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Abstract

There is a strong analogy between proving theorems in mathematics and writ-
ing programs in computer science. This paper is devoted to an analysis, from the
perspective of this analogy, of proof in mathematics. We will argue that while
the Hilbertian notion of proof has few chances to change, future proofs will be of
various types, will play different roles, and their truth will be checked differently.
Programming gives mathematics a new form of understanding. The computer is
the driving force behind these changes.

1 Introduction

The current paper, a continuation of [12], is devoted to an analysis of proof in mathe-
matics from the perspective of the analogy between proving theorems in mathematics
and writing programs in computer science. We will argue that:

1. Theorems (in mathematics) correspond to algorithms and not programs (in com-
puter science); algorithms are subject to mathematical proofs (for example for
correctness).



2. The role of proof in mathematical modelling is very small: adequacy is the main
issue.

3. Programs (in computer science) correspond to mathematical models. They are
not subject to proofs, but to an adequacy and relevance analysis; in this type of
analysis, some proofs may appear. Correctness proofs in computer science (if any)
are not cost-effective.

4. Rigour in programming is superior to rigour in mathematical proofs.
5. Programming gives mathematics a new form of understanding.

6. Although the Hilbertian notion of proof has few chances to change, future proofs
will be of various types and will play different roles, and their truth will be checked
differently.

2 Proving vs. programming: today

Aristotle introduced the concept of proof as an epistemological tool, to establish abso-
lutely certain knowledge. The argument follows a sequence of rigourously defined steps,
starting from “first principles”, which are claimed to be self-evident truths, using rules
which are truth-preserving. The original intention was to derive certain conclusions, but
this goal seems to be too ambitious.

In mathematics, the first principles are called axioms, and the rules are referred to as
deduction/inference rules. A proof is a series of steps based on the (adopted) axioms
and deduction rules which reaches a desired conclusion. Every step in a proof can be
checked for correctness by examining it to ensure that it is logically sound.

According to Hilbert:

The rules should be so clear, that if somebody gives you what they claim is
a proof, there is a mechanical procedure that will check whether the proof is
correct or not, whether it obeys the rules or not.

While ideally sound, this type of proof (called Hilbertian or monolithic [21]) cannot
be found in mathematical articles or books (except for a few simple examples). How-
ever, most mathematicians believe that almost all “real” proofs, published in articles
and books, can, with tedious work, be transformed into Hilbertian proofs. Why? Be-
cause real proofs look convincing for the mathematical community [21]. Going further,
DeMillo, Lipton and Perlis argued that real proofs should be highly non-monolithic



because they aim to be heard, read, assimilated, discussed, used and generalised by
mathematicians—they are part of a social process.

Deductive rules are truth-preserving, but although the conclusion, generically termed as
theorem, yields knowledge!, there is no claim that it yields certain knowledge. The reason
is simple: nothing certifies the truth of the axioms. The epistemic status of axioms
is an interesting and troubling question. Relativity appears in many instances, from
the plurality of geometries (Euclidean and non-Euclidean), to Godel’s incompleteness
theorem and various independence results (Continuum Hypothesis). Mathematically,
there is no most preferred geometry neither the true set theory. If there are no self-
evident truths, then there is no certain knowledge. For Thurston [54]

...the foundations of mathematics are much shakier than the mathematics
that we do.

Programming is the activity of solving problems with computers. It includes the follow-
ing steps: a) developing the algorithm to solve the problem, b) writing the algorithm
in a specific programming language (that is, coding the algorithm into a program), c)
assembling or compiling the program to turn it into machine language, d) testing and
debugging the program, e) preparing the necessary documentation.

Ideally, at d) one should have written: proving the correctness of the algorithm, testing
and debugging the program. We said, “ideally”, because correctness, although desired,
is only practised in very few instances (for example, the programs involved in the proof
of the Four-Color Theorem were not proved correct.)?> In programming practice (in
a commercial /industrial environment), correctness is seldom required and much less
proved. Some reasons include: a) the fact that, in general, correctness is undecidable
[11], so failure to prove correctness has little meaning, b) for most non-trivial cases,
correctness is a monumental task which gives an added confidence at a disproportionate
cost. There are many projects and products dedicated to automated testing of program
correctness, for example, VIPER or the more recent TestEra (automated testing of
Java programs). The current approach in software and hardware design involves a
combination of empirical and formal methods aiming to get better and better programs.

3 Mathematical examples

We will analyse three mathematical problems which reflect the current evolution of
mathematical proofs.

"'We may called this deductive knowledge.
2See the proof [53, 10].



3.1 The twin prime conjecture

The twin prime conjecture states that there are infinitely many pairs of twin primes
(i.e. pairs (p,p + 2), where p and p + 2 are primes). To date, all attempts to solve the
problem have failed. (Recently, Arenstorf’s proof [2] had a serious error and the paper
was retracted.) In 2005, Goldston, Pintz and Yildirim [29] proved that there are infinitely
many primes for which the gap to the next prime is as small as possible when compared
with the average gap between consecutive primes. This spectacular result comes very
close to the twin prime conjecture, which asserts that, apart from the case of 2 and 3, the
gap is the smallest possible, i.e. 2. The Goldston—Pintz—Yildirimir proof is explained in a
recent paper by Soundararajan [52]. Here are the main questions discussed: Can we say
anything about the statistical distribution of gaps between consecutive primes? Does
every even number?® occur infinitely many times as a gap between consecutive primes?
How frequently do twin primes occur? Interesting for our discussion is the following
comment [52] (p. 2):

Number theorists believe they know the answers to all these questions but
cannot always prove that the answers are correct.

Earlier, in 2003, Goldston and Yildirim announced that there are infinitely many primes
such that the gap to the next prime is very small. The proof looked convincing till A.
Granville and K. Soundararajan discovered a tiny flaw which looked fatal (see [23] for
the story). The flaw was discovered not by carefully checking Goldston and Yildirim’s
proof, but by extending it to show that there are infinitely many primes such that the
gap to the next prime is less than 12 (the gap-12 theorem), a result which was too close
to the twin prime conjecture to be true: they didn’t believe it! B. Conrey, the director
of the American Institute of Mathematics, which was close to this work, is quoted by
Devlin [23] by saying that, without the “unbelievable” Granville and Soundararajan
gap-12 theorem,

the Goldston-Yildirim proof would in all probability have been published and
the mistake likely not found for some years.

How many proofs are wrong? Although many (most?) proofs are probably “incomplete
or benignly wrong”—that is, they can be in principle fixed—it is almost impossible to
make an educated guess about how many proofs are wrong. One reason is that many
proofs are only superficially checked, because either they have limited interest or they
never come to be used (or both).

3Every gap between primes is even except for 3 and 2.



3.2 The Kepler conjecture

In 1997, Thomas Hales [31] published a detailed plan—a mixture of mathematical proofs
and extensive computer calculations (see also [55])—describing a new strategy for at-
tacking the Kepler conjecture. Hales’ full proof appears in a series of papers taking up
more than 250 pages and gigabytes of computer programs and data [15], all posted on
the Internet. The proof cannot be checked without running his programs. In the end, his
paper [32] was published in Annals of Mathematics, in spite of the inconclusive verdict
given by the panel of 12 referees (see more in [14]).

The semi-failure of the correctness-checking process motivated Hales to start the project
Flyspeck [27] whose purpose is to produce a formal proof of the Kepler Conjecture. Hales
estimates that the project will run for 20 years before reaching a final conclusion.

We are motivated to join T. Anderson [9] (p. 2389) in asking the question: must we
consign mathematics to the dustbin until computers have confirmed the validity of the
theorems and proofs?

3.3 The Poincaré conjecture

The Poincaré conjecture was stated in 1904 by Henri Poincaré [43]. Colloquially, it
states that the three-dimensional sphere is the only type of bounded three-dimensional
space possible that contains no holes. The first solution carries a $1 million prize, as
one of the Millennium Problems of the Clay Mathematical Foundation [20].%

The most significant scientific achievement of 2006, the Breakthrough of the Year, was,
according to Science magazine, the solution of the Poincaré conjecture by Grigory Perel-
man [35]:

This year’s Breakthrough salutes the work of a lone, publicity-shy Russian
mathematician named Grigori Perelman, who was at the Steklov Institute
of Mathematics of the Russian Academy of Sciences until 2005. The work is
very technical but has received unusual public attention because Perelman
appears to have proven the Poincaré Conjecture, a problem in topology whose
solution will earn a $1 million prize from the Clay Mathematics Institute.
That’s only if Perelman survives what’s left of a 2-year gauntlet of critical
attack required by the Clay prize rules.®

41f you think that this is a lot of money, then refer to the BBC announcement—broadcast as we are
writing this paper—confirming that “David Beckham will leave Real Madrid and join Major League
Soccer side LA Galaxy at the end of the season”; he will be paid $1 million per week [4].

5Most mathematicians think he will.



Perelman’s solution appears in a series of papers he circulated and posted on the Internet
(not published yet?) in 2003 [40, 41, 42]. In 2006, his solution was officially recognised:
Perelman was offered the Fields Medal. As is well-known (and publicised), Perelman
declined the Fields Medal. Rumour has it that he has expressed little interest in the
Clay prize too.

Beyond obvious journalistic aspects, the story is significant in at least two directions:
a) it reinforces the social aspect of the process of doing mathematics, as the Clay prize
rules stipulate that an acceptable solution has to resist the critical analysis of the math-
ematical community for no less than two years, and b) the community accepted a result
which was only posted on the Internet. While a) is not surprising in the least, we may
ask whether b) is the starting of a new pattern in mathematical communication.

4 Computer science examples

We continue with three examples from computer science.

4.1 Intel’s bug
According to Wikipedia,

A software bug is an error, flaw, mistake, failure, or fault in a computer pro-
gram that prevents it from behaving as intended (e.g., producing an incorrect
result).

“Flaw Reported in New Intel Chip” made the headlines of the Technology /Cybertimes
section of the New York Times on May 6, 1997:

The Intel Corp. will not formally introduce its Pentium II microprocessor
until Wednesday, but the World Wide Web is already buzzing with reports of
a bug that causes the new chip to make errors in some complex mathematical
calculations.

Only three years earlier, on December 20, 1994, Intel recalled its popular Pentium pro-
cessor due to an “FDIV” bug discovered by Thomas Nicely, who was working on, guess
what? He was calculating Brun’s sum [38], the series formed with the reciprocal of twin

primes:
1+1 + 1+1 + 1—1—1 + 1—1—1 + <
— f— f— f— — — —_— —_— .o .. m.
3 5 5 7 11 13 17 19

6



Nicely worked with five PC’s using Intel’s 80486 microprocessor and a Pentium [37].
Comparing the results obtained with the old machines and the new Pentium, he observed
a discrepancy in the calculation of the reciprocals of the twin primes 824,633,702,441
and 824,633,702,443. Running various tests, he identified the source of error in the
floating point hardware unit of the Pentium CPU. Twenty three other errors were found
by Andreas Kaiser, while Tim Coe arrived at the simplest error instance: the division
4,195,835/3,145,727—which evaluates to 1.33382044 - - -—appears on the Pentium to be
1.33373906- - - Coe’s ultra-simple example moved the whole story from the Internet to
New York Times.

In contrast with errors found in mathematical proofs, which remain within the realm
of mathematical experts, computer bugs attract the attention of a larger audience. For
example, on January 17, 1995, Intel announced that it will spend $475 million to cover
the recall of its Pentium chip to fix the problem discussed above, a problem that may
affect only a few users.

Can bugs be avoided? More to the point of this article, can the use of rigorous mathe-
matical proofs guarantee that software and hardware perform as expected?

4.2 From algorithms to programs

Bloch [6] identifies a bug in the Java implementation of a standard binary search®. Here
is Bloch’s code:

1 public static int binarySearch(int[] a, int key) {
2 int low = O;

3 int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7 int midVal = a[mid];

8

9: if (midVal < key)

10: low = mid + 1;

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found
15: +

6 Apparently was only recently reported to Sun, persisting for nine years.



16: return -(low + 1); // key not found.
17: }

The bug is identified in line 6
6: int mid =(1low + high) / 2;

with the explanation that the average value is truncated down to the nearest integer,
a statement which is true for integers, but false for “bounded integers”. If the sum of
low + high is higher than 23! — 1, then the value overflows to a negative value and
stays negative by division to 2. How frequently can this situation appear? For arrays
longer in length than 23°—mnot uncommon for Google applications—the bug appears.
Bloch [6] offers some fixes and an implicit complaint: how come that the bug persisted so
long when he, as a PhD student, was taught a correctness proof [5] of the binary search
algorithm? Finally, he asks the crucial question: “and now we know the binary search
is bug-free, right?”

4.3 Bugs everywhere and Hoare’s question

Computer bugs are, literally, everywhere and they may affect many users. Most impor-
tant software companies maintain bug databases: bugs.sun.com/bugdatabase/index.
jsp, bugs.kde.org, MySQLBugs, bugzilla.mozilla.org, bugs.apache.org, etc. Here
is a model of how to report bugs at Sun:

If we don’t know about your problem, we can’t fix it. If you've isolated a
problem that you think we’re causing, and you can’t find it here, submit a
bug! Make sure you include all the relevant information including all the
details needed to reproduce the problem. Submissions will be verified and
prioritized. (Please note that bug fizes are not guaranteed.)”

Bugs can be of different types, hence producing varying levels of inconvenience to the
user of the program. The costs of some bugs may be almost incalculable. A bug in
the code controlling the Therac-25 radiation therapy machine led to at least six deaths
between 1985 and 1987 [60]. The European Space Agency’s $1 billion prototype Ariane
5’s first test flight on June 4, 1996, failed, with the rocket self-destructing 37 seconds
after launch [3]; the reason was a software bug, arguably one of the most expensive bugs
in history. More recently, a security flaw in PayPal was exploited by fraudsters to steal
credit card numbers and other personal information belonging to PayPal users (June

7Our Ttalics.



16, 2006); and the Y2K7 bug (January 3, 2007) affected Microsoft’s preview version of
Expression Design. Finally, a bug discovered by M. Schwartz [50] found no interest in
the community, so he had to write a small script showing how to use it to get all the
email addresses from members subscribing to a Google group; Google fixed the problem
on January 5, 2007. Improperly coded software seems to have caused the Mars Global
Surveyor failure in November 2006; in January 2007, NASA launched an investigation

62].

The list can easily be continued. Wired magazine maintains a history of the worst soft-
ware bugs [28].

In spite of all the examples discussed above, bugs and faulty software have killed re-
markably few people. They caused more embarrassment, nuisance, inconvenience, but
many fewer catastrophes. Early in January 2007, a 6.7 earthquake in Taiwan produced
serious interruptions in the internet in Asia [58]; this showed that the internet is far from
shockproof, but consequences were, again, not catastrophic. Finally, one more example:
Boeing 777, one of the most automatic fly-by-wire air-planes, has flown since 1995 with-
out any crashes or serious problems. So, we can ask with Hoare [34] the question: how
did software get so reliable without proof?

5 Proving vs. programming: tomorrow

5.1 Theorems and programs

The practice of programming, by and large, produces “discoursive knowledge”, a knowl-
edge resulting from computing. “Deductive knowledge”, complementary to discoursive
knowledge, can be obtained by the mathematical analysis of the program (in some given
context). These notions of knowledge correspond to Dijkstra’s approaches (see [24])
to programs: postulational and operational. Under the postulational approach, the
program text is considered a mathematical object. The semantic equivalence of two
programs means that they meet the same specification. According to the operational
approach, reasoning about programs means building a computational model with re-
spect to which the program text is interpreted as executable code.

According to Dijkstra:

The tragedy of today’s world of programming is that, to the extent that it
reasons about programs at all, it does so almost exclusively operationally.

The argument? “With growing size or sophistication of the program, the operational



argument quickly becomes impossible to carry through, and the general adherence to
operational reasoning has to be considered one of the main causes of the persistence of
the software crisis”. Dijkstra believes that, ultimately, real programmers don’t reason
about their programs, “they rather get their substitute for intellectual satisfaction from
not quite understanding what they are doing in their daring irresponsibility and from
the subsequent excitement of choosing the bugs they should not have introduced in the
first place”.

The last quotation reminds us what Bertrand Russell said about mathematics and what
Martin Heidegger wrote about science: “Wissenschaft denkt nicht” (Science does not
think). For Dijkstra, the analoguous situation in mathematics is the distinction between
formal and informal; perhaps, he had in mind situations such as the distinction between
axiomatic and naive set theory.

It makes sense to prove the correctness of an algorithm, but not the correctness of a
program as various authors have argued [21, 26]. Programs are analogues of mathe-
matical models; they may be more or less adequate to code algorithms. Adequacy is
a property which depends on many factors, from pure formal/coding ones to physical
and engineering ones. One can even argue that a “correctness proof” for a program, if
one could imagine such a thing, adds very little to one’s confidence in the program. In
Knuth’s [36] words:

Beware of bugs in the above code: I have only proved it correct, not tried it.

The computer science analogy of the operational-postulational distinction corresponds
to the difference—considered already at the beginning of the 19th century—between
mathematics understood as calculation and mathematics as qualitative conceptual rea-
soning. In the analogy between proving and programming, theorems correspond to al-
gorithms not programs; programs correspond to mathematical models.

5.2 Mathematics = proof?

The role of proof in mathematical modelling is very small: adequacy is the main issue!
As mathematical modelling is closer to coding algorithms into programs, selecting algo-
rithms to code, designing specifications to implement, one can re-phrase the arguments
against the idea of proof of correctness of programs [21, 26] as arguments against the
idea of proof of correctness of mathematical models. Models evolve and become more
and more adequate to the reality they model: however, they are never true. Here is an
illuminating description by Schwartz [49]:

...it may come as a shock to the mathematician to learn that the Schrédinger
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equation for the hydrogen atom ... is not a literally correct description of
this atom, but only an approximation to a somewhat more correct equation
taking account of spin, magnetic dipole, and relativistic effects; that this
corrected equation is itself only an ill-understood approximation to an infinite
set of quantum field-theoretical equations; and finally that the quantum filed
theory besides diverging, neglects a myriad of strange-particle interactions

whose strength and form are largely unknown. ... The physicist, looking
at the original Schrodinger equation, learns to sense it ... and this sense
inspires . ..

For example, engineers use theorems by “plugging in” values and relying on some (phys-
ical) interpretations of the conclusion. This is what makes planes fly and bridges stand.

The modelling component of mathematics appears not only in applications, but also
in the way mathematics develops new concepts. Many important notions in mathe-
matics reached an accepted definition only after a long process of modelling, from an
intuitive, pre-mathematical notion to a more precisely defined, formal one. In the end,
the accepted definition is adopted as a thesis claiming its adequacy [51]. For example,
“Weierstrass’s thesis” is the statement that the intuitive notion of continuity is exten-
sionally equivalent to the notions yielded by the now standard definitions of “continuous
function”. Other examples include: the “function thesis” (identification of a function
with a set of ordered pairs), “Tarski’s thesis” (identification of Tarski’s definition of
truth in a formalised language with the intuitive notion of truth), “the Church-Turing
thesis”, etc. None of these theses can be proved, but various analyses can conclude their
degrees of plausibility/adequacy /applicability. Mathematics in both its practice and
development is an “open-texture” [51].

5.3 Checking proofs

There are many new types of proofs: probabilistic, experimental or hybrid proofs [7, §]
(computation plus theoretical arguments). Reflecting somehow Jean-Francois Lyotard’s
“No truth without money”, Zeilberger [56] has argued in favour of the transition from
rigorous proofs to an “age of semi-rigorous mathematics, in which identities (and per-
haps other kinds of theorems) will carry price tags” measured in the computer and
human resources necessary to prove them with a certain degree of confidence.

Zeilberger [57] sees the evolution of mathematics as follows:

The real work of us mathematicians, from now until, roughly, fifty years
from now, when computers won’t need us anymore, is to make the transition

11



from human-centric math to machine-centric math as smooth and efficient
as possible.

Let’s do the following mental experiment: apply literally to mathematical practice
Hilbert’s requirement for proof stated in Section 2 (in logical terms, the proofs of a
theory form a computable set). Then Anderson’s question, posed at the end of Subsec-
tion 3.2, is not only not surprising, but should be answered in an affirmative way. This
could be a reasonable motivation for the project Flyspeck.

Probabilistically checkable proofs are mathematical arguments that can be checked prob-
abilistically by reading just a few of their bits. In the early 1990’s it was proved that
every proof can be effectively transformed into a probabilistically checkable proof with
only a modest increase in the original proof length. However, the transformation itself
was complex. Recently, a very simple procedure was discovered by Dinur; see the pre-
sentation [48].

Now, feeling a loss of certitude, we should remember that Thales was the first to stim-
ulate his disciples to criticise his assertions. This tradition was later lost, but recovered
with Galilei. With Thales and Galilei we learned that human knowledge is essentially
conjectural (see also [45]). Should mathematics and computer science accept being
guided by this slogan, or is it adequate only for the natural and social sciences?

5.4 Communication and understanding

Of course, no theorem is validated before it is communicated to the mathematical com-
munity (orally and, eventually, in writing). Manin states it clearly:

Proof is not just an argument convincing an imaginary opponent. Not at all.
Proof is the way we communicate mathematical truth.

However, as Rota [46] pointed out:

One must guard, however, against confusing the presentation of mathematics
with the content of mathematics.

Proofs have to be written on paper, which means proofs are physical. From this per-
spective, proofs depend upon the physical universe (see more in [13]). We already have
to cope with existing, extremely long proofs. What about proofs that are too long to be
written down? They may exist in principle, but they are impossible to read.®

8 An exponentially long quantum proof cannot be written down, since that would require an expo-
nential amount of “classical” paper, but a quantum mind could directly perceive the proof, [13].
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In order to be able to amplify human intelligence and prove more complicated theorems
than we can now imagine, we may be forced to accept incomprehensible or only partially
comprehensible proofs. We may be forced to accept the help of machines for mental, as
well as physical, tasks.

If mathematics depends on physics and mathematics is the main tool to understand
physics, don’t we have some kind of circularity? One explanation is that, in Lakatos’s
words, “mathematics is quasi-empirical”, as has been extensively discussed by Chaitin
(see [16, 17]).

Does physical interference combined with the use of computers destroy the understanding

of mathematical facts? One could know that a theorem is true, but not really understand
it! For Chaitin [18] (p. xiii) this is not the case:

To me, you understand something only if you can program it. (You, not
someone else!)

Why? Because [19] (p. 30):

... programming something forces you to understand it better, it forces you
to really understand it, since you are explaining it to a machine.

5.5 Rigour: operational vs. conceptual

Standards of rigour have changed throughout the history of mathematics, and not nec-
essarily from less rigour to more rigour. For Bertrand Russell, certainty has to match
in power religious faith: “I wanted certainty in the kind of way in which people want
religious faith”.

Serre was quoted [47] saying that mathematics is the only producer of “totally reliable
and verifiable” truths. This opinion seems to be contradicted by both Knuth [36]:

... programming demands a significantly higher standard of accuracy. Things
don’t simply have to make sense to another human being, they must make
sense to a computer.

and Thurston [54]:

13



The standard of correctness and completeness necessary to get a program to
work at all is a couple of orders of magnitude higher than the mathematical
community’s standard of valid proofs.

When one considers how hard it is to write a computer program even ap-
proaching the intellectual scope of a good mathematical paper, and how
much greater time and effort have to be put into it to make it “almost” for-
mally correct, it is preposterous to claim that mathematics as we practice it
is anywhere near formally correct.

But we can go further into the past. Old Greek mathematics, with Pythagoras, Plato
and Euclid, was essentially conceptual and this is the reason why they were able to
invent what we call today a mathematical proof. Babylonian mathematics was exclu-
sively operational. The move from an operational to a conceptual attitude in computer
programming is similar to the evolution from Babylonian to Greek mathematics.

Coming to more recent periods in the history of mathematics, we observe the strong
operational aspect of calculus in the 18th century, in contrast with the move to the
predominantly conceptual aspect of mathematical analysis in the 19th century. Euler
is a king of operational mathematics; Riemann and Weierstrass express per excellence
the conceptual attitude. The transition from the former to the latter is represented
by giants such as Abel and Cauchy. When Cauchy believed that he had proved the
continuity of the limit of a convergent sequence of continuous functions, Abel, with no
ironical intention, wrote: “Il semble que le théoreme de Monsieur Cauchy admet des
exceptions.”® But, at that moment, neither of them was able to invent the notion of
uniform convergence and, as a matter of fact, neither convergence nor continuity was
effectively clarified. Only the second half of the 19th century brought their full under-
standing, together with the idea of uniformity, either with respect to convergence or
with respect to continuity. We see here all characteristic features of a transition period,
the transition from the operational to the conceptual attitude.

To stress the two facets of Cauchy’s mathematics, one belonging to the intuitive-operational,
the other to the rigourous-conceptual attitude, let us recall that, despite the fact that
Cauchy is undoubtedly the founder of the exact differential calculus in the modern sense,
he is also the mathematician who was convinced that the continuity of a function implies
its differentiability and hence that any continuous function can be geometrically repre-
sented. We had to wait for Weierstrass and Riemann to understand the gap existing
between some mathematical concepts and their intuitive representation.

However, this evolution does not concern only calculus and analysis. It can be observed
in all fields of mathematics, although the periods in which the transition took place may

Tt seems that the theorem of Mr Cauchy admits exceptions.
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be different for various fields. For instance, in algebraic geometry it took place only in
the 20th century, with the work of Oscar Zarisky. In fact, any conceptual period reaches
its maturity under the form of an operational one, which, in its turn, is looking for a
new level of conceptual attitude. The whole treatise of Bourbaki is a conceptual reaction
to an operational approach. Dirichlet’s slogan asking to replace calculations with ideas
should be supplemented with another, complementary slogan, requiring us to detect an
algorithmic level of concepts.

Can we expect a similar alternation of attitudes in respect to programming? Perhaps it
is too early to answer, taking into account that the whole field is still too young. The
question is not only academic, as the project Flyspeck reminds us.

5.6 Is it meaningful to speak about the truth of axioms?

In Section 2 we argued that mathematical proofs do not produce certain knowledge;
they produce rational belief. The epistemological value of a proof reside in the degree of
belief of its axioms. What is then the value of proof? Is it meaningful to speak about
the truth of axioms?

First, a few more words should be said about axioms and primitive terms. Euclid avoids
reference to primitive terms, but they exist in his Elements, hidden by pseudo-definitions
such as “We call point what has no parts”. Only modern axiomatic systems make ex-
plicit reference to primitive terms. Obviously, programs too could not be conceived in
the absence of some primitive terms. A similar remark is in order about axioms. To
what extent is it meaningful to raise the question about the truth of some axioms? Se-
mantics is a matter of interpretation of a formal system, which, in its turn, has some
primitive terms and some axioms among its bricks. Circularity is obvious. Gddel’s (true)
statements that cannot be proved could not be conceived in the absence of the respective
formal system, which in its turn has among its bricks some primitive terms and some
axioms. Maybe we can refer to another way to understand meaning, a way avoiding
Hilbert’s itinerary? For instance, the way it is understood in C. S. Peirce’s semiotics
or in modern linguistics. But do they have the rigour we expect from a mathematical
approach?

The whole idea of a formal proof is strictly dependent of the idea of a formal system. Is
it meaningful to raise the question whether the Zermelo—Fraenkel axioms for set theory
are or not true? We adopt a convention and it is proved by Godel that if these axioms
are consistent, then they remain consistent by adding the choice axiom or the continuum
hypothesis.

It is interesting to observe that some authors have supplemented the Zermelo—Fraenkel
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axioms with the foundation axiom (aiming to interdict Russell’s sets which are elements
of themselves), while more recently Aczel and Barwise [1] have replaced the foundation
axiom with the anti-foundation axiom, where hypersets are allowed. An object A is a
hyperset if there exists an infinite sequence A(n) such that A(1) = A and for each n,
A(n+1) is an element belonging to A(n). In the particular case when A(n) = A for each
n, we get the Russell sets. So, an axiom was replaced by its negation and the resulting
theory proved to be very interesting. It has applications in mathematics (non-standard
analysis), computer science (data bases, logical modelling of non-terminating compu-
tational processes), linguistics and natural language semantics (situation theory), and
philosophy (the Liar Paradox). The well-known scenario of non-Euclidean geometries
proves to be once more valid.
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