (x : xs) = f x : map f xs

Some properties of map are:

map f (xs ++ ys) = map f xs ++ map f ys

map f · map g = map (f · g)
map f · concat = concat · map (map f)

A fuller discussion of list operations can be found in [3]. In Section 6 we discuss the
fold functions for lists (and other data-types).

2.1 Obfuscation as Data Refinement

Suppose that we have a data-type D and we want to obfuscate it to obtain the data-type
O. To provide a framework for obfuscating data-types (and establishing the correctness of
the obfuscations) we use data refinement [6] and, in particular, we consider obfuscation as
functional refinement. So for obfuscation we require an abstraction function af :: O → D

and a data-type invariant dti such that for elements x :: D and y :: O

x ; y ⇐⇒ (x = af(y)) ∧ dti(y) (1)

The arrow ; is read as “. . . is data refined by . . . ” (or in our case, “. . . is obfuscated
by. . . ”) which expresses how the data-types are related. In our situation, it turns out
that af is a surjective function so we can find a conversion function of :: D → O that
satisfies of(x) = y ⇒ x ; y and thus

af · cf = id (2)

Suppose that we have an operation f :: D → D defined in our data-type. Then to
obfuscate f we want an operation fO :: O → O which preserves the correctness of f . In
terms of data refinement, we say that fO is correct (with respect to f) if it satisfies:

(∀x :: D; y :: O) • x ; y ⇒ f(x) ; fO(y) (3)

If fO is a correct refinement (obfuscation) of f then we write f ; fO. and for Equation
(3), we can draw the commuting diagram in Figure 2. From (1) and (3), we have the
following equation:

f · af = af · fO (4)

where · means functional composition. Thus we can prove that a definition of fO is
correct by using this equation.

4

y fO(y)

x f(x)
f

af

fO

af

Figure 2: A commuting diagram for data obfuscation

2.1.1 Non-homogeneous operations

Suppose that we have a operation

f :: D → E

where D and E are the state spaces of two data-types. Let afD and afE be abstraction
functions for some obfuscations of D and E. How do we define a correct obfuscation fO

of f? Suppose x :: D and x ; y and consider:

f(x) ; fO(y)

≡ {Equation (1) using afE}

f(x) = afE(fO(y))

≡ {Equation (1) using afD}

f(afD(y)) = afE(fO(y))

Thus

f · afD = afE · fO (5)

We will use this equation in Section 4.1 when defining obfuscated tree operations.

3 Binary Tree Data-Type

In previous work [8] we consider binary trees which contained values on the internal
nodes. As an alternative, we will use binary trees which have the following type:

Tree α ::= Leaf α | Fork (Tree α) (Tree α)

Thus the values for these binary trees are on the tips. Our data-type for binary trees is
contained in Figure 3. Note that when using inductive proofs with binary trees the base
case will involve Leaf and the inductive case will involve Fork.

5

Tree α ::= Leaf α | Fork (Tree α) (Tree α)

flatten :: Tree α → List α

mkTree :: List α → Tree α

member :: α → Tree α → B

size :: Tree a → N

mapTree :: (α → β) → Tree α → Tree β

Figure 3: Data-Type for Binary Trees

3.1 Binary Tree Operations

The function mkTree takes a finite, non-empty list and builds a binary tree using elements
of the list as leaf nodes. We can define it as follows:

mkTree xs
∣

∣

∣

∣

m == 0 = Leaf (head zs)
otherwise = Fork (mkTree ys) (mkTree zs)

where (ys, zs) = splitAt m xs

m = div (length xs) 2

The function splitAt has type

splitAt :: N → List α → (List α, List α)

and can be defined as follows:

splitAt 0 xs = ([], xs)
splitAt n [] = ([], [])
splitAt n (x : xs) = (x : ys, zs)

where (ys, zs) = splitAt (n − 1) xs

Note that using the definition of ++ we can show that

(ys, zs) = splitAt n xs ⇒ ys ++ zs = xs

We use splitAt in the definition of mkTree so that we do not produce unbalanced trees.
In fact we find from the definition of mkTree that

length xs is even ⇒ length zs = length ys

length xs is odd ⇒ length zs = length ys + 1
(6)

where (ys, zs) = splitAt (div (length xs) 2) xs.
Our definition of mkTree (taken from [3]) creates a minimal height binary tree but for

our data-type, we do not insist that our trees have minimal height (although many tree

6

operations would be more efficient). In fact we have many ways to build a binary tree
from a list. For example, we could define

mkTree’ [a] = Leaf a

mkTree’ (a : xs) = Fork (Leaf a) (mkTree’ xs)

Thus,

mkTree [1, 2, 3, 4, 5] mkTree’ [1, 2, 3, 4, 5]

1 2 3
4 5

1
2

3
4 5

The function flatten produces a list from the leaf values of a binary tree in left to
right order. We can define the function as follows:

flatten (Leaf a) = [a]
flatten (Fork xt yt) = flatten xt ++ flatten yt

So, using the example above,

flatten (mkTree [1..5]) = [1..5]

In fact, we can prove that

flatten · mkTree = id

But it is not the case that

mkTree · flatten = id

For instance if t = mkTree’ [1..5] then

mkTree (flatten t) 6= t

Also, flatten is not injective as two different trees may flatten to the same list. For
example,

flatten











1
2 3













= [1, 2, 3] = flatten











 3
1 2













The function member checks whether a particular value matches one of the leaf values
of the tree:

member v (Leaf a) = v == a

member v (Fork xt yt) = member v xt ∨ member v yt

7

We can measure the number of leaf nodes in a binary tree by using the function size:

size (Leaf a) = 1
size (Fork xt yt) = size xt + size yt

This function satisfies:

size = length · flatten

Finally, we define a function mapTree which satisfies:

flatten (mapTree f zt) = map f (flatten zt) (7)

for all finite trees zt and functions f . We define it as follows:

mapTree f (Leaf a) = Leaf (f a)
mapTree f (Fork xt yt) = Fork (mapTree f xt) (mapTree f yt)

Now let us show that this definition does indeed satisfy Equation (7).

Proof. We will prove Equation (7) by induction on zt.

Base Case Suppose that zt = Leaf a. Then

map f (flatten (Leaf a))

= {definition of flatten}

map f [a]

= {definition of map}

[f a]

= {definition of flatten}

flatten (Leaf (f a))

= {definition of mapTree}

flatten (mapTree f (Leaf a))

Step Case Suppose that zt = Fork xt yt and, for the induction hypothesis, xt and yt

satisfy Equation (7). Then

map f (flatten zt)

= {definition}

map f (flatten (Fork xt yt))

= {definition of flatten}

map f (flatten xt ++ flatten yt)

= {map f (xs ++ ys) = (map f xs) ++ (map f ys)}

(map f (flatten xt)) ++ (map f (flatten yt))

8

= {induction hypothesis}

flatten (mapTree f xt) ++ (flatten (mapTree f yt)

= {definition of flatten}

flatten (Fork (mapTree f xt) (mapTree f yt))

= {definition of mapTree}

flatten (mapTree f (Fork xt yt))

= {definition}

flatten (mapTree f zt)

By the definition from [7], an operation is said to be obfuscated if an assertion proof
for that operation is more complicated. Using these operations, some assertions for binary
trees could be:

flatten · mkTree = id

size = length · flatten

flatten · (mapTree f) = (map f) · flatten

So the proof of Equation (7) will be a useful comparison for seeing whether our transfor-
mations produce good obfuscations.

3.2 Using Tree Transformations

Now that we have defined our binary tree data-type, we need to decide what tree trans-
formations we are going to use as obfuscations. For our first attempt, let us consider a
tree reflection. If we imagine placing a line of symmetry through the uppermost Fork of
a tree then to reflect a binary tree we just recursively swap the left and right subtrees at
every Fork.

reflect (Leaf a) = Leaf a

reflect (Fork xt yt) = Fork (reflect yt) (reflect xt)

For example,

1 2 5
3 4

;
2 15

4 3

We can prove (by structural induction) that reflect is self-inverse and so it is suitable
for an abstraction (and conversion) function.

9

How are the definitions of the operations from Figure 3 changed by this transforma-
tion? The flatten operation is similar to the earlier version except that the nodes are
concatenated in a different order:

flattenRef (Leaf a) = [a]
flattenRef (Fork xt yt) = flattenRef yt ++ flattenRef xt

For a function to make reflected trees we can use the definition of mkTree from Section
3 except that in the “where” clause we swap over ys and zs:

where (zs, ys) = splitAt m xs

Since + and ∨ are commutative then we can use the same definitions of size and
member as before. We can also use the previous definition for mapTree as well. So, the
operations for reflected binary trees are very similar to the original operations defined in
Section 3 and so this means that reflection is not a good binary tree obfuscation.

Let us now consider tree rotations. We can have two possible rotations (left and right)
which should perform the following transformations:

N

ztM

xt yt

rotate right

rotate left

M

xt N

yt zt

On the left we have tree of the form Fork (Fork xt yt) zt and on the right we have
Fork xt (Fork yt zt). Thus we can define rotation functions as follows:

rotRight (Fork (Fork xt yt) zt) = Fork xt (Fork yt zt)
rotRight xt = xt

and

rotLeft (Fork xt (Fork yt zt)) = Fork (Fork xt yt) zt

rotLeft xt = xt

For a refinement, let us suppose that we take rotRight to be the abstraction function
and rotLeft to be the conversion function. Now consider

flatten (rotRight (Fork (Fork xt yt) zt))

= {definition of rotRight}

flatten (Fork xt (Fork yt zt))

= {definition of flatten}

flatten xt ++ flatten (Fork yt zt)

= {definition of flatten}

flatten xt ++ (flatten yt ++ flatten zt)

10

= {++ is associative}

(flatten xt ++ flatten yt) ++ flatten zt

= {definition of flatten}

(flatten (Fork xt yt)) ++ flatten zt

= {definition of flatten}

flatten (Fork (Fork xt yt) zt)

Thus we have shown that flatten · rotRight = flatten and so for the rotated tree we have
the same definition of flatten as before. This means that we can use the same definition
of mkTree and, in fact, all the other binary tree operations. A more serious problem with
the rotation transformation is that we do not actually have that rotRight · rotLeft = id or
rotLeft · rotRight = id. For example,

rotLeft (rotRight (Fork (Leaf a) (Fork xt yt)))

= rotLeft (Fork (Leaf a) (Fork xt yt))

= Fork (Fork (Leaf a) xt) yt

6= Fork (Leaf a) (Fork xt yt)

This means that we cannot use rotLeft or rotRight as abstraction function and so rotation
is unsuitable as a refinement for obfuscation.

3.3 Splitting

An obfuscation suitable for arrays is called an array split [4]. This obfuscation has been
generalised so that it is applicable to more data-types [9] and in particular, we can apply
it to trees. The aim of a split is break an object t into smaller objects which are called
the split components. If t is split into two components l and r then we write

t ; 〈l, r〉

The idea of a split is to spread the “information” contained in t across the split compo-
nents.

A natural tree split would be:

Leaf a ; 〈Leaf a〉

Fork xt yt ; 〈xt, yt〉

For this split, we can define a conversion function (split) and an abstraction function
(unsplit) immediately:

split (Leaf x) = 〈Leaf a〉 unsplit 〈Leaf a〉 = (Leaf x)
split (Fork xt yt) = 〈xt, yt〉 unsplit 〈xt, yt〉 = (Fork xt yt)

We can see that unsplit · split = id.

11

How easy is it to define operations for split trees? For an operation mkSpTree which
makes split trees, we can use the following equation

mkSpTree = split · mktree

to derive a definition. Using this equation, we obtain the following definition:

mkSpTree xs
∣

∣

∣

∣

m == 0 = 〈Leaf (head xs)〉
otherwise = 〈(mkTree ys), (mkTree zs)〉

where (ys, zs) = splitAt m xs

m = div (length xs) 2

We can derive a flattening operation flattenSp using:

flattenSp = flatten · unsplit

This gives us:

flattenSp 〈Leaf a〉 = [a]
flattenSp 〈xt, yt〉 = flatten xt ++ flatten yt

This definition closely matches the definition of flatten given in Section 3. This is true
for the other tree operations — for example, here is a definition for mapSpTree:

mapSpTree f 〈Leaf a〉 = 〈Leaf (f a)〉
mapSpTree f 〈xt, yt〉 = 〈mapTree f xt, mapTree f yt〉

So, this tree split is not a particularly good obfuscation as the definitions for the
split tree obfuscations are similar to the original operations. To produce a good tree
obfuscation we really need a recursive transformation so that the definitions under this
transformation will also be recursive (rather than just relying on the original tree oper-
ations). It is hard to define a recursive tree split as, by the definition of a split, the split
components also need to have the same type and we have to ensure that our transforma-
tion is invertible.

In general, splits are used mainly to change the order of data values by partitioning
the values. For trees, since many trees can be flattened to the same list, the structure
of the data values as well as the order of the values is important. Thus splits are not
really suitable as tree obfuscations as we need to use a transformation that changes the
structure as well as the order of the data values.

4 Ternary Trees

The tree transformations discussed in the last section did not really affect the “shape” of
binary trees and did not produce suitable obfuscations. Now we will define a transforma-
tion that changes the structure of a binary tree in such a way that allows us to recover
the original binary tree if we wish.

12

We will define an obfuscation which transforms a binary tree into a ternary tree. The
use of ternary trees provides us with an opportunity to add extra information so that we
can have “real” information and “junk” information. We will define ternary trees with
the following type:

Tree3 α ::= Leaf3 α | Fork3 (Tree3 α) (Tree3 α) (Tree3 α)

In the conversion and abstraction functions we will need to define how a binary tree
should be transformed at each node in the tree and what “junk” to add. In previous
work on obfuscating binary trees [8], the tree data-type contained values at each node
and the transformation relied on properties of the node values (such as whether the node
value was even). Since the trees from our data-type only contain values in the leaves, we
will have to define conversion functions based on the structure of the trees.

A simple conversion function is:

cf (Leaf a) = Leaf3 a

cf (Fork xt yt) = Fork3 (cf xt) jt (cf yt)

where jt is a random ternary trees. For this conversion function, we have the following
abstraction function:

af (Leaf3 a) = Leaf a

af (Fork3 xt ct yt) = Fork (af xt) (af yt)

So, for example,

1 2 5
3 4

;
jt1

1 2jt2 jt3 5

3 4jt4

where jt1, . . . , jt4 are arbitrary ternary trees.
For the rest of this section we will use a more complicated transformation which has

the following conversion function:

to3 (Leaf a) = Leaf3 a

to3 (Fork (Leaf a) xt) = Fork3 (Leaf3 a) (to3 xt) pt

to3 (Fork xt (Leaf a)) = Fork3 (to3 xt) qt (Leaf3 a)
to3 (Fork xt yt) = Fork3 (to3 yt) rt (to3 xt)

This function pattern matches on the structure of the binary tree enabling us to do
different transformations on different nodes. The ternary trees pt, qt and rt can be
defined arbitrarily, in fact we can build trees which are functions of the subtrees xt and
yt and the leaf node a. However, if efficiency is a concern then we will need to restrict
the size of these new trees. Also, we should ensure that our abstraction function for this
transformation “ignores” these extra ternary trees.

13

We can define the following abstraction function to2 for this transformation:

to2 (Leaf3 a) = Leaf a

to2 (Fork3 (Leaf3 a) yt zt) = Fork (Leaf a) (to2 yt)
to2 (Fork3 xt yt (Leaf3 a)) = Fork (to2 xt) (Leaf a)
to2 (Fork3 xt yt zt) = Fork (to2 zt) (to2 xt)

We can verify that to2 · to3 = id but in general to3 · to2 6= id. As an example, under this
transformation,

1 2 5
3 4

; rt
1 2 ptqt 5

3 4 pt

Note that for a particular abstraction function we can define many conversion functions
that are right inverses. For example, in our definition of to3 we can specify different
instances for pt, qt and rt.

When designing a conversion function for a refinement it is important to ensure that
an inverse function can be constructed. For instance, suppose for the definition of to3 we
had the following middle cases:

to3 (Fork (Leaf a) xt) = Fork3 (Leaf3 a) (to3 xt) pt

to3 (Fork xt (Leaf a)) = Fork3 (Leaf3 a) qt (to3 xt)

Then for the definition of to2 we would need a case:

to2 (Fork3 (Leaf3 a) jt kt)

which is ambiguous as it has to decide whether jt or kt is “real” or not.
Another source for ambiguity is to have overlapping cases in the function definitions.

In the earlier definition for to3, the last case matches binary trees of the form: Fork xt yt.
As Haskell pattern matches from top to bottom, we are guaranteed that the previous
cases (in which one of the subtrees is a leaf node) do not hold and there will be no
difficultly in writing a suitable abstraction function. If we are not guaranteed that this
top down matching holds then we could write a definition with explicit guards, such as:

to3 (Leaf a) = Leaf3 a

to3 (Fork jt kt)
∣

∣

∣

∣

∣

∣

jt == Leaf a = Fork3 (Leaf3 a) (to3 kt) pt

kt == Leaf a = Fork3 (to3 jt) qt (Leaf3 a)
otherwise = Fork3 (to3 kt) rt (to3 jt)

However we choose to exploit the pattern matching of Haskell so that we can produce a
seemingly ambiguous definition.

14

4.1 Ternary tree operations

The first ternary operation we will define is a flattening operation:

flatten3 :: Tree3 α → List α

Using Equation (5) from Section 2.1.1 (with afD = to2 and afE = id) we have that

flatten3 t3 = flatten (to2 t3) (8)

We can use this equation to derive a definition for flatten3 by structural induction.

Base Case Suppose that t3 = Leaf3 a. Then

flatten3 (Leaf3 a)

= {definition}

flatten (to2 (Leaf3 a))

= {definition of to2}

flatten (Leaf a)

= {definition of flatten}

[a]

Step Case We suppose that t3 = Fork3 xt yt zt and we have three subcases.

Subcase 1 Suppose that xt is a leaf node, i.e. for some a, xt = Leaf3 a. For the
induction hypothesis we suppose that yt satisfies Equation (8).

flatten3 (Fork3 (Leaf3 a) yt zt)

= {definition}

flatten (to2 (Fork3 (Leaf3 a) yt zt))

= {definition of to2}

flatten (Fork (Leaf a) (to2 yt))

= {definition of flatten}

(flatten (Leaf a)) ++ (flatten (to2 yt))

= {definition of flatten}

[a] ++ (flatten (to2 yt))

= {induction hypothesis}

[a] ++ (flatten3 yt)

= {property: [x] ++ xs = x : xs}

a : (flatten3 yt)

15

Subcase 2 Suppose that zt = Leaf3 b for some b and xt is not a leaf node. For the
induction hypothesis we suppose that xt satisfies Equation (8). We find that

flatten3 (Fork3 xt yt (Leaf3 b)) = flatten3 xt ++ [b]

Subcase 3 Suppose that xt and zt are not leaf nodes and that these two trees satisfy
Equation (8). We find that

flatten3 (Fork3 xt yt zt) = flatten3 zt ++ flatten3 xt

Putting the cases together we have the following definition for flatten3:

flatten3 (Leaf3 a) = [a]
flatten3 (Fork3 (Leaf3 a) yt zt) = a : (flatten3 yt)
flatten3 (Fork3 xt yt (Leaf3 b)) = flatten3 xt ++ [b]
flatten3 (Fork3 xt yt zt) = flatten3 zt ++ flatten3 xt

As with the definition of to3, the definition of flatten3 has overlapping cases and so the
order of the cases is important. (As before we could rewrite the definition using guards.)

4.2 Making ternary trees from lists

Now we need to define a function

mkTree3 :: List α → Tree3 α

which converts a list into a ternary tree. Using Equation (5), this function has to satisfy

mkTree = to2 · mkTree3 (9)

The function also needs to satisfy

flatten3 · mkTree3 = id

There are many functions which satisfy these equations and we use the definition of to3

to derive one such definition using the equation:

mkTree3 xs = to3 (mkTree xs) (10)

Since to2 · to3 = id we know that this definition will satisfy Equation (9).
Using the definition of mkTree, let m = div (length xs) 2 and (ys, zs) = splitAt m xs.

We derive this definition by induction on length xs.

Case 1 Suppose that m = 0 and so xs = [a] = zs for some a (and ys = []). Thus,
length xs = 1 and

to3 (mkTree xs)

= {definition of mkTree with m = 0}

to3 (Leaf (head zs))

= {definition of to3}

Leaf3 (head zs)

16

Case 2 From the definition of to3 we need to match binary trees which have the patterns
Fork (Leaf) and Fork (Leaf). To obtain the first pattern from mktree we have
to have the length of ys equal to 1 and the length of zs non-zero. Thus we have that
m = 1 and 1 < length xs ≤ 3. For an induction hypothesis, we suppose that zs satisfies
Equation (10).

to3 (mkTree xs)

= {definition of mkTree with m 6= 0}

to3 (Fork (mkTree ys) (mkTree zs))

= {definition of mkTree with length ys = 1}

to3 (Fork (Leaf (head ys)) (mkTree zs))

= {definition of to3}

Fork3 (Leaf3 (head ys)) (to3 (mkTree zs)) pt

= {induction hypothesis}

Fork3 (Leaf3 (head ys)) (mkTree3 zs) pt

Now let us consider the pattern Fork (Leaf) and so from the definition of mkTree

we need that length zs = 1 and length ys > 1. However from Equation (6), we must have
that length ys ≤ length zs and so this pattern is never produced from mkTree.

Case 3 For the final case, we suppose that length xs > 3 and, for the induction hy-
pothesis, we suppose that ys and zs satisfy Equation (10).

to3 (mkTree xs)

= {definition of mkTree with m 6= 0}

to3 (Fork (mkTree ys) (mkTree zs))

= {definition of to3 where ys and zs are not leaf nodes}

Fork3 (to3 (mkTree zs)) rt (to3 (mkTree ys))

= {induction hypothesis}

Fork3 (mkTree3 zs) rt (mkTree3 ys)

Putting these cases we obtain:

mkTree3 xs
∣

∣

∣

∣

∣

∣

m == 0 = Leaf3 (head zs)
m == 1 = Fork3 (Leaf3 (head ys)) (mkTree3 zs) pt

otherwise = Fork3 (mkTree3 zs) rt (mkTree3 ys)
where m = div (length xs) 2

(ys, zs) = splitAt m xs

Since we know that when m > 1 then length zs 6= 1 and so we can add a bogus case which
checks the length of zs and this extra case adds to the obfuscation of the operation. To

17

match, we can replace the tests for m with length checks. So, for example:

mkTree3 xs
∣

∣

∣

∣

∣

∣

∣

∣

length xs == 1 = Leaf3 (head zs)
length ys == 1 = Fork3 (Leaf3 (head ys)) (mkTree3 zs) pt

length zs == 1 = Fork3 (Leaf3 (head zs)) qt (mkTree3 ys)
otherwise = Fork3 (mkTree3 zs) rt (mkTree3 ys)

where m = div (length xs) 2
(ys, zs) = splitAt m xs

As before pt, qt and rt are arbitrary ternary trees. For the “bogus” case in this definition
a ternary tree is built which is not “correct” for our particular refinement. Of course
since this case is never taken then we can build whatever ternary tree we like. The test
length zs == 1 is a kind of opaque predicate [4] as the value of the predicate is known
to the creator of the function but it is not obvious to others inspecting the definition
that the value of the test is always false. Again this bogus test relies on the top-down
matching of Haskell.

4.3 The map function for ternary trees

For mapTree
3

we could use the following simple definition:

mapTree
3

f (Leaf3 x) = Leaf3 (f x)
mapTree

3
f (Fork3 xt yt zt) = Fork3 (mapTree

3
f xt) (mapTree

3
f yt) (mapTree

3
f zt)

In Section 3.1 we gave an assertion relating mapTree and flatten. We have a similar
assertion for ternary trees:

flatten3 (mapTree
3

f wt) = map f (flatten3 wt) (11)

From the definition of flatten3 we would have four cases in the proof of Equation (11).
For brevity let us just consider one case.

So, suppose that wt = Fork3 (Leaf3 a) yt zt and, for the induction hypothesis, yt

and zt satisfy Equation (11). For the left-hand side:

flatten3 (mapTree
3

f wt)

= {definition}

flatten3 (mapTree
3

f (Fork3 (Leaf3 a) yt zt))

= {definition of mapTree
3
}

flatten3 (Fork3 (mapTree
3

f (Leaf3 a)) (mapTree
3

f yt) (mapTree
3

f zt))

= {definition of mapTree
3
}

flatten3 (Fork3 (Leaf3 (f a)) (mapTree
3

f yt) (mapTree
3

f zt))

= {definition of flatten3}

(f a) : (flatten3 (mapTree
3

f yt))

= {induction hypothesis}

18

(f a) : (map f (flatten3 yt))

For the right hand side:

map f (flatten3 wt)

= {definition}

map f (flatten3 (Fork3 (Leaf3 a) yt zt))

= {definition of flatten3}

map f (a : (flatten3 yt))

= {definition of map}

(f a) : (map f (flatten3 yt))

The proofs for the other three cases are similar. Comparing this proof to the one for
binary trees given in Section 3.1 (which had only two cases to consider) we can see that
the ternary tree proof is more complicated.

As an alternative, we can define mapTree
3

using the equation:

mapTree
3

= to3 · mapTree · to2

If we use the generalised version of to3 from Section 4 then we can produce a more general
version of mapTree

3
:

mapTree
3
f (Leaf3 a) = Leaf3(f a)

mapTree
3
f (Fork3 (Leaf3 a) yt zt) = Fork3 (Leaf3 (f a)) (mapTree

3
f yt) pt

mapTree
3
f (Fork3 xt yt (Leaf3 a)) = Fork3 (mapTree

3
f xt) qt (Leaf3 (f a))

mapTree
3
f (Fork3 xt yt zt) = Fork3 (mapTree

3
f xt) rt (mapTree

3
f zt)

The trees pt, qt and rt represent arbitrary ternary trees which could depend on the
subtrees (such as xt or Leaf3 a) or on the function f . Since these ternary trees are “bo-
gus” we can define them in anyway we choose — such as seeming to produce expression
which are “incorrect”. Note that the earlier definition of mapTree

3
above is a particular

instance of the generalised form.

4.4 Other tree operations

Let us briefly consider how to refine the other binary tree operations.
In Section 3 we stated a relationship between size and flatten and so by using the

corresponding relationship for ternary operations:

size3 = length · flatten3

we can derive a definition for size3. So, for instance (from the third clause in the definition
of flatten3):

length (flatten3 (Fork3 xt yt (Leaf3 b)))

19

= {definition of flatten3}

length (flatten3 (xt ++ [b]))

= {property: length (xs ++ ys) = length xs + length ys}

length (flatten3 xt) + length [b]

= {definition of length}

length (flatten3 xt) + 1

= {definition for size3}

1 + size3 xt

The other cases are similar and so we obtain the following definition:

size3 (Leaf3 a) = 1
size3 (Fork3 (Leaf3 a) yt zt) = 1 + size3 yt

size3 (Fork3 xt yt (Leaf3 b)) = 1 + size3 xt

size3 (Fork3 xt yt zt) = size3 xt + size3 zt

Suppose that we have the following instance of to3:

to3 (Leaf a) = Leaf3 a

to3 (Fork (Leaf a) xt) = Fork3 (Leaf3 a) (to3 xt) (Leaf3 p)
to3 (Fork xt (Leaf a)) = Fork3 (to3 xt) (Leaf3 q) (Leaf3 a)
to3 (Fork xt yt) = Fork3 (to3 yt) (Leaf3 r) (to3 xt)

where p, q and r are arbitrary values with type α With this conversion function, we can
use the following definition of size3:

size3 (Leaf3 x) = 1
size3 (Fork3 xt yt zt) = size3 xt + size3 yt + size3 zt − 1

So, by using different instances of the conversion function we can produce different
specialisations of our ternary operations.

The ternary membership operation satisfies:

member3 = member · to2

Using this equation we can derive the following operation:

member3 p (Leaf3 a) = p == a

member3 p (Fork3 (Leaf3 a) yt zt) = p == a ∨ member3 p yt

member3 p (Fork3 xt yt (Leaf3 a)) = member3 p xt ∨ p == a

member3 p (Fork3 xt yt zt) = member3 p zt ∨ member3 p xt

We can collapse the last two cases into one and so we have

member3 p (Leaf3 a) = p == a

member3 p (Fork3 (Leaf3 a) yt zt) = p == a ∨ member3 p yt

member3 p (Fork3 xt yt zt) = member3 p xt ∨ member3 p zt

20

5 Rose Trees

In [3], Haskell operations for a special kind of multi-way branching trees called rose trees

is discussed in detail. (Note that rose tree are often known as general trees.) Each element
of a rose tree contains a node and a (possibly empty) list of subtrees. We can define the
type for rose trees as follows:

Rose α = Node α (List (Rose α))

Note that many of the definitions for rose tree operation will use folds and so we will rely
on various folds properties which are given in Section 6.

Despite seeming to be a more complicated structure, there is a correspondence be-
tween rose trees and binary trees. This means that we should be able to use rose trees
to obfuscate binary trees. One way to convert from binary trees to rose trees is by using
the following function:

toB (Node a xts) = foldl Fork (Leaf a) (map toB xts)

For converting back again we can use:

toR (Leaf a) = Node a []
toR (Fork xb yb) = Node a (xts ++ [toR yb])

where Node a xts = toR xb

Note that in [3] a more efficient version of toR is discussed but we will use the version
given above to simplify our proofs and derivations.

If we want to use rose trees to obfuscate binary trees then we must have that the
conversion function (in this case toR) is a right inverse of the abstraction function (toB).

Property 1 (Right inverse of toB). The function toR is a right inverse for toB, i.e.

toB · toR = id

Proof. Consider toB (toR zb) where zb is a binary tree.

Base Case Suppose that zb = Leaf a.

toB (toR (Leaf a))

= {definition of toR}

toB (Node a [])

= {definition of toB}

foldl Fork (Leaf a) (map toB [])

= {definition of map}

foldl Fork (Leaf a) []

= {definition of foldl}

Leaf a

21

Step Case Suppose that zb = Fork xb yb where xb and yb are binary trees. For the
induction hypothesis, we suppose that xb and yb satisfy Property 1.

toB (toR (Fork xb yb))

= {definition of toR with Node a xts = toR xb}

toB (Node a (xts ++ [toR yb]))

= {definition of toB}

foldl Fork (Leaf a) (map toB (xts ++ [toR yb]))

= {map f (xs ++ [y]) = (map f xs) ++ [f y]}

foldl Fork (Leaf a) ((map toB xts) ++ [toB (toR yb)])

= {Property 7: foldl f e (xs ++ ys) = foldl f (foldl f e xs) ys}

foldl Fork (foldl Fork (Leaf a) (map toB xts)) [toB (toR yb)]

= {definition of toB}

foldl Fork (toB (Node a xts)) [toB (toR yb)]

= {Node a xts = toR xb}

foldl Fork (toB (toR xb)) [toB (toR yb)]

= {induction hypothesis}

foldl Fork xb [yb]

= {definition of foldl}

Fork xb yb

For this conversion, we also have the following property.

Property 2 (Left inverse of toB). The function toR is a left inverse for toB, i.e.

toR · toB = id

Proof. Consider toR (toB (Node a xts)) where xts is a list of rose trees.

Base Case Suppose that xts = [].

toR (toB (Node a []))

= {definition of toB}

toR (foldl Fork (Leaf a) (map toB []))

= {definition of map}

toR (foldl Fork (Leaf a) [])

= {definition of foldl}

toR (Leaf a)

22

= {definition of toR}

Node a []

Step Case 1 Suppose that xts = [yr] and, for the induction hypothesis, that the rose
tree yr satisfies Property 2.

toR (toB (Node a [yr]))

= {definition of toB}

toR (foldl Fork (Leaf a) (map toB [yr]))

= {definition of map}

toR (foldl Fork (Leaf a) [toB yr])

= {definition of foldl}

toR (Fork (Leaf a) (toB yr))

= {definition of toR with Node a [] = toR (Leaf a)}

Node a ([] ++ [toR (toB yr)])

= {definition of ++ and induction hypothesis}

Node a [yr]

Step Case 2 Suppose that xr = Node a (yts++[yr]) and, for the induction hypothesis,
that Node a yts and yr satisfy Property 2.

toR (toB (Node a (yts ++ [yr])))

= {definition of toB}

toR (foldl Fork (Leaf a) (map toB (yts ++ [yr])))

= {map f (xs ++ [y]) = (map f xs) ++ [f y]}

toR (foldl Fork (Leaf a) ((map toB yts) ++ [toB yr]))

= {Property 7: foldl f e (xs ++ ys) = foldl f (foldl f e xs) ys}

toR (foldl Fork (foldl Fork (Leaf a) (map toB yts)) [toB yr])

= {definition of toB}

toR (foldl Fork (toB (Node a yts)) [toB yr])

= {definition of foldl}

toR (Fork (toB (Node a yts)) (toB yr))

= {definition of toR with the induction hypothesis}

Node a (yts ++ [yr])

23

5.1 Rose Tree Operations

Now that we have our abstraction and conversion functions we can define operations
for rose trees. Many of the operation definitions are taken from [3] but in the following
sections we will prove various assertions for these operations.

5.1.1 Making Rose Trees

Let us consider how to define a function mkRose which builds a rose tree from a list.
For refinement, we will insist that this function builds a rose tree that is equivalent
to the corresponding binary tree built by mkTree. Since mkTree is a non-homogeneous
operation, we use Equation (5) with the abstraction function toB for trees (and id for
lists) to obtain:

mkTree = toB · mkRose

Since toR · toB = id (Property 2), we have that:

mkRose = toR · mkTree

which allows us to derive a definition for mkRose.
So, for all non-empty finite lists xs, we want

mkRose xs = toR (mkTree xs) (12)

Let m = div (length xs) 2 and (ys, zs) = splitAt m xs. We will derive Equation (12)
by induction on the length of xs.

Base Case Suppose that length xs is 1. Then m = 0 and so

toR (mkTree xs)

= {definition of mkTree with m = 0}

toR (Leaf (head zs))

= {definition of toR}

Node (head zs) []

Step Case Suppose that the length of xs is greater than 1. By the definition of splitAt

(and m) the lengths of ys and zs are less than the length of xs. So, for the induction
hypothesis, we suppose that ys and zs satisfy Equation (12).

toR (mkTree xs)

= {definition of mkTree with m 6= 0}

toR (Fork (mkTree ys) (mkTree zs))

= {definition of toR with Node y yts = toR (mkTree ys)}

24

Node y (yts ++ [toR (mkTree zs)])

= {induction hypothesis}

Node y (yts ++ [mkRose zs])

By the induction hypothesis, toR (mkTree ys) = mkRose ys and so Node y yts =
mkRose ys. Putting both cases together we have:

mkRose xs
∣

∣

∣

∣

m == 0 = Node (head zs) []
otherwise = Node y (yts ++ [mkRose zs])

where Node y yts = mkRose ys

(ys, zs) = splitAt m xs

m = div (length xs) 2

5.1.2 Membership

We can derive a membership operation memRose using Equation (5) :

memRose v = (member v) · toB

Proof. We derive a definition for memRose that satisfies

memRose v (Node x xts) = member v (toB (Node x xts)) (13)

by using induction on xts.

Base Case We will suppose that xts is empty.

member v (toB (Node x []))

= {definition of toB}

member v (foldl Fork (Leaf x) (map toB []))

= {definition of map}

member v (foldl Fork (Leaf x) [])

= {definition of foldl}

member v (Leaf x)

= {definition of member}

v == x

Thus

memRose v (Node x []) = v == x

25

Step Case Suppose that xts is non-empty and, for the induction hypothesis, that all
of the trees in xts satisfy Equation (13). Consider

M = member v (foldl Fork (Leaf x) (map toB xts))

We will use the Fusion Theorem for Fold Left (Property 3) so that we can fuse member

into the fold. For this theorem, we take f = member v (which is strict), g = Fork and
a = Leaf x. Now

b = member v (Leaf x) = v == x

We now need a function h such that f (g xt yt) = h (f xt) yt.

f (g xt yt) = member v (Fork xt yt) = member v xt ∨ member v yt

We take h to be (λ xt yt. xt ∨ member v yt) and so:

M = foldl (λ xt yt. xt ∨ member v yt) (v == x) (map toB xts)

= {FoldLeft-Map Theorem (Property 5)}

foldl (λ xt yt. xt ∨ member v (toB yt)) (v == x) xts

= {induction hypothesis}

foldl (λ xt yt. xt ∨ memRose v yt) (v == x) xts

= {FoldLeft-Map Theorem (Property 5)}

foldl (λ xt yt. xt ∨ yt) (v == x) (map (memRose v) xts)

= {simplification}

foldl (∨) (v == x) (map (memRose v) xts)

Thus from this case, we have:

xts 6= [] ⇒ memRose v (Node x xts) = foldl (∨) (v == x) (map (memRose v) xts))

Let us consider

foldl (∨) (v == x) (map (memRose v) [])

= {definition of map}

foldl (∨) (v == x) []

= {definition of foldl}

v == x

This matches the expression for the base case. Thus our definition is:

memRose v (Node x xts) = foldl (∨) (v == x) (map (memRose v) xts)

26

5.1.3 Flattening

To flatten rose trees, we can define an operation which satisfies

flattenRose = flatten · toB

By the definition of flatten in Section 3, flatten (Fork xt yt) = flatten xt++flatten yt and
by following a similar derivation to memRose, we find that

flattenRose (Node x xts) = foldl (++) [x] (map flattenRose xts)

Now concat = foldl (++) [] and so we can define

flattenRose (Node x xts) = x : concat (map flattenRose xts)

which matches the definition given in [3].
As with the operations for binary trees, we have the following property for all finite

non-empty lists xs:

flattenRose (mkRose xs) = xs (14)

Proof. Let m = div (length xs) 2 and (ys, zs) = splitAt m xs. We will prove Equation
(14) by induction on the length of xs.

Base Case Suppose that length xs is 1. Then m = 0 and so

flattenRose (mkRose xs)

= {definition of mkRose with m = 0}

flattenRose (Node (head zs) [])

= {definition of flattenRose}

(head zs) : concat (map flattenRose [])

= {definitions of concat and map}

[head zs]

= {definitions}

xs

Step Case Suppose that the length of xs is greater than 1. By the definition of splitAt

(and m) the lengths of ys and zs are less than the length of xs. So, for the induction
hypothesis, we suppose that ys and zs satisfy Equation (14).

flattenRose (mkRose xs)

= {definition of mkRose with Node y yts = mkRose ys}

flattenRose (Node y (yts ++ [mkRose zs]))

= {definition of flattenRose}

27

y : concat (map flattenRose (yts ++ [mkRose zs]))

= {property: map f (xs ++ [x]) = (map f xs) ++ [f x]}

y : concat (map flattenRose yts ++ [flattenRose (mkRose zs)])

= {induction hypothesis}

y : concat (map flattenRose yts ++ [zs])

= {property: concat (ts ++ xs) = concat ts ++ concat xs}

y : (concat (map flattenRose yts) ++ concat [zs])

= {definition of concat}

y : (concat (map flattenRose yts) ++ zs)

= {definition of ++}

(y : concat (map flattenRose yts)) ++ zs

= {definition of flattenRose}

flattenRose (Node y yts) ++ zs

= {definition of Node y yts}

flattenRose (mkRose ys) ++ zs

= {induction hypothesis}

ys ++ zs

= {definitions and property of splitAt}

xs

5.1.4 Size

From Section 3, we know that size = length · flatten. Thus for rose trees, we want

sizeRose = length · flattenRose

Using the above foldl definition for flattenRose, we have

sizeRose (Node x xts) = length (foldl (++) [x] (map flattenRose xts))

As length is strict, we can use the fusion theorem for fold left (Property 3). Now
length [x] = 1 and

length (xs ++ ys) = length xs + length ys

So we take h = (λ xs ys. xs + length ys) and the right hand side becomes

foldl (λ xs ys. xs + length ys) 1 (map flattenRose xts)

Using the FoldLeft-Map Theorem (Property 5) and map f · map g = map (f · g):

foldl (+) 1 (map (length · flattenRose) xts)

28

Now sum xs can be defined as foldl (+) 0 xs and so foldl (+) 1 xs is equivalent to
1 + sum xs. Since we assume that sizeRose = length · flattenRose, then:

sizeRose (Node x xts) = 1 + sum (map sizeRose xts)

So to find the size of Node x xts we sum together the size of each of the rose trees in xts

and add 1 for the value x. Note that this matches the definition given in [3].

5.1.5 Map for Rose Trees

We define an operation mapRose f which applies a function f to all of the elements in a
rose tree. Consider mapRose f (Node x xts). The function f needs to be applied to the
value x and then mapRose f needs to be applied to each rose tree in xts. This leads us
to the following definition:

mapRose f (Node x xts) = Node (f x) (map (mapRose f) xts)

We can show this definition is correct by using Equation (4) to prove that

mapTree f · toB = toB · mapRose f

(the details are omitted).
As with the previous tree mapping and flattening functions, mapRose and flattenRose

satisfy the following property:

flattenRose (mapRose f rts) = map f (flattenRose rts) (15)

for all finite rose trees rts.

Proof. We will show that Equation (15) holds by induction on rts.

Base Case We suppose that rts = Node x [] and then for the left hand side

flattenRose (mapRose f (Node x []))

= {definition of mapRose}

flattenRose (Node (f x) (map (mapRose f) []))

= {definition of map}

flattenRose (Node (f x) [])

= {definition of flattenRose}

(f x) : (concat (map flattenRose []))

= {definitions of map and concat}

(f x) : []

= {notation}

[f x]

29

For the right hand side

map f (flattenRose (Node x []))

= {definition of flattenRose}

map f (x : (concat (map flattenRose [])))

= {definition of map and concat}

map f (x : [])

= {definitions of map and notation}

[f x]

Step Case Let rts = Node x xts and for the induction hypothesis we suppose that
every tree in xts satisfies Equation (15). Starting with the left hand side

flattenRose (mapRose f (Node x xts))

= {definition of mapRose}

flattenRose (Node (f x) (map (mapRose f) xts))

= {definition of flattenRose}

(f x) : (concat (map flattenRose (map (mapRose f) xts)))

= {property of map: map f · map g = map (f · g)}

(f x) : (concat (map (flattenRose · (mapRose f)) xts))

= {induction hypothesis}

(f x) : (concat (map ((map f) · flattenRose) xts))

= {property of map: map f · map g = map (f · g)}

(f x) : (concat (map (map f) (map flattenRose xts)))

= {property of map: map f · concat = concat · map (map f)}

(f x) : (map f (concat (map flattenRose xts)))

= {definition of map}

map f (x : (concat (map flattenRose xts)))

= {definition of flattenRose}

map f (flattenRose (Node x xts))

Comparing this proof to the one for Equation (7) given in Section 3.1 we can see that
the proof for rose trees is much more complicated and it uses some properties for map

(stated in Section 2) which also need to be proved.

30

5.2 Suitability for obfuscation

We have seen that we can use rose trees to obfuscate binary trees. Since rose trees have a
more complicated data structure than binary trees then the definitions of the operations
were slightly harder to understand. The proofs for properties for rose trees are generally
hard to construct than those for binary trees (in Section 5.1.5 we gave an example proof)
and so by the definition given in [7] these operations are obfuscated.

Some of the definitions for rose tree operations relied on the fold functions. This has
two immediate consequences: we have to rely on many fold properties (given in Section
6) which constructing proofs for rose tree operations and we have less flexibility when
defining rose tree operations. Further discussion of the use of folds with obfuscation can
be found in Section 6.5.

6 Folds and Unfolds

In this section we discuss the fold and unfold functions. In particular we give vari-
ous properties that these functions satisfy — many of these properties have been used
throughout Section 5 in the discussion of rose trees.

6.1 Definitions and properties of fold

The fold left function foldl is defined as follows:

foldl :: (β → α → β) → β → List α → β

foldl f a [] = a

foldl f a (x : xs) = foldl f (f a x) xs

Similarly the fold right function foldr is defined as:

foldr :: (α → β → β) → β → List α → β

foldr f a [] = a

foldr f a (x : xs) = f x (foldr f a xs)

The fold functions replace the list constructors : and [] with f and a respectively. So,
for example,

foldl ⊕ b [x1, x2, . . . , xn] = (. . . ((b ⊕ x1) ⊕ x2) . . .) ⊕ xn

foldr ⊗ b [x1, x2, . . . , xn] = x1 ⊗ (x2 ⊗ (. . . (xn ⊗ b) . . .))

We can define some of the standard list operations from Section 2 as folds. For example,

map f = foldr ((:).f) []
length = foldl (λ x y. x + 1) 0
xs ++ ys = foldr (:) ys xs

concat = foldl (++) []

We can even write head as foldr (λ x y.x) (⊥) and the identity for lists can be written
as foldr (:) []. The fold functions satisfy various properties (some of which were used in
Section 5 when we discussed rose trees). Many of the properties, which are called fusion

theorems, allow us to combine folds with other functions.

31

Property 3 (Fusion Theorem for Fold Left). For a function f

f · foldl g a = foldl h b

if f is strict, f a = b and h satisfies the relationship:

f (g x y) = h (f x) y

for all x and y.

Property 4 (Fusion Theorem for Fold Right). For a function f

f · foldr g a = foldr h b

if f is strict, f a = b and h satisfies the relationship:

f (g x y) = h x (f y)

for all x and y.

We can construct two other fusion rules for the folds — one using map and the other
using ++. Consider the expression foldl f a (map g [x1, x2, . . . , xn]). By the definition of
map, we have foldl f a (g x1, g x2, . . . , g xn). Expanding out the fold gives

f (. . . (f (f a (g x1)) (g x2)) . . .) (g xn)

This is equivalent to foldl (λ x y. f x (g y)) a [x1, x2, . . . , xn]. We can construct a similar
argument for foldr and so we have the following two theorems for map.

Property 5 (FoldLeft-Map Theorem). For functions f and g

(foldl f a) · (map g) = foldl (λ x y. f x (g y)) a

Property 6 (FoldRight-Map Theorem). For functions f and g

(foldr f a) · (map g) = foldr (f · g) a

Let us now consider how to combine ++ and foldr so that we can rewrite foldr p e (xs++
ys) without using ++. We can write xs ++ ys as foldr (:) ys xs and so we can use the
Fusion Theorem for Fold Right (Property 4). So we would like

(foldr p e) · (foldr (:) ys) = foldr h b

Since foldr p e is strict we can use the fusion theorem with f = foldr p e, g = (:) and
a = ys. Thus b = foldr p e ys.

f (g x xs) = foldr p e ((:) x xs)

= foldr p e (x : xs)

= p x (foldr p e xs)

= h x (f xs)

32

and so h = p. By the fusion theorem:

foldr p e (foldr (:) ys xs) = foldr p (foldr p e ys) xs

Therefore

foldr p e (xs ++ ys) = foldr p (foldr p e ys) xs

We can construct a similar argument for foldl and so we have the following two theorems.

Property 7 (FoldLeft-Cat Theorem). For finite lists xs and ys:

foldl p e (xs ++ ys) = foldl p (foldl p e xs) ys

Property 8 (FoldRight-Cat Theorem). For finite lists xs and ys:

foldr p e (xs ++ ys) = foldr p (foldr p e ys) xs

6.2 List Unfolds

A list unfold produces a list from another data structure — it can be seen as an “inverse”
for fold. We follow the definition for unfolds given in [11]:

unfold :: (α → B) → (α → β) → (α → α) → α → List β

unfold p f g x
∣

∣

∣

∣

p x = []
otherwise = (f x) : (unfold p f g (g x))

As an example

map f = unfold (== []) (f.head) (tail)

Property 9 (Unfold Fusion). For a function f ,

(unfold p g h) · f = unfold p′ g′ h′

if p · f = p′, g · f = g′ and h · f = f · h′

Property 10 (Unfold Map Fusion). For map:

(map f) · (unfold p g h) = unfold p (f · g) h

A fold followed by an unfold is called a hylomorphism [13]. In [10], a hylomorphism
is defined to be:

hylo f e p g h = fold f e · unfold p g h

which gives

hylo f e p g h x = if p x then e else f (g x) (hylo f e p g h (h x)) (16)

33

6.3 Folds for Binary Trees

To define a fold for binary trees we need to define two functions f and g which describe
how the constructors Null and Fork are transformed. We define foldTree as follows:

foldTree f g (Leaf a) = f a

foldTree f g (Fork xt yt) = g (foldTree f g xt) (foldTree f g yt)

and it has type

foldTree :: (α → β) → (β → β → β) → Tree α → β

We can easily write flatten as an instance of foldTree as follows:

flatten = foldTree (λ x. [x]) (++)

For mapTree we have that

mapTree f = foldTree (Leaf · f) Fork

and for member:

member v = foldTree (== v) (∨)

As with fold for lists, we have a fusion theorem for foldTree.

Property 11 (Fusion Theorem for binary trees). For a strict function h

h · (foldTree f1 g1) = foldTree f2 g2

if h · f1 = f2 and

h (g1 r s) = g2 (h r) (h s)

for all r and s.

Proof. We prove h (foldTree f1 g1 zt) = foldTree f2 g2 zt by induction on zt.

Case (⊥) We suppose that zt = ⊥.

h (foldTree f1 g1 ⊥)

= {case exhaustion}

h ⊥

= {assumption: h is strict}

⊥

= {case exhaustion}

foldTree f2 g2 ⊥

34

Case (Leaf) Suppose that zt = Leaf a.

h (foldTree f1 g1 (Leaf a))

= {definition of foldTree}

h (f1 a)

= {assumption: h · f1 = f2}

f2 a

= {definition of foldTree}

foldTree f2 g2 (Leaf a)

Case (Fork) Suppose that zt = Fork xt yt.

h (foldTree f1 g1 (Fork xt yt))

= {definition of foldTree}

h (g1 (foldTree f1 g1 xt) (foldTree f2 g2 yt))

= {assumption: h (g1 r s) = g2 (h r) (h s)}

g2 (h (foldTree f1 g1 xt)) (h (foldTree f1 g1 yt))

= {induction hypothesis}

g2 (foldTree f2 g2 xt) (foldTree f2 g2 yt)

= {definition of foldTree}

foldTree f2 g2 (Fork xt yt)

For an example of the fusion theorem in action, let us consider size. From Section 3,
we know that

size = length · flatten

So, using the fold version of flatten, we would like function f2 and g2 such that

foldTree f2 g2 = length · (foldTree (λ x. [x]) (++))

and length ⊥ = ⊥. For the fusion theorem, we need

f2 = length · (λ x. [x])

and since length [x] = 1 then

f2 = (λ x. 1)

Also, we need

g2 (length r) (length s) = length (r ++ s)

35

but length (r ++ s) = length r + length s we have that g2 = (+). Thus by the fusion
theorem size can be written as

size = foldTree (λ x. 1) (+)

6.3.1 Unfolds and mktree

So far, we have not mentioned mkTree — can it written as a fold? Since mkTree changes
a list into a tree we might expect to use a list fold. However we have two problems:
firstly we do not have a mapping for []; and secondly our definition of mkTree uses two
parts of a list rather than just using the head and tail of a list. The first problem can be
fixed by allowing a Null tree (so that mkTree Null = []).

We can use fold fusion to try to “force” a fold definition for mkTree. From Section 3
we know that flatten ·mkTree = id. So let us suppose that mkTree = foldr g a for some g

and a. We can the identity as foldr (:) []. So we would like

flatten · (foldr g a) = foldr (:) []

The function flatten is strict and we take a = Null so that flatten Null = []. For fusion,
we have that

flatten (g x yt) = x : (flatten yt)

By the definition of flatten, we have that flatten (Fork (Leaf x) yt) = [x] ++ flatten yt.
If we take g x yt = Fork (Leaf x) yt then

foldr (λ x yt. Fork (Leaf x) yt) Null

should produce a function for making trees. In fact this function matches up with mkTree’

from Section 3. We can actually write mkTree as a tree unfold. An unfold for binary
trees has the type:

unfoldTree :: (α → B) → (α → β) → (α → (α, α)) → α → Tree β

and we can define it as:

unfoldTree p f g x
∣

∣

∣

∣

p x = Leaf (f x)
otherwise = Fork (unfoldTree p f g (fst (g x))) (unfoldTree p f g (snd (g x)))

Using the definition from Section 3 we can write mkTree as an instance of unfoldTree:

mkTree = unfoldTree ((== 1) · length) (head) g

where g xs = splitAt (div (length xs) 2) xs

We saw earlier that the function mapTree written as a tree fold but it is also an
instance of a tree unfold:

mapTree h = unfoldTree p f g

where p (Leaf a) = True

p (Fork xt yt) = False

f (Leaf a) = h a

g (Fork xt yt) = (xt, yt)

As with lists we have a fusion theorem for unfoldTree.

36

Property 12 (Binary Tree Unfold Fusion). For a function h,

(unfoldTree p f g) · h = unfoldTree p′ f ′g′

if p · h = p′, f · h = f ′, h · fst · g′ = g · fst · h and h · snd · g′ = g · snd · h

Proof. We will prove

unfoldTree p f g (h x) = unfoldTree p′ f ′ g′ x (17)

by induction on x.

Case 1 Suppose that p′ x = True and so by one of our assumptions p (h x) = True.

unfoldTree p′ f ′ g′ x

= {definition of foldTree with p′ x = True}

Leaf (f ′ x)

= {assumption: f ′ x = f (h x)}

Leaf (f (h x))

= {definition of unfoldTree with p (h x) = True}

unfoldTree p f g (h x)

Case 2 Suppose that p′ x = False and let (y, z) = g′ x. For the induction hypothesis,
we suppose that y and z satisfy Equation (17).

unfoldTree p′ f ′ g′ x

= {definition of foldTree with p′ x = False}

Fork (unfoldTree p′ f ′ g′ (fst (g′ x))) (unfoldTree p′ f ′ g′ (snd (g′ x)))

= {induction hypothesis}

Fork (unfoldTree p f g h (fst (g′ x))) (unfoldTree p f g h (snd (g′ x)))

= {assumptions: h · fst · g′ = g · fst · h and h · snd · g′ = g · snd · h}

Fork (unfoldTree p f g g (fst (h x))) (unfoldTree p f g g (snd (h x)))

= {definition of foldTree with p (h x) = False}

unfoldTree p f g (h x)

6.4 Proving correctness using folds

The abstraction and conversion functions for the ternary tree conversion (given in Section
4) produce and consume binary trees recursively and so they can be written using binary

37

tree folds and unfolds. The conversion function to3 can be written as a binary tree fold:

to3 = foldTree (Leaf3) g

where g (Leaf3 a) xt = Fork3 (Leaf3 a) xt pt

g xt (Leaf3 a) = Fork3 xt qt (Leaf3 a)
g xt yt = Fork3 yt rt xt

and the abstraction function to2 can be written as a binary tree unfold:

to2 = unfoldTree p f g

where p (Leaf3 a) = True

p xt = False

f (Leaf3 a) = a

g (Fork3 (Leaf3 a) yt zt) = (Leaf3 a, yt)
g (Fork3 xt yt (Leaf3 a)) = (xt, Leaf3 a)
g (Fork3 xt yt zt) = (zt, xt)

Writing the conversion and abstraction functions using folds and unfolds means that
we can use fusion theorems for proofs. For example, to prove the ternary tree operation
op3 is correct with respect to the binary tree operation op2 then using Equation (4):

op2 · to2 = to2 · op3

and since to2 · to3 = id, we post compose by to2 to obtain:

op2 = to2 · op3 · to3

So this means we will have an equation of the form:

op2 = unfoldTree · op3 · foldTree

Thus we can use unfold fusion followed by fold fusion (or vice versa) to prove the equation.
Derivations are usually harder to do with folds and unfolds because functions are

in the “wrong place” for fusion. For example, consider the derivation of flatten3 from
Section 4.1:

flatten3 t3 = flatten (to2 t3)

The operation flatten can be written as a tree fold and to2 is a tree unfold. Thus we have
an expression of the form

foldTree · unfoldTree

We cannot use either of the fusion rules to simplify this expression. Instead, as with lists,
we can give an expression for a tree hylomorphism.

Property 13 (Tree Hylomorphism). For a binary trees:

hyloTree = (foldTree r s) · (unfoldTree p f g)

38

Proof. Consider hyloTree x for some x. For the first case, suppose that p x is True.

hyloTree x

= {definition of hyloTree}

foldTree r s (unfoldTree p f g x)

= {definition of unfoldTree with p x = True}

foldTree r s (Leaf (f x))

= {definition of foldTree}

r (f x)

Now suppose that p x does not hold and let (lt, rt) = g x

hyloTree x

= {definition of hyloTree}

foldTree r s (unfoldTree p f g x)

= {definition of unfoldTree with p x = False}

foldTree r s (Fork (unfoldTree p f g lt) (unfoldTree p f g rt))

= {definition of foldTree}

s (foldTree r s (unfoldTree p f g lt)) (foldTree r s (unfoldTree p f g rt))

= {definition of hyloTree}

s (hyloTree lt) (hyloTree rt)

Thus,

hyloTree x
∣

∣

∣

∣

p x = r (f x)
otherwise = s (hyloTree (fst (g x))) (hyloTree (snd (g x)))

As an example of a hylomorphism we can show that

flatten · mkTree = id

From the fold definition for flatten and the unfold definition for mkTree, we have that

r = (λ x. [x])
s = (++)
p = (== 1) · length

f = head

g xs = splitAt (div (length xs) 2) xs

39

So let us consider hyloTree xs for some non-empty list xs. We will use hyloTree by
induction on the length of xs. Suppose that p xs = True and so this means that xs = [a]
for some a. Then r (f xs) = (λ x.[x]) (head [a]) = [a] and so r · f = id.

Now suppose that p xs = False. We will use the following property of splitAt:

(ys, zs) = splitAt n xs ⇒ xs = ys ++ zs

Let us suppose that

(ys, zs) = splitAt (div (length xs) 2) xs

So

hyloTree xs

= {definition of hyloTree}

(++) (hyloTree (fst (g x))) (hyloTree (snd (g x)))

= {definition of g}

(hyloTree ys) ++ (hyloTree zs)

= {induction hypothesis}

ys ++ zs

= {property of splitAt}

xs

6.5 Obfuscation and Folds

In the previous section we have seen various laws of folds and unfolds and how these laws
may be used in proofs using folds or unfolds. We used folds for the definition of our rose
tree operations in Section 5.1.1 but we did not use them to define operations for ternary
trees. Why was this? There are two main reasons.

Firstly, folds and unfolds satisfy a “universal property” which means that the func-
tions fold f e and unfold p f g have unique (strict) solutions. For example (taken from
[11]), for strict h,

h = fold f e

≡

h [] = e ∧ h (a : xs) = f a (h xs)

Thus when defining an operation using folds or unfolds we essentially have one way to
construct the operation — in the case of fold we have some flexibility in how we define
the function argument f . This is not ideal for obfuscation as we would like to have some
flexibility when creating our obfuscated operations. For instance, for our definition for
mkTree3 in Section 4.2 we deliberately added in bogus cases which would be harder to
do with operations using folds.

40

Secondly, as we saw in Section 6.4, proving a property using folds and unfolds requires
the use of many different fold and unfold laws (such as fusion). The proofs that we
constructed for the ternary operations in Section 4.1 mainly relied on the definitions
of our operations and not with a set of properties that the definitions satisfies and so,
generally it was found that the correctness proofs in Section 4.1 were easier to construct.
However using folds and unfolds mean that the proofs could be automated by using a
series of fusion laws (see for example [5]).

7 Conclusions

In this contribution we have expanded on previous work [8] to present a more extensive
study of how to create obfuscations for a binary tree data-type. We have presented a
number of transformations and discussed their suitability as obfuscations. In Section 3.2
we saw that general tree transformations such as rotations and reflections are not suitable
for obfuscations as the operation definitions using these transformations are similar to the
original definitions and so are not very well obfuscated. We also saw that using ternary
trees and rose trees enabled us to produce obfuscations for binary trees. In Sections 4.1
and 4.2 we exploited the properties of ternary trees and the pattern matching of Haskell
to add bogus cases in our definitions. Our ternary tree conversion allowed us to add
in junk elements meaning that we have some flexibility when defining our obfuscated
operations. However, for our rose trees conversion, we have less flexibility when defining
operations. In general when writing obfuscations for trees (and other data-types) we
should use a variety of styles and formats, including folds, to enable us to create different
obfuscations.

In Section 1 we mentioned that one possible definition for obfuscation involves con-
structing proofs for assertions. This definition says that proofs of assertions for an obfus-
cated operation should be harder to construct (for some measure of construction) than
for an unobfuscated operation. We proved an assertion (relating mapTree and flatten) for
binary, ternary and rose trees. We saw the proofs for the obfuscated versions were more
complicated. Further work is needed to fully compare the obfuscations according to the
assertion definition of obfuscation. An area for future work is to explore what measures
we could use for comparing the proof complexities — for example, we could use theorem
provers such as HOL [12]. HOL allows the user to mechanically prove theorems by using
a set of results that are already known, a theory, and a sequence of rules, the tactics, to
solve a goal. For complexity measures we could compute the size of the theory or the
number of tactics needed for a particular proof.

References

[1] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Proceedings of the 21st Annual International Cryptology Conference on Advances

in Cryptology, pages 1–18. Springer-Verlag, 2001.

41

[2] Phillipe Biondi and Fabrice Desclaux. Silver needle in the Skype. Presentation at
BlackHat Europe, March 2006. Available from URL:
www.blackhat.com/html/bh-media-archives/bh-archives-2006.html.

[3] Richard Bird. Introduction to Functional Programming in Haskell. International Series in
Computer Science. Prentice Hall, 1998.

[4] Christian Collberg, Clark D. Thomborson, and Douglas Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer Science, University of
Auckland, July 1997.

[5] Oege de Moor and Ganesh Sittampalam. Generic program transformation. In Third
International Summer School on Advanced Functional Programming, Lecture Notes in
Computer Science. Springer-Verlag, 1998.

[6] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1998.

[7] Stephen Drape. Obfuscation of Abstract Data-Types. DPhil thesis, Oxford University
Computing Laboratory, 2004.

[8] Stephen Drape. An obfuscation for binary trees. In To appear in the Proceedings of the
IEEE Region 10 conference (TENCON 2006), Nov 2006.

[9] Stephen Drape. Generalising the array split obfuscation. Information Sciences, 177(1):202–
219, January 2007.

[10] Jeremy Gibbons. Origami programming. In Jeremy Gibbons and Oege de Moor, editors,
Fun of Programming, Cornerstones of Computing, pages 41–60. Palgrave, 2003.

[11] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In Proceedings of the
third ACM SIGPLAN international conference on Functional programming, pages 273–
279. ACM Press, 1998.

[12] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[13] Erik. Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of the 1991
ACM Conference on Functional Programming Languages and Computer Architecture, vol-
ume 523 of Lecture Notes in Computer Science, pages 124–144. Springer Verlag, 1991.

[14] Simon Peyton Jones. The Haskell 98 language and libraries: the revised report. Journal
of Functional Programming, 13(1), January 2003.

[15] Nuno Santos, Pedro Pereira, and Lúıs Moura e Silva. A Generic DRM Framework for J2ME
Applications. In Olli Pitkänen, editor, First International Mobile IPR Workshop: Rights
Management of Information (MobileIPR), pages 53–66. Helsinki Institute for Information
Tecnhology, August 2003.

42

www.blackhat.com/html/bh-media-archives/bh-archives-2006.html

	Introduction
	Preliminaries
	Obfuscation as Data Refinement
	Non-homogeneous operations

	Binary Tree Data-Type
	Binary Tree Operations
	Using Tree Transformations
	Splitting

	Ternary Trees
	Ternary tree operations
	Making ternary trees from lists
	The map function for ternary trees
	Other tree operations

	Rose Trees
	Rose Tree Operations
	Making Rose Trees
	Membership
	Flattening
	Size
	Map for Rose Trees

	Suitability for obfuscation

	Folds and Unfolds
	Definitions and properties of fold
	List Unfolds
	Folds for Binary Trees
	Unfolds and mktree

	Proving correctness using folds
	Obfuscation and Folds

	Conclusions

