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Abstract

The randomness rate of an infinite binary sequence is characterized by the sequence of
ratios between the Kolmogorov complexity and the length of the initial segments of the
sequence. It is known that there is no uniform effective procedure that transforms one input
sequence into another sequence with higher randomness rate. By contrast, we display such
a uniform effective procedure having as input two independent sequences with positive but
arbitrarily small constant randomness rate. Moreover the transformation is a truth-table
reduction and the output has randomness rate arbitrarily close to 1.

1 Introduction

It is a basic fact that no function can increase the amount of randomness (i.e., entropy) of
a finite structure. Formally, if X is a distribution on a finite set A, then for any function f
mapping A into A, the (Shannon) entropy of f(X) cannot be larger than the entropy of X. As
it is usually the case, the above fact has an analogue in algorithmic information theory: for any
finite binary string x and any computable function f , K(f(x)) ≤ K(x) + O(1), where K(x) is
the Kolmogorov complexity of x and the constant depends only on the underlying universal
machine. The above inequality has an immediate one-line proof, but the analoguous statement
when we move to infinite sequences is not known to hold. For any σ ∈ [0, 1], we say that an
infinite binary sequence x has randomness rate σ, if K(x(1 : n)) ≥ σn for all sufficiently large
n, where x(1 : n) denotes the initial segment of x of length n.1 The question becomes: if
x has randomness rate 0 < σ < 1, is there an effective transformation f such that f(x) has
randomness rate greater than that of x? Unlike the case of finite strings, infinite sequences
with positive randomness rate possess an infinite amount of randomness (even though it is
sparsely distributed) and thus it cannot be ruled out that there may be a way to concentrate
it and obtain a sequence with higher randomness rate.

This is a natural question, first raised by Reimann [Rei04], which has received significant
attention recently (it is Question 10.1 in the list of open questions of Miller and Nies [MN06]).
So far, there exist a series of partial results, mostly negative, obtained by restricting the type
of transformation. Reimann and Terwijn [Rei04, Th 3.10] have shown that for every constant
c < 1, there exists a sequence x such that if f is a many-one reduction, then the randomness rate
of f(x) cannot be larger than c. This result has been improved by Nies and Reimann [NR06]

∗The author is supported by NSF grant CCF 0634830. Part of this work was done while visiting University
of Auckland, New Zealand, partially supported by a CDMTCS grant.

1The randomness rate of x is very close to the notion of Hausdorff dimension of x [May02, Rya84, Sta05];
however since this paper is about handling randomness and not about measure-theoretical issues we prefer the
randomness terminology. We note that connections between partial randomness and Martin-Löf tests have been
established in [Tad02, CST06].
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to wtt-reductions. More precisely, they showed that for all rational c ∈ (0, 1), there exists a
sequence x with randomness rate c such that for all wtt-reductions f , f(x) has randomness
rate ≤ c. Bienvenu, Doty, and Stephan [BDS07] have obtained an impossibility result for
the general case of Turing reductions, which, however, is valid only for uniform reductions.
Relying on the result of Nies and Reimann, they show that for every Turing reduction f and
all constants c1 and c2, with 0 < c1 < c2 < 1, there exists x with randomness rate ≥ c1 such
that f(x), if it exists, has randomness rate < c2. In other words, loosely speaking, no effective
uniform transformation is able to raise the randomness rate from c1 to c2. Thus the question
“Is there any effective transformation that on input σ ∈ (0, 1], ε > 0, and x, a sequence
with randomness rate σ, produces a string y with randomness rate σ + ε ?” has a negative
answer. On the positive side, Doty [Dot07] has shown that for every constant c there exists
a uniform effective transformation f able to transform any x with randomness rate c ∈ (0, 1]
into a sequence f(x) that, for infinitely many n, has the initial segments of length n with
Kolmogorov complexity ≥ (1− ε)n (see Doty’s paper for the exact statement). However, since
Doty’s transformation f is a wtt-reduction, it follows from Nies and Reimann’s result that
f(x) also has infinitely many initial segments with no increase in the Kolmogorov complexity.

In the case of finite strings, as we have observed earlier, there is no effective transformation
that increases the absolute amount of Kolmogorov complexity. However, some positive results
do exist. Buhrman, Fortnow, Newman, and Vereshchagin [BFNV05] show that, for any non-
random string of length n, one can flip O(

√
n) of its bits and obtain a string with higher

Kolmogorov complexity. Fortnow, Hitchcock, Pavan, Vinodchandran, and Wang [FHP+06]
show that for any 0 < α < β < 1, there is a polynomial-time procedure that on input x with
K(x) > α|x|, using a constant number of advice bits (which depend on x), builds a string y
with K(y) ≥ β|y| and y is shorter than x by only a multiplicative constant.

Our main result concerns infinite sequences and is a positive one. Recall that Bienvenu,
Doty and Stephan have shown that there is no uniform effective way to increase the randomness
rate when the input consists of one sequence with positive randomness rate. We show that
if instead the input consists of two such sequences that are independent, then such a uniform
effective transformation exists.

Theorem 1.1 (Main Result) There exists an effective transformation f : Q × {0, 1}∞ ×
{0, 1}∞ → {0, 1}∞ with the following property: If the input is τ ∈ (0, 1] and two indepen-
dent sequences x and y with randomness rate τ , then f(τ, x, y) has randomness rate 1− δ, for
all δ > 0. Moreover, the effective transformation is a truth-table reduction.

Effective transformations are essentially Turing reductions that are uniform in the parameter τ ;
see Section 2. Two sequences are independent if they do not contain much common information;
see Section 3.

2 Preliminaries

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and a sequence is
an element of {0, 1}∞. If x is a string, |x| denotes its length. If x is a string or a sequence
and n, n1, n2 ∈ N, x(n) denotes the n-th bit of x and x(n1 : n2) is the substring x(n1)x(n1 +
1) . . . x(n2). The cardinality of a finite set A is denoted ‖A‖. Let M be a standard Turing
machine. For any string x, define the (plain) Kolmogorov complexity of x with respect to M ,
as

KM (x) = min{|p| | M(p) = x}.
There is a universal Turing machine U such that for every machine M there is a constant c
such that for all x,

KU (x) ≤ KM (x) + c. (1)
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We fix such a universal machine U and dropping the subscript, we let K(x) denote the Kol-
mogorov complexity of x with respect to U . For the concept of conditional Komogorov com-
plexity, the underlying machine is a Turing machine that in addition to the read/work tape
which in the initial state contains the input p, has a second tape containing initially a string
y, which is called the conditioning information. Given such a machine M , we define the
Kolmogorov complexity of x conditioned by y with respect to M as

KM (x | y) = min{|p| | M(p, y) = x}.

Similarly to the above, there exist universal machines of this type and they satisfy the relation
similar to Equation 1, but for conditional complexity. We fix such a universal machine U , and
dropping the subscript U , we let K(x | y) denote the Kolmogorov complexity of x conditioned
by y with respect to U .

We briefly use the concept of prefix-free complexity, which is defined similarly to plain
Kolmogorov complexity, the difference being that in the case of prefix-free complexity the
domain of the underlying machines is required to be a prefix-free set.

Let σ ∈ [0, 1]. A sequence x has randomness rate σ if K(x(1 : n)) ≥ σ · n, for almost every
n (i.e., the set of n’s violating the inequality is finite).

An effective transformation f is represented by a two-oracle Turing machine Mf . The
machine Mf has access to two oracles x and y, which are binary sequences. When Mf makes
the query “n-th bit of first oracle?” (“n-th bit of second oracle?”), the machine obtains x(n)
(respectively, y(n)). On input (τ, 1n), where τ is a rational (given in some canonical represen-
tation), Mf outputs one bit. We say that f(τ, x, y) = z ∈ {0, 1}∞, if for all n, Mf on input
(τ, 1n) and working with oracles x and y halts and outputs z(n). (Effective transformations are
more commonly called Turing reductions. If τ would be embedded in the machine Mf , instead
of being an input, we would say that z is Turing-reducible to (x, y). Our approach emphasizes
the fact that we want a family of Turing reductions that is uniform in the parameter τ .) In
case the machine Mf halts on all inputs and with all oracles, we say that f is a truth-table
reduction.

3 Independence

We need to require that the two inputs x and y are really distinct, or in the algorithmic-
information theoretical terminology, independent.

Definition 3.1 Two infinite binary sequences x, y are independent if for all natural numbers
n and m,

K(x(1 : n)y(1 : m)) ≥ K(x(1 : n)) + K(y(1 : m))−O(log(n) + log(m)).

The definition says that, modulo additive logarithmic terms, there is no shorter way to
describe the concatenation of any two initial segments of x and y than having the information
that describes the initial segments.

It can be shown that the fact that x and y are independent is equivalent to saying that for
every natural numbers n and m,

K(x(1 : n) | y(1 : m)) ≥ K(x(1 : n))−O(log(n) + log(m)). (2)

and
K(y(1 : m) | x(1 : n)) ≥ K(y(1 : m))−O(log(n) + log(m)). (3)
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Thus, if two sequences x and y are independent, no initial segment of one of the sequence
can help in getting a shorter description of any initial segment of the other sequence, modulo
additive logarithmical terms.

In our main result, the input consists of two sequences x and y that are independent and
that have Kolmogorov rate σ for some positive constant σ < 1. We sketch an argument showing
that such sequences exist. In our sketch we take σ = 1/2.

We start with an arbitrary random (in the Martin-Löf sense) sequence x. Next using
the machinery of Martin-Löf tests relativized with x we infer the existence of a sequence y
that is random relative to x. From the theory of Martin-Löf tests, we deduce that there
exists a constant c such that for all m, H(y(1 : m) | x) ≥ m − c, where H(·) is the prefix-
free version of complexity. Since H(y(1 : m)) ≤ m + O(log m), for all m, we conclude that
H(y(1 : m) | x) ≥ H(y(1 : m)) − O(log m), for all m. Therefore, H(y(1 : m)) | x(1 : n)) ≥
H(y(1 : m) | x) − O(log n) ≥ H(y(1 : m)) − O(log n + log m), for all n and m. Since the
prefix-free complexity H(·) and the plain complexity K(·) are within O(log m) of each other,
it follows that K(y(1 : m)) | x(1 : n)) ≥ K(y(1 : m))−O(log n+log m)), for all n and m. This
implies K(x(1 : m)y(1 : n)) ≥ K(x(1 : n)) + K(y(1 : m)) − O(log(n) + log(m)), for all n, m.
Next we construct x′ and y′ by inserting in x and respectively y, the bit 0 in all even positions,
i.e., x′ = x10x20 . . . (where xi is the i-th bit of x) and y′ = y10y20 . . .. Clearly, K(x(1 : n)) and
K(x10 . . . xn0) are within a constant of each other, and the same holds for y and y′. It follows
that x′ and y′ are independent and have randomness rate 1/2.

4 Proof of Main Result

4.1 Proof Overview

We present in a simplified setting the main ideas of the construction. Suppose we have two
independent strings x and y of length n such that K(x) = σn and K(y) = σn, for some σ > 0.
We want to construct a string z of length m such that K(z) > (1−ε)m. The key idea (borrowed
from the theory of randomness extractors) is to use a function E : {0, 1}n × {0, 1}n → {0, 1}m

such that every large enough rectangle of {0, 1}n×{0, 1}n maps about the same number of pairs
into all elements of {0, 1}m. We say that such a function is regular (the formal Definition 4.8 has
some parameters which quantify the degree of regularity). To illustrate the idea, suppose for a
moment that we have a function E : {0, 1}n×{0, 1}n → {0, 1}m that, for all subsets B ⊆ {0, 1}n

with ‖B‖ ≈ 2σn, has the property that any a ∈ {0, 1}m has the same number of preimages in
B×B, which is of course ‖B×B‖/2m. Then for any A ⊆ {0, 1}m, E−1(A)∩ (B×B) has size
‖B×B‖

2m · ‖A‖. Let us take z = E(x, y) and let us suppose that K(z) < (1− ε)m. Note that the
set B = {u ∈ {0, 1}n | K(u) = σn} has size ≈ 2σn, the set A = {v ∈ {0, 1}m | K(v) < (1−ε)m}
has size < 2(1−ε)m and that x and y are in E−1(A)∩ (B×B). By the above observation the set
E−1(A) ∩ (B ×B) has size ≤ 2σn·2σn

2εm . Since E−1(A) ∩ (B ×B) can be enumerated effectively,
any pair of strings in E−1(A) ∩B ×B can be described by its rank in a fixed enumeration of
E−1(A) ∩B ×B. In particular (x, y) is such a pair and therefore K(xy) ≤ 2σn− εm. On the
other hand, since x and y are independent, K(xy) ≈ K(x) + K(y) = 2σn. The contradiction
we have reached shows that in fact K(z) ≥ (1− ε)m.

A function E having the strong regularity requirement stated above may not exist. Fortu-
nately, using the probabilistic method, it can be shown (see Section 4.3) that, for all m ≤ n0.99σ,
there exist a function E : {0, 1}n × {0, 1}n → {0, 1}m such that all strings a ∈ {0, 1}m have at
most 2(‖B × B‖/2m) preimages in any B × B as above (instead of (‖B × B‖/2m) preimages
in the ideal, but not realizable, setting we used above). Once we know that it exists, such
a function E can be found effectively by exhaustive search. Then the argument above, with
some minor modifications, goes through. In fact, when we apply this idea, we only know that
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K(x) ≥ σn and K(y) ≥ σn and therefore we need the function E to satisfy a stronger variant
of regularity. However, the main idea remains the same.

Thus there is an effective way to produce a string z with Kolmogorov complexity (1− ε)m
from two independent strings x and y of length n and with Kolmogorov complexity σn. Recall
that, in fact, the input consists of two independent infinite sequences x and y with randomness
rate τ > 0. To take advantage of the procedure sketched above which works for finite strings,
we split x and y into finite strings x1, x2, . . . , xn, . . ., and respectively y1, y2, . . . , yn, . . ., such
that the blocks xi and yi, of length ni, have still enough Kolmogorov complexity, say (τ/2)ni,
conditioned by the previous blocks x1, . . . , xi−1 and y1, . . . , yi−1. The splitting of x and y into
blocks and the properties of the blocks are presented in Section 4.2. Then using a regular
function Ei : {0, 1}ni ×{0, 1}ni → {0, 1}mi , we build zi = Ei(xi, yi). By modifying slightly the
argument described above, it can be shown that K(zi | x1, . . . , xi−1, y1, . . . , yi−1) > (1− ε)mi,
i.e., zi has high Kolmogorov complexity even conditioned by the previous blocks x1, . . . , xi−1

and y1, . . . , yi−1. It follows that K(zi | z1, . . . , zi−1) is also close to mi. We finally take
z = z1z2 . . ., and using the above property of each zi, we infer that for every n, the prefix of z
of length n has randomness rate > (1− ε)n. In other words, z has randomness rate (1− ε), as
desired.

4.2 Splitting the two inputs

The two input sequences x and y from Theorem 1.1 are broken into finite blocks x1, x2, . . . , xi, . . .
and respectively y1, y2, . . . , yi, . . .. The division is done in such a manner that xi (respectively,
yi) has high Komogorov complexity rate conditioned by the previous blocks x1, . . . , xi−1 (re-
spectively by the blocks y1, . . . , yi−1). The following lemma shows how this division is done.

Lemma 4.1 (Splitting lemma) Let x ∈ {0, 1}∞ with randomness rate τ , for some constant
τ > 0. Let 0 < σ < τ . For any n0 sufficiently large, there is n1 > n0 such that

K(x(n0 + 1 : n1) | x(1 : n0)) > σ(n1 − n0).

Furthermore, there is an effective procedure that on input n0, τ and σ calculates n1.

Proof Let σ′ be such that 0 < σ′ < τ − σ. Take

n1 =
⌈1− σ

σ′
⌉
n0.

Suppose K(x(n0 + 1 : n1) | x(1 : n0)) ≤ σ(n1−n0). Then x(1 : n1) can be reconstructed from:
x(1 : n0), the description of x(n0 + 1 : n1) given x(1 : n0), n0, extra constant number of bits
describing the procedure. So

K(x(1 : n1)) ≤ n0 + σ(n1 − n0) + log n0 + O(1)
= σn1 + (1− σ)n0 + log n0 + O(1)
≤ σn1 + σ′n1 + log n0 + O(1)
< τn1 (if n0 suffic. large) ,

(4)

which is a contradiction if n1 is sufficiently large.
Now we define the points where we split x and y, the two sources.
Take a, the point from where the Splitting Lemma holds. For the rest of this section we

consider and b =
⌈

1−σ
σ′

⌉
.

The following sequence represents the cutting points that will define the blocks. It is defined
recursively, as follows: t0 = 0, t1 = a, ti = b(t1+. . .+ti−1). It can be seen that ti = ab(1+b)i−2,
for i ≥ 2.
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Finally, we define the blocks: for each i ≥ 1, xi := x(ti−1 + 1 : ti) and yi = y(ti−1 + 1 : ti),
and ni := |xi| = |yi| = ab2(1 + b)i−3 (the last equality holds for i ≥ 3).

We also denote by x̄i the concatenation of the blocks x1, . . . , xi and by ȳi the concatenation
of the blocks y1, . . . , yi.

Lemma 4.2 1. K(xi | x̄i−1) > σni, for all i ≥ 2.

2. log |xi| = Θ(i) and log |x̄i| = Θ(i), for all i.

Proof The first point follows from the Splitting Lemma 4.1, and the second point follows
immediately from the definition of ni (which is the length of xi) and of ti (which is the length
of x̄i).

The following facts state some basic algorithmic-information theoretical properties of the
blocks x1, x2, . . . . and y1, y2, . . ..

We first recall the following basic fact (for example, see Alexander Shen’s lecture notes [She00]).

Theorem 4.3 For all finite binary strings u and v,

(i) K(vu) ≤ K(u) + K(v | u) + O(log K(u) + log K(v)).

(ii) K(vu) ≥ K(u) + K(v | u)−O(log K(u) + log K(v)).

The hidden constants depend only on the universal machine that defines the complexity K(·).

Lemma 4.4 For all finite binary strings u and v,∣∣K(v | u)−
(
K(vu)−K(u)

)∣∣ < O(log |u|+ log |v|).

Proof Theorem 4.3 implies
∣∣K(v | u) −

(
K(vu) − K(u)

)∣∣ < O(log K(u) + log K(v)). Since
K(u) ≤ |u|+ O(1) and K(v) ≤ |v|+ O(1), the conclusion follows.

Lemma 4.5 For all i and j,

(a)
∣∣K(ȳix̄j)−

(
K(ȳi) + K(x̄j)

)∣∣ < O(i + j).

(b)
∣∣K(x̄iȳj)−

(
K(x̄i) + K(ȳj)

)∣∣ < O(i + j).

Proof We prove (a) ((b) is similar).

K(ȳix̄j) ≤ K(ȳi) + K(x̄j) + O(log(K(ȳi) + log(K(x̄j))
≤ K(ȳi) + K(x̄j) + O(log |ȳi|+ log |x̄j |)
= K(ȳi) + K(x̄j) + O(i + j).

(5)

The first line follows from Theorem 4.3 (i) (keeping in mind that K(v|u) ≤ K(v) + O(1)). For
the last line we took into account that log |x̄j | = O(j) and log |ȳi| = O(i).

On the other hand,

K(ȳix̄j) ≥ K(ȳi) + K(x̄j)−O(log |ȳi|+ log |x̄j |)
= K(ȳi) + K(x̄j)−O(i + j).

(6)

The first line follows from the independence of x and y.
Combining equations (5) and (6), the conclusion follows.

Lemma 4.6 For all i and j,

(a)
∣∣K(xi | x̄i−1ȳj)−K(xi | x̄i−1)

∣∣ < O(i + j).

(b)
∣∣K(yi | x̄j ȳi−1)−K(yi | ȳi−1)

∣∣ < O(i + j).
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Proof We prove (a) ((b) is similar). We first evaluate K(xi | x̄i−1ȳj). From Lemma 4.4,∣∣K(xi | x̄i−1ȳj)−
(
K(xix̄i−1ȳj)−K(x̄i−1ȳj)

)∣∣ < O(i + j). (7)

It is easy to check that K(xix̄i−1ȳj) is within O(i) from K(x̄i−1xiȳj). Thus, we can substitute
K(xix̄i−1ȳj) by K(x̄iȳj) and obtain,∣∣K(xi | x̄i−1ȳj)−

(
K(x̄iȳj)−K(x̄i−1ȳj)

)∣∣ < O(i + j). (8)

Next, by Lemma 4.5,
∣∣K(x̄iȳj) −

(
K(x̄i) + K(ȳj)

)∣∣ < O(i + j) and
∣∣K(x̄i−1ȳj) −

(
K(x̄i−1) +

K(ȳj)
)∣∣ < O(i + j). Plugging these inequalities in Equation (8), we get∣∣K(xi | x̄i−1ȳj)−

(
K(x̄i)−K(x̄i−1)

)∣∣ < O(i + j). (9)

We next evaluate K(xi | x̄i−1). From Lemma 4.4,∣∣K(xi | x̄i−1)−
(
K(xix̄i−1)−K(x̄i−1)

)∣∣ < O(i + j). (10)

Using the inequality
∣∣K(xix̄i−1)−K(x̄i−1xi)

∣∣ < O(1), we obtain∣∣K(xi | x̄i−1)−
(
K(x̄i)−K(x̄i−1)

)∣∣ < O(i + j). (11)

From Equations (9) and (11), the conclusion follows.

Lemma 4.7 For all i, K(xiyi | x̄i−1ȳi−1) ≥ K(xi | x̄i−1ȳi−1) + K(xi | x̄i−1ȳi−1)−O(i).

Proof The conditional version of the inequality in Theorem 4.3 holds true, i.e., for all strings
u, v and w, K(uv | w) ≥ K(u | w) + K(v | uw)− O(log K(u) + log K(v)). Thus, keeping into
account that K(xi) ≤ |xi|+ O(1) = 2O(i) and K(yi) ≤ |yi|+ O(1) = 2O(i), we get

K(xiyi | x̄i−1ȳi−1) ≥ K(xi | x̄i−1ȳi−1) + K(yi | xix̄i−1ȳi−1)−O(i).

Note that K(yi | xix̄i−1ȳi−1) and K(yi | x̄iȳi−1) are within a constant of each other, and
therefore

K(xiyi | x̄i−1ȳi−1) ≥ K(xi | x̄i−1ȳi−1) + K(yi | x̄iȳi−1)−O(i).

Next, we note that K(yi | x̄iȳi−1) ≥ K(yi | ȳi−1)− O(i) ≥ K(yi | x̄i−1ȳi−1)− O(i), where the
first inequality is derived from Lemma 4.6. The conclusion follows.

4.3 Regular functions

The construction of z from x and y proceeds block-wise: we take as inputs the blocks xi and yi

and, from them, we build zi, the i-th block of z. The input strings xi and yi, both of length ni,
have Kolmogorov complexity σni, for some positive constant σ, and the goal is to produce zi,
of length mi (which will be specified later), with Kolmogorov complexity (1−ε)mi, for positive
ε arbitrarily small. This resembles the functionality of randomness extractors and, indeed, the
following definition captures a property similar to that of extractors that is sufficient for our
purposes.

Definition 4.8 A function f : {0, 1}n×{0, 1}n → {0, 1}m is (σ, c)-regular, if for any k1, k2 ≥
σn, any two subsets B1 ⊆ {0, 1}n and B2 ⊆ {0, 1}n with ‖B1‖ = 2k1 and ‖B2‖ = 2k2 have the
following property: for any a ∈ {0, 1}m,

‖f−1(a) ∩ (B1 ×B2)‖ ≤
c

2m
‖B1 ×B2‖.
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Remarks: Let [N ] be the set {1, . . . , N}. We identify in the standard way {0, 1}n with
[N ], where N = 2n. We can view [N ] × [N ] as a table with [N ] rows and [N ] columns and
a function f : [N ] × [N ] → [M ] as an assignment of a color chosen from [M ] to each cell of
the table. The function f is (σ, c)-regular if in any rectangle of size [K] × [K], with k ≥ σn,
no color appears more than a fraction of c/M times. (The notion of regularity is interesting
for small values of c because it says that in all rectangles, unless they are small, all the colors
appear approximately the same number of times; note that if c = 1, then all the colors appear
the same number of times.)

We show using the probabilistic method that for any σ > 0, (σ, 2)-regular functions exist.
Since the regularity property for a function f (given via its truth table) can be effectively
tested, we can effectively construct (σ, 2)- regular functions by exhaustive search

We take f : [N ] × [N ] → [M ], a random function. First we show that with positive
probability such a function satisfies the definition of regularity for sets A and B having size
2k, where k is exactly dσne. Let’s temporarily call this property the weak regularity property.
We will show that in fact weak regularity implies the regularity property as defined above (i.e.,
the regularity should hold for all sets B1 and B2 of size 2k1 and respectively 2k2 , for k1 and k2

greater or equal dσne).

Lemma 4.9 For every σ > 0, if M ≤ N0.99σ, then it holds with probability > 0 that f satisfies
the (σ, 2)- weak regularity property as defined above.

Proof .
Fix B1 ⊆ [N ] with ‖B1‖ = Nσ (to keep the notation simple, we ignore truncation issues).
Fix B2 ⊆ [N ] with ‖B2‖ = Nσ.
Let j1 ∈ B1 × B2 and j2 ∈ [M ] be fixed values. As discussed above, we view [N ]× [N ] as

a table with N rows and N columns. Then B1 × B2 is a rectangle in the table, j1 is a cell in
the rectangle, and j2 is a color out of M possible colors.

Clearly, Prob(f(j1) = j2) = 1/M .
By Chernoff bounds,

Prob
((

no. of j2-colored cells in B1 ×B2

Nσ ·Nσ
− 1

M

)
>

1
M

)
< e−(1/M)·Nσ ·Nσ ·(1/3).

By the union bound

Prob( the above holds for some j2 in [M ] ) < Me−(1/M)·Nσ ·Nσ ·(1/3). (12)

The number of rectangles B1 ×B2 is

(
N
Nσ

)
·
(

N
Nσ

)
≤

((
eN
Nσ

)Nσ
)2

= e2Nσ · e2Nσ ·(1−σ) ln N . (13)

Note that if there is no rectangle B1 × B2 and j2 as above, then f satisfies the weaker
(σ, 2)-regularity property.

Therefore we need that the product of the right hand sides in equations (12) and (13 ) is
< 1.

This is equivalent to

(1/M) ·N2σ · 1/3− ln(M) > 2Nσ + 2Nσ · (1− σ) ln N,

which holds true for M ≤ N0.99σ.
As promised, we show next that weak regularity implies regularity.
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Lemma 4.10 Let f : {0, 1}n × {0, 1}n → {0, 1}m such that for every B1 ⊆ {0, 1}n with
‖B1‖ = 2k, for every B2 ⊆ {0, 1}n with ‖B2‖ = 2k, and for every a ∈ {0, 1}m it holds that

‖f−1(a) ∩ (B1 ×B2)‖ ≤ p.

Then for every k1 ≥ k and every k2 ≥ k, for every B′
1 ⊆ {0, 1}n with ‖B′

1‖ = 2k1, for every
B′

2 ⊆ {0, 1}n with ‖B′
2‖ = 2k2, and for every a ∈ {0, 1}m it holds that

‖f−1(a) ∩ (B′
1 ×B′

2)‖ ≤ p.

Proof . We partition B′
1 and B′

2 into subsets of size 2k. So, B′
1 = A1 ∪ A2 ∪ . . . ∪ As, with

‖Ai‖ = 2k, i = 1, . . . , s and B2 = C1 ∪ C2 ∪ . . . ∪ Ct, with ‖Cj‖ = 2k, j = 1, . . . , t. Then,

‖f−1(a) ∩ (B′
1 ×B′

2)‖ =
∑s

i=1

∑t
j=1‖f−1(a) ∩ (Ai × Cj)‖

≤
∑s

i=1

∑t
j=1 p · ‖Ai × Cj‖

= p · ‖B′
1 ×B′

2‖.

4.4 Increasing the randomness rate

We proceed to the proof of our main result, Theorem 1.1.
We give a “global” description of the effective mapping f : Q×{0, 1}∞×{0, 1}∞ → {0, 1}∞.

It will be clear how to obtain the n-th bit of the output in finitely many steps, as it is formally
required.

Construction
Input: τ ∈ Q ∩ (0, 1], x, y ∈ {0, 1}∞ (the sequences x and y are oracles to which the

procedure has access).
Step 1: Split x into x1, x2, . . . , xi, . . . and split y into y1, y2, . . . , yi, . . ., as described in

Section 4.2 taking σ = τ/2 and σ′ = τ/4.
For each i, let |xi| = |yi| = ni (as described in Section 4.2).
By Lemma 4.2, K(xi | x̄i−1) > σni and Kx(yi | ȳi−1) > σni.
Step 2: As discussed in Section 4.3, for each i, construct by exhaustive search Ei : {0, 1}ni×

{0, 1}ni → {0, 1}mi a (σ/2, 2)-regular function, where mi = i2.
We recall that this means that for all k1, k2 ≥ (σ/2)ni, for all B1 ⊆ {0, 1}ni with ‖A‖ ≥ 2k1 ,

for all B2 ⊆ {0, 1}ni with ‖B2‖ ≥ 2k2 , and for all a ∈ {0, 1}mi ,

‖E−1
i (a) ∩B1 ×B2‖ ≤

2
2mi

‖B1 ×B2‖.

We take zi = Ei(xi, yi).
Finally z = z1z2 . . . zi . . ..

It is obvious that the above procedure is a truth-table reduction (i.e., it halts on all inputs).
In what follows we will assume that the two input sequences x and y have randomness rate

τ and our goal is to show that the output z has randomness rate (1− δ) for any δ > 0.

Lemma 4.11 For any ε > 0, for all i sufficiently large, K(zi | x̄i−1ȳi−1) ≥ (1− ε) ·mi.

Proof Suppose K(zi | x̄i−1ȳi−1) < (1− ε) ·mi.
Let A = {z ∈ {0, 1}mi | K(z | x̄i−1ȳi−1) < (1− ε) ·mi}. We have ‖A‖ < 2(1−ε)mi .
Let t1, t2, B1, B2 be defined as follows:

• t1 = K(xi | x̄i−1ȳi−1).

Since K(xi | x̄i−1) > σni, and taking into account Lemma 4.6, it follows that t1 >
σni −O(i) > (σ/2)ni, for all i sufficiently large.
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• t2 = K(yi | x̄i−1ȳi−1).

By the same argument as above, t2 > (σ/2)ni.

• B1 = {x ∈ {0, 1}ni | K(x | x̄i−1ȳi−1) ≤ t1}.

• B2 = {y ∈ {0, 1}ni | K(y | x̄i−1ȳi−1) ≤ t2}.

We have ‖B1‖ ≤ 2t1+1. Take B′
1 such that ‖B′

1‖ = 2t1+1 and B1 ⊆ B′
1.

We have ‖B2‖ ≤ 2t2+1. Take B′
2 such that ‖B′

2‖ = 2t2+1 and B2 ⊆ B′
2.

The bounds on t1 and t2 imply that B′
1 and B′

2 are large enough for Ei to satisfy the
regularity property on them. In other words, for any a ∈ {0, 1}mi ,

‖E−1
i (a) ∩B′

1 ×B′
2‖ ≤

2
2mi

‖B′
1 ×B′

2‖.

So,
‖E−1

i (A) ∩B1 ×B2‖ ≤ ‖E−1
i (A) ∩B′

1 ×B′
2‖

=
∑

a∈A‖E
−1
i (a) ∩B′

1 ×B′
2‖

≤ 2(1−ε)mi 2
2mi ‖B′

1 ×B′
2‖

≤ 2t1+t2−εmi+3.

There is an algorithm that on input x1, x2, . . . , xi−1 and y1, y2, . . . , yi−1, enters an infinite
loop during which it enumerates all the elements of the set E−1

i (A) ∩ B1 × B2. Therefore,
the Kolmogorov complexity of any element of E−1

i (A) ∩ B1 × B2 is bounded by its rank in
some fixed enumeration of this set plus a constant number of bits describing the enumeration
procedure.

Formally, for every (u, v) ∈ E−1
i (A) ∩B1 ×B2,

K(uv | x̄i−1ȳi−1) ≤ t1 + t2 − εmi + O(1) = t1 + t2 − Ω(i2).

In particular,
K(xiyi | x̄i−1ȳi−1) ≤ t1 + t2 − Ω(i2).

On the other hand, by Lemma 4.7,

K(xiyi | x̄i−1ȳi−1) ≥ K(xi | x̄i−1ȳi−1) + K(yi | xix̄i−1ȳi−1)−O(i)
= t1 + t2 −O(i).

The last two inequations are in conflict, and thus we have reached a contradiction.

The following lemma concludes the proof of the main result.

Lemma 4.12 For any δ > 0, the sequence z obtained by concatenating in order z1, z2, . . ., has
randomness rate at least 1− δ.

Proof Take ε = δ/4.
By Lemma 4.11, K(zi | x̄i−1ȳi−1) ≥ (1− ε) ·mi, for all i sufficiently large.
This implies K(zi | z1 . . . zi−1) > (1 − ε)mi − O(1) > (1 − 2ε)mi (because each zj can be

effectively computed from xj and yj).
By induction, it can be shown that K(z1 . . . zi) ≥ (1−3ε)(m1 + . . .+mi). For the inductive

step, we have

K(z1z2 . . . zi) ≥ K(z1 . . . zi−1) + K(zi | z1 . . . zi−1)−O(log(m1 + . . . + mi−1) + log(mi))
≥ (1− 3ε)(m1 + . . . + mi−1) + (1− 2ε)mi −O(log(m1 + . . . + mi))
> (1− 3ε)(m1 + . . . + mi).
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Now consider some z′ which is between z1 . . . zi−1 and z1 . . . zi, i.e., for some strings u and
v, z′ = z1 . . . zi−1u and z1 . . . zi = z′v. Suppose K(z′) < (1− 4ε)|z′|.

Then z1 . . . zi−1 can be reconstructed from:
(a) the descriptor of z′, which takes (1− 4ε)|z′| ≤ (1− 4ε)(m1 + . . . + mi) bits,
(b) the string u which takes |z′| − |z1 . . . zi−1| ≤ mi bits
(c) O(log mi) bits needed for separating u from the descriptor of z′ and for describing the

reconstruction procedure.
This implies that

K(z1 . . . zi−1) ≤ (1− 4ε)(m1 + . . . + mi) + mi + O(log mi)
= (1− 4ε)(m1 + . . . + mi−1) + (2− 4ε)mi + O(log mi)
=

(
1− 4ε + (2− 4ε) mi

m1+...+mi−1

)
· (m1 + . . . + mi−1) + O(log mi)

< (1− 3ε)(m1 + . . . + mi−1).

(The last inequality holds if mi
m1+...+mi−1

goes to 0, which is true for mi = i2.) This is a
contradiction.

Thus we have proved that for every n sufficiently large, K(z(1 : n)) > (1− δ)n.

The main result can be stated in terms of Hausdorff dimension, a notion introduced in
measure theory. The Hausdorff dimension of a sequence x ∈ {0, 1}∞ turns out to be equal to
lim inf K(x(1:n))

n (see [May02, Rya84, Sta05]).

Corollary 4.13 For any τ > 0, there is a truth-table reduction f such that if x ∈ {0, 1}∞
and y ∈ {0, 1}∞ are independent and have Hausdorff dimension at least τ , then f(x, y) has
Hausdorff dimension 1. Moreover, f is uniform in the parameter τ .

We next observe that Theorem 1.1 can be strengthened by relaxing the requirement regarding
the independence of the two input sequences. For a function g : N → R+, we say that two
sequences x ∈ {0, 1}∞ and y ∈ {0, 1}∞ have dependency g, if for all natural numbers n and
m,

K(x(1 : n)) + K(y(1 : m))−K(x(1 : n)y(1 : m)) ≤ O(g(n) + g(m)).

In Theorem 1.1, the assumption is that the two input sequences have dependency g(n) = log n.
Using essentially the same proof as the one that demonstrated Theorem 1.1, one can obtain
the following result.

Theorem 4.14 For any τ > 0, there exist 0 < α < 1 and a truth-table reduction f :
{0, 1}∞ × {0, 1}∞ → {0, 1}∞ such that if x ∈ {0, 1}∞ and y ∈ {0, 1}∞ have dependency nα

and randomness rate τ , then f(x, y) has randomness rate 1− δ, for any positive δ. Moreover,
f is uniform in the parameter τ .

Another strengthening of the main result can be obtained by relaxing the requirement on the
randomness rates of the two input sequences x and y. In Theorem 1.1 it is required that the
initial segments of x and y have Kolmogorov complexity at least τ · n, for a positive constant
τ . In fact, using the same proof technique, it follows that it is enough if these initial segments
have Kolmogorov complexity Ω(log n).

Theorem 4.15 For any δ > 0, there exist a constant C and a truth-table reduction f :
{0, 1}∞ × {0, 1}∞ → {0, 1}∞ with the following property:

If the input sequences x and y are independent and satisfy K(x(1 : n)) > C · log n and
K(y(1 : n)) > C ·log n, for every n, then the output z = f(x, y) satisfies K(z(1 : n)) > (1−δ)·n,
for every n.
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