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Abstract

Generalised Łukasiewicz languages are simply described languages hav-
ing good information-theoretic properties. An especially desirable property is
the one of being a prefix code. This paper addresses the question under which
conditions a generalised Łukasiewicz language is a prefix code. Moreover, an
upper bound on the delay of decipherability of a generalised Łukasiewicz lan-
guage is derived.
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1 Introduction
The Łukasiewicz language over a two letter alphabet (see [1]) is the context-free
language defined by the grammar S → aSS | b. It is a simple deterministic lan-
guage (cf. [5]), thus prefix-free. In the papers [6, 9] this language was generalised
in two ways: First languages generated by grammars S → aSn | b with n ≥ 2

were admitted. The languages thus specified are also simple deterministic and
prefix-free. In what follows we will not necessarily require n ≥ 2. Unless specified
otherwise, our results will hold for arbitrary n ∈ IN.

Secondly, we substitute the letters of a and b by languages C and B. This
results in a language defined by the equation

Ł = C ∪ B · Łn (1)
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These languages Ł are—depending on the languages C and B—not necessarily
context-free and will be called, in the sequel, (C,B)-n-Łukasiewicz-languages or,
simply, generalised Łukasiewicz languages.

In [9] we confined to the case where C ∪ B is a code and C ∩ B = ∅. In this case,
the resulting (C,B)-n-Łukasiewicz-language Ł is also a code, but not necessarily
prefix-free. The aim of this paper is to give some conditions under which the re-
sulting code Ł is prefix-free. Moreover, a formula for the delay of decipherability
of Ł depending on those of C and B is derived.

Next we introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .}

we denote the set of natural numbers. Let X be an alphabet of cardinality |X| =

r ≥ 2. By X∗ we denote the set (monoid) of words on X, including the empty word e.
For w, v ∈ X∗ let w · v be their concatenation. This concatenation product extends
in an obvious way to subsets W,V ⊆ X∗. For a language W let W∗ :=

⋃
i∈IN Wi be

the submonoid of X∗ generated by W. Furthermore |w| is the length of the word
w ∈ X∗ and A(W) is the set of all finite prefixes of strings in W ⊆ X∗. We shall
abbreviate w ∈ A(v) by w v v.

As usual language W ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · · vk for
w1, . . . , wl, v1, . . . , vk ∈ W implies l = k and wi = vi.

A code W is called a prefix code provided v v w implies v = w for v,w ∈ W .

2 Generalised Łukasiewicz languages
In this section we first present some general properties of the languages defined
by Eq. (1) which can be found in Section 2 of [9]. Then we give a simple sufficient
condition for the prefix-freeness of Łukasiewicz languages.

Lemma 1 Let C,B ⊆ X∗ \ {e} and Ł be defined by Eq. (1).

1. Ł ⊆ C ∪ B · (C ∪ B)∗ · Cn ⊆ (C ∪ B)∗

2. Let C ∩ B = ∅. If C ∪ B is a code then Ł is a code, and if C ∪ B is a prefix code
then Ł is also a prefix code.

3. If w ∈ (B ∪ C)i and v1, . . . , vi·n ∈ Ł then w · v1 · · · vi·n ∈ Ł∗.

4. A(Ł∗) = A((C ∪ B)∗)

We prove only 1. and 3, the other properties are proved in Proposition 2.1 of [9].
Proof. We have Ł =

⋃∞
i=0 Łi where Ł0 := C and Łi+1 := Łi ∪B ·Łn

i . Then one easily
verifies by induction on i that Łi ⊆ C ∪ B · (C ∪ B)∗ · Cn.

For the proof of 3. we show by induction on i that the assertion holds for every
w ∈ (B ∪ C)i.

If w ∈ (B ∪ C)0 = {e} then w ∈ Ł∗. Assume w ∈ (B ∪ C)i+1. Then w = v · u
for v ∈ (B ∪ C) and u ∈ (B ∪ C)i. By the induction hypothesis, u · v1 · · · vi·n ∈ Łm

for suitable m ∈ IN. Consequently, u · v1 · · · v(i+1)·n ∈ Łm+n has a decomposition
u · v1 · · · v(i+1)·n = u1 · · ·un · u ′ where uj ∈ Ł and u ′ ∈ Łm.
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If v ∈ C then v ·u · v1 · · · v(i+1)·n ∈ Łm+n+1 and the assertion is true. If v ∈ B then
v · u1 · · ·un ∈ Ł whence v · u1 · · ·un · u ′ ∈ Ł∗ and the assertion is also true. ❏

Next we are going to investigate, under which conditions the Łukasiewicz lan-
guage Ł is a prefix code. It is known that Ł might be a prefix code if C ∪ B is not a
prefix code.

It is obvious that Ł cannot be a prefix code unless C is a prefix code and A(B ·
Łn)∩C = ∅ = A(C)∩B ·Łn. The following theorem shows that in addition to these
necessary conditions it suffices to require that B be a prefix code.

Lemma 2 Let C,B be prefix codes and Ł be defined by the equation Ł = C ∪ B · Łn.
If A(B · Łn) ∩ C = ∅ = A(C) ∩ B · Łn then Ł is a prefix code.

Proof. Assume w,w ′ ∈ Ł are words with w @ w ′ and |w| + |w ′| be minimal. From
the hypothesis it follows immediately that w,w ′ /∈ C.

Then w = v · w1 · · ·wn and w ′ = v ′ · w ′
1 · · ·w ′

n where v, v ′ ∈ B and wj, w
′
j ∈ Ł.

Since B is a prefix code, v = v ′. Thus wj @ w ′
j or w ′

j @ wj for some j = 1, . . . , n

contradicting the minimality of |w| + |w ′|. ❏

Example 2.2 of [9] shows that the converse of Lemma 2 is not true, that is, Ł might
be a prefix code without requiring that B be a prefix code.

Moreover, the following examples show that the conditions A(B · Łn) ∩ C = ∅
and A(C) ∩ B · Łn = ∅ are likewise independent under the assumptions that C ∪ B

is a code, C ∩ B = ∅ and C, B are prefix codes.

Example 3 Consider B := {aa} and C := {aab, bba} and Ł = C∪B ·Ł2. Then C∪B

is a code, C and B are prefix codes, C ∩ B = ∅ and A(C) ∩ B · Łn = ∅ but Ł is not a
prefix code because C ⊆ A(B · Łn). ❏

Example 4 Let C := {aab, aaabaabb}, B := {a} and Ł = C∪B ·Ł2. Then C∪B is a
code, C and B are prefix codes, C ∩ B = ∅ and A(B · Łn) ∩ C = ∅ but a · aab · aab v
aaabaabb, and Ł is not a prefix code. ❏

3 Factorisation and the Delay of Decipherability
In this section we investigate the delay of decipherability of Ł ⊆ X∗. To this end
we consider factorisations of words w ∈ W∗. As usual, a tuple (w1, . . . , wl) is called
a W-factorisation of w provided w = w1 · · ·wl. For the sake of brevity we shall say
that w has the W-factorisation w = w1 · · ·wl. Thus, a language W is a code if and
only if every word w ∈ X∗ has at most one W-factorisation.

The deciphering (or decoding) of a message w ∈ W∗ consists in finding the
(unique) W-factorisation w = w1 · · ·wl of w. If we consider the deciphering as
a parsing process proceeding from left to right we are confronted with the task,
given a prefix w ′ v w, to estimate as soon as possible valid W-factorisations of
this prefix w ′. This can be based only on the possible W-factorisations of prefixes
w ′′ v w ′.
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According to [2, 3, 4, 8], a code W has a delay of decipherability (or deciphering
delay) d ≥ 0 if and only if for all v, v ′ ∈ W the relation v · v1 · · · vd v v ′ · u where
v1, . . . , vd ∈ W and u ∈ W∗ implies v = v ′. For the above mentioned parsing
process this means that once we have a W-factorisation of a prefix w ′′ v w into
d + 1 factors w ′′ = v · v1 · · · vd then the first factor v is definitively valid, that is,
every W-factorisation of w starts with the factor v ∈ W.

Observe that a code W ⊆ X∗ of delay of decipherability d satisfies

Wd+1 ∩ A(W) = ∅ . (2)

We say that a code W has a bounded delay of decipherability provided W has a
delay of decipherability d for some d ∈ IN. In particular, W is a prefix code iff W

has a delay of decipherability 0.
A further generalisation of the delay of decipherability is the delay function

dW : W → IN ∪ {∞} (see [3, 4, 8]) defined as follows. First, we say that a word
v ∈ W has a delay of decipherability of d with respect to W ⊆ X∗ provided for all
v ′ ∈ W the relation v · v1 · · · vd v v ′ · u where v1, . . . , vd ∈ W and u ∈ W∗ implies
v = v ′. Cast into words of our parsing process this means that once we have a
W-factorisation of a prefix w ′′ v w ′ v w into d + 1 factors starting with the factor
v ∈ W this factor v is definitively valid. Now define dW : W → IN ∪ {∞} as follows.

dW(w) := inf {d : w has a delay of decipherability of d w.r.t. W} (3)

Thus W has a delay of decipherability of d iff dW(w) ≤ d for all w ∈ W, and W

has a bounded delay of decipherability iff the function dW is bounded on W. We
say that a code W has a finite delay of decipherability1, provided the function dW

maps W to IN, that is, has never the value ∞.
We conclude this section with a theorem on Łukasiewicz languages derived

from codes having a bounded delay of decipherability.

Theorem 5 Let C be a prefix code, A(B ·Łn)∩C = ∅ and let C∪B be a code having
a delay of decipherability of at most n. Then the generalised Łukasiewicz language
Ł defined by Ł = C ∪ B · Łn is a prefix code.

Proof. Assume the contrary, that is, there are v, v ′ ∈ Ł such that v @ v ′ and
assume |v| + |v ′| to be minimal. It is obvious that v /∈ C. Then v = u ·w1 · · ·wn with
u ∈ B and wi ∈ Ł ⊆ (C ∪ B)∗ \ {e}. Now, Eq. (2) shows that v ′ /∈ C.

Consequently, v ′ = u ′ · w ′
1 · · ·w ′

n where u ′ ∈ B and w ′
i ∈ Ł ⊆ (C ∪ B)∗ \ {e}.

Since C ∪ B has a delay of decipherability of n this implies u = u ′ which in turn
implies, that there is a j, 1 ≤ j ≤ n, such that wj @ w ′

j or w ′
j @ wj, contradicting

the minimality of |v| + |v ′|. ❏

The subsequent examples show, on the one hand, that the bound n in Theorem 5
cannot be improved but, on the other hand, that there are cases where it is not
tight.

1The reader is warned that the book [2] uses the term finite delay of decipherability to denote
codes of bounded delay of decipherability.
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The first example is a code C∪B of delay of decipherability n + 1 for which Ł =

C ∪ B · Łn is not a prefix code. Its construction is similar to the one of Theorem 5.1
in [4].

Example 6 Let B := {b, bab}, C := {ajbaj+1b : 1 ≤ j ≤ 2n} and Ł = C ∪ B · Łn. Then
C is a prefix code and C ∩ A(B · Łn) = ∅.

Moreover, C ∪ B has a delay of decipherability n + 1, for the words w1 := b ·
aba2b · · ·a2n−1ba2nb and w2 := bab·a2ba3b · · ·a2nba2n+1b are the words having the
longest (C∪B)-factorisations in which the first factors differ. Since w1, w2 ∈ B ·Cn,
this shows also that Ł is not a prefix code. ❏

The second example is a code C ∪ B having a delay of decipherability of d for
which Ł, independently of n ≥ 1, is a prefix code.

Example 7 Let X = {a, b}, C := {adb} and B := {a}. Then C ∪ B has a delay of
decipherability of d and Ł = C ∪ B · Łn (n ≥ 1) is a prefix code. ❏

4 The Delay of Decipherability of Łukasiewicz Lan-
guages

In the preceding section we observed that the construction of Eq. (1) might turn
non-prefix codes into prefix codes. By a more subtle consideration of the delay
function dC∪B for specific words we are able to obtain a result more general than
Theorem 5. First we mention the following result, which is a simple consequence
of the fact that the (C ∪ B)-factorisation of a word w ∈ Ł∗ is longer than its Ł-
factorisation.

Corollary 8 Let C∪B a code, C∩B = ∅ and Ł = C∪B ·Łn. Then dŁ(w) ≤ dC∪B(w),
for every w ∈ C.

The aim of this last section is to investigate in more detail the delay function of de-
cipherability of generalized Łukasiewicz languages. Before proceeding to the main
result of this section we need an auxiliary property of Łukasiewicz languages.

Proposition 9 Let C∪B be a code, C∩B = ∅, Ł = C∪B ·Łn and let w, v ∈ Ł having
(C∪B)-factorisations w = w1 · · ·wl and v = w1 · · ·wk with l ≤ k, respectively. Then
k = l.

Proof. If l < k by Lemma 1.3 we have wl+1 · · ·wk · u(k−l)·n ∈ Ł∗, for u ∈ C ⊆ Ł.
Consequently, the word w ′ = w·(wl+1 · · ·wk ·u(k−l)·n) = v·(u(k−l)·n) has two different
Ł-factorisations, which contradicts Lemma 1.2. ❏

After this preparation we derive the main theorem of this section.

Theorem 10 Let C∪B be a code, and let dC∪B : C∪B → IN∪ {∞} its delay function.
If Ł = C ∪ B · Łn and w ∈ Ł has a (C ∪ B)-factorisation w = w0 ·w1 · · ·wl then

dŁ(w) ≤ max{dC∪B(wi) − l + i : 0 ≤ i ≤ l} ∪ {0} .
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Proof. For w ∈ C the assertion is Corollary 8.
Let w ∈ B · Łn and consider its (C ∪ B)-factorisation w = w0 · w1 · · ·wl. We

proceed by induction on i. Let d := max{dC∪B(wi) − l + i : 0 ≤ i ≤ l} ∪ {0} and
consider the relation w · (u1 · · ·ud) v v · u where ui, v ∈ Ł and u ∈ Ł∗.

Since Ł ⊆ (C ∪ B)∗, we may consider the (C ∪ B)-factorisations w0 · w1 · · ·wl ·
(u1 · · ·ud) v v0 ·v1 · · · vk ·u where v = v0 ·v1 · · · vk is the (C∪B)-factorisation of v ∈ Ł.
From dC∪B(w0) ≤ d + l we obtain w0 = v0.

Now, canceling equal factors from the left, we proceed by induction and obtain
wi = vi for i ≤ min{l, k}. Then w = v follows from Proposition 9. ❏

With Lemma 1.1 we obtain the following corollary.

Corollary 11 Let C ∪ B be a code of a delay of decipherability d, C ∩ B = ∅ and
Ł = C ∪ B · Łn. Moreover let dC∪B(v) ≤ d ′ for all v ∈ C. Then Ł has a delay of
decipherability dŁ ≤ max{d ′, d − n}.

Proof. It suffices to show that every w ∈ B · Łn has dŁ(w) ≤ d − n. To this end
consider a C ∪ B-factorisation w = w0 ·w1 · · ·wl. According to Lemma 1.1 the last
n words wl−n+1, . . . wl are in C. Now the assertion follows from Theorem 10. ❏

Again Examples 6 and 7 show, on the one hand, that the bound in Theorem 10
and Corollary 11 cannot be improved but, on the other hand, that there are cases
where it is not tight.

Example 6. (continued) We have dC∪B(v) = 0 for v ∈ C, dC∪B(bab) = n and
dC∪B(b) = n + 1. This shows dŁ = 1 because Ł is not a prefix code. ❏

Example 7. (continued) Here dC∪B(adb) = 0 and dC∪B(a) = d, but Ł = C ∪ B · Łn

(n ≥ 1) is a prefix code. ❏

Concluding Remark
It was observed in [6, 9] that Łukasiewicz languages have, on the one hand, re-
markable information-theoretic properties and are, on the other hand, simply to
describe (cf. [1, 5]). A simpler class of languages is the class of languages definable
by finite automata which does not possess those properties.

In the papers [10, 11] the information-theoretic properties of generalised Łuka-
siewicz languages were employed to demonstrate in a (computationally or lan-
guage-theoretic) simple way the non-coincidence of Hausdorff dimension and Haus-
dorff measure for sets defined by infinite iterated function systems and their clo-
sures. Here mainly Łukasiewicz languages Ł derived from prefix codes C∪B were
used in order to obtain iterated function systems with nice topological properties.
The present paper shows that it is possible to obtain prefix-free Łukasiewicz lan-
guages also from non-prefix codes. This might hint to further examples in the
sense of the papers [10, 11].

The preceding section (Corollaries 8 and 11 and Theorem 10) shows that at the
cost of a slightly more complicated internal structure of a generalised Łukasiewicz
language its deciphering behaviour (as a code) might become less complicated.
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