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Abstract

We show how powerful algorithms recently developed for counting lattice points
and computing volumes of convex polyhedra can be used to compute probabilities
of a wide variety of events of interest in social choice theory. Several illustrative
examples are given.

1 Introduction

Much research has been undertaken in recent decades with the aim of quantifying the
probability of occurrence of certain types of election outcomes for a given voting rule
under fixed assumptions on the distribution of voter preferences. Most prominent among
these outcomes of interest are the so-called voting paradoxes, which have been shown to
be unavoidable, hence the interest in how commonly they may occur. The survey [11]
discusses these questions and gives a summary of results up to 2002.

In very many cases, particularly under the IAC hypothesis on voter preferences, the
calculations involved amount simply to counting integer lattice points inside convex poly-
topes. In the social choice literature, two main methods have been used to carry out
such computations. The first, dating back several decades, decomposes the polytope into
smaller pieces each of which can be treated by elementary methods involving simplifica-
tion of multiple sums. This method works fairly well for simple problems but requires
considerable ingenuity and perseverance to carry out even for moderately complicated
ones. More recently, more powerful methods have been introduced in [12, 10] but there
are several recent instances where even these methods did not suffice to solve natural
questions about 3-candidate elections.
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The purpose of the present paper is to point out that there is an established math-
ematical theory of counting lattice points in convex polytopes (and the closely related
issue of computing the volume of such a region), which has been partially rediscovered by
workers in social choice theory. The area has recently been the subject of active research
(see [4] for a good summary). Several more efficient new algorithms have been devised
and implemented in publicly available software.

We aim to apply these new methods to answer questions in voting theory that have
proven beyond the reach of previous authors. In addition we corroborate, correct, and
unify the derivation of, some previously published results by using this methodology. We
believe that the solution of many hitherto difficult problems can now be relegated to a
trivial computation. This should open the way for social choice theorists to tackle more
difficult and realistic problems.

The basic idea is that many sets of voting situations that are of interest can be
characterized by linear equations and inequalities. The variables are usually the numbers
of voters with each of the m! possible preference orders, where m is the number of
alternatives. The set of such (in)equalities defines a convex polytope in Rd for some d,
given by Ax ≤ b for some matrix A (here d ≤ m! and the inequality may be strict,
because we may first use equality relations to eliminate variables and reduce dimension).
Each lattice point will correspond to a voting situation in the desired set. The probability
that a randomly chosen situation is manipulable is therefore a straightforward ratio of
lattice point counts. Dividing through by n, the total number of voters, yields a convex
polytope P in Rd, independent of n. For a given number of voters, the dilation nP
describes the set of lattice points that we wish to enumerate.

2 Counting lattice points in convex polytopes

We give only a brief description here. For more information we recommend [4].
The Ehrhart series of the rational polytope P is a rational generating function

F (t) = P (t)/Q(t) =
∑

n ant
n whose nth Maclaurin coefficient an gives the number of

lattice points inside the dilation nP . The function f : n 7→ an is known to be a polynomial
of degree d if all the vertices of P are integral; otherwise it is a quasipolynomial of some
minimal period e. That is, the restriction of f to each fixed congruence class modulo e
is a polynomial.

It is known that e is a divisor of m, where m is an integer such that such that all
coordinates of vertices of mP are integers. The least such m is the least common multiple
of the denominators of the coordinates of the vertices of P when each coordinate is
written in reduced terms. However there are examples where e < m. An algorithm for
determining e was presented in [12].

Many questions in voting theory are of most interest in the asymptotic case where
n → ∞. For small n, issues such as the method of tiebreaking used assume great
importance, whereas in the limit such issues disappear (the situations in which ties occur
correspond in the limit to the boundary of P ). We focus on limiting results in the present
paper.

The leading coefficient of the quasipolynomial f is the same for all congruence classes:
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only the lower degree terms differ. It is well known that this leading coefficient is precisely
the volume of P . For many purposes, knowledge of this coefficient is sufficient. The the
limiting probability under IAC as n → ∞ is simply the volume of P divided by the
volume of X where X is the analogously defined polytope that describes all possible
voting situations.

To compute the number of lattice points in nP , if that amount of detail is desired, we
may use one of several algorithms. An attractive approach pioneered by Barvinok makes
heavy use of rational generating functions; this is implemented in the software LattE

[5, 13]. There are also several algorithms available for volume computation; see [1] for a
survey of algorithms, a hybrid of which has been implemented in vinci [20] for floating
point computation only. One of these algorithms has been used in the Maple package
Convex [3], and uses exact rational arithmetic.

The software LattE gives the Ehrhart series as standard output. In order to extract
the quasipolynomial formula for f(n) from the Ehrhart series, we may use interpolation.
On each congruence class modulo e, we must evaluate f(n) at d + 1 distinct values of
n in this class. Given the explicit expression F (t) = P (t)/Q(t) and a computer algebra
system, such evaluations are trivially obtained (the an satisfy a linear recurrence relation
with constant coefficients). The Lagrange interpolation formula then yields the desired
formula for the particular polynomial that is applicable for the given congruence class.

Another method of extraction is to decompose F (t) into partial fractions. Note that
F (0) = 1 and we can arrange so that Q(t) factors as

∏
j(1 − αjt) for some complex

numbers αj, possibly not distinct. After the partial fraction decomposition of F (t), we
need only extract coefficients from terms of the form (1−αt)−k, which is easily done (the
coefficient of tn of (1 − αt)−k is precisely αn

(
n+k−1

k−1

)
). This shows how the periodicity

occurs: the factorization of Q(t) will introduce complex roots of unity and the terms
corresponding to these will simplify on each congruence class. Note that e = 1 (f(n) is
a single polynomial) if and only if Q factors completely over R.

In fact since we know a priori that the coefficient of tn is polynomially growing, all
α with |α| 6= 1 can be ignored, since their contribution must cancel (otherwise we would
obtain terms exponentially growing or decreasing in n). Unfortunately this observation
does not help in the present case, because the Ehrhart series has a denominator of the
form

∏
(1− tai), so all the αj above are in fact roots of unity.

In summary, the Ehrhart series contains all information required to solve the problem
of counting lattice points in polytopes parametrized by a single parameter n. The hardest
step is usually determining the minimal period e.

3 Examples

In this section we compute, using the recipe above, a few probabilities under IAC that
have been considered in the recent social choice literature. We emphasize problems where
older methods have not yielded an answer, but also check results obtained by previous
authors using older methods. Some of these earlier results appear to be incorrect.
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3.1 Manipulability

We first consider the probability under IAC that a voting situation in a 3-candidate
election is manipulable by some coalition. Counterthreats are not considered — we
assume that some group of voters with incentive to manipulate will not be opposed by
the other, naive, voters. See [19, 6] for more discussion of these (standard) assumptions.

For the classical rules plurality and antiplurality, the answer is known: 7/24 and
14/27 respectively [15, 16]. These results were derived by the earliest methods described
above. However, for the Borda rule, no such result has been derived even using the
more sophisticated methods. A good numerical approximation to the limit has been
obtained. In [6] the authors used the method of [12] to obtain bounds on the solution
but could not carry out the full computation. Using their method requires interpolation,
hence computing the first 6e coefficients of the Ehrhart series, where e is the minimal
period of the quasipolynomial. They showed that e > 48, and since they computed these
coefficients by exhaustive enumeration, it was not possible to carry out the computation
to the end (the number of voting situations is of order n5). They estimated a value of
0.5025 for the limit.

However with more powerful tools the answer is easy. We let n1, . . . , n6 denote the
number of voters with sincere preference order abc, acb, bac, bca, cab, cba respectively, and
let xi = ni/n. Then

∑
i xi = 1 and xi ≥ 0.

We shall eliminate x6 throughout using the sole equality constraint
∑

i xi = 1. In
other words we look at the projection onto the subspace x6 = 0. Since we are dividing
by the volume of the projection of the simplex the exact scale factor is unimportant.
This projection is defined by the conditions xi ≥ 0 and

∑5
i=1 xi ≤ 1 — we call these

the standard inequalities. The volume in R5 of this simplex is easily computed to be
1/5! = 1/120.

In [6] linear systems describing this situation for the Borda rule were derived. We
present here a simpler system and compute the limiting probability of manipulability of
the Borda rule under IAC. As shown in [19] we may assume without loss of generality
that a wins, b is second, and c last in the election. This means we must multiply our final
answer by 6 since this is one of the 3! possible permutations of the candidates. Hence to
compute probabilities we will multiply by 3!5! = 720.

The volume required is given by inclusion-exclusion as vol(Rb)+vol(Rc)−vol(Rb∩Rc)
where Rb, Rc respectively denote the region for which manipulation in favour of b or c
is possible. We make all inequalities non-strict, since we are not really interested in fine
details of lower-order terms of f , but strict inequalities do not lead to any change in the
basic method.

The conditions describing the sincere outcome reduce, after elimination of x6, to

2x1 + 3x3 + 2x4 − x5 ≥ 1; (a beats b (sincere)) (3.1)

2x1 + 3x2 − x4 + 2x5 ≥ 1; (b beats c (sincere)) (3.2)

while the conditions describing the outcome after manipulation amount to

3x1 + 4x2 + 3x5 ≤ 2 (b beats a (strategic)) (3.3)

x1 + 2x2 + 2x5 ≤ 1 (b beats c (strategic)). (3.4)
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Now Rb is defined by the standard inequalities and those in (3.1) – (3.4). Also Rc is
obtained by applying the permutation b ↔ c, which induces the permutation x1 ↔
x2, x3 ↔ x5, x4 ↔ x6, and Rbc is just given by the union of the two sets of inequalities
defining Rb and Rc.

The package Convex [3] immediately yields the answer when given this input. The
respective volumes of Rb, Rc, Rbc are 371/559872, 881/6531840, 170873/1714608000 and
the required limit is precisely 132953/264600 ≈ 0.5024678760.

The large denominators in the fractions above give a clue to the difficulty of this
problem. Note that this package also computes the vertices of the polytope. The least
common multiple of the denominators of the coordinates of the vertices is 72 for Rb, 504
for Rc, 1260 for Rbc. Thus the minimum period e is a divisor of 23 · 32 · 5 · 7 = 2520. The
Ehrhart series Fb, Fc, Fbc given by LattE are such that when Fb + Fc − Fbc is simplified,
its denominator is a product of cyclotomic polynomials (minimal polynomials for roots
of unity). The corresponding roots of unity required are of orders whose least common
multiple is also 2520. So we are still faced with the major task of computing e. It is
still an open problem as to whether there exists an algorithm which runs in polynomial
time (in the input size) when the dimension is fixed. A polynomial time algorithm to
determine whether an integer p is equal to e was presented in [21] but has not been
implemented in software as far as we are aware. Since we are not particularly interested
in lower degree terms of the Ehrhart polynomial, we do not proceed further at present.

3.2 Condorcet phenomena

See the two surveys by Gehrlein [8, 9] for more information about previous work on this
topic.

In [11] Gehrlein and Lepelley state “A very large number of studies (probably more
than 50% of the studies that have been devoted to probability calculations in social
choice theory) have been conducted to develop representations for the probability that
Condorcet’s Paradox will occur, and for the Condorcet efficiency of various rules, with
the assumptions of IC and IAC.”

Condorcet’s Paradox occurs in a voting situation when there is no Condorcet
winner — that is, no one candidate beats all others when only pairwise comparisons are
considered. This occurrence is independent of the voting rule being used. To compute
its likelihood, we compute the complementary event.

Suppose that we have 3 alternatives a, b, c. Let C be the event that a is the Condorcet
winner. This yields inequalities that boil down to

2x1 + 2x2 + 2x3 ≥ 1 (a beats b pairwise); (3.5)

2x1 + 2x2 + 2x5 ≥ 1 (a beats c pairwise). (3.6)

Let PC be the polytope defined by these and the standard inequalities. Then Convex

yields vol(PC) = 1/384, so that Condorcet’s Paradox occurs with asymptotic probability
1− 3 · 5!/384 = 1/16 for IAC with 3 alternatives. This is of course a known result dating
back several decades.

Similarly we may compute the Condorcet efficiency of a given rule, namely the
conditional probability that it elects the Condorcet winner given that this winner exists.
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P |C A|C B|C (A ∩B)|C (A ∩ P )|C (B ∩ P )|C B|(P ∩ C) B|(A ∩ C)
0.88148 0.62963 0.91111 0.61775 0.53040 0.81821 0.92282 0.98113

Table 1: (Joint) Condorcet efficiencies of the standard positional rules under IAC, 3
candidates

For a given scoring rule defined by weights (1, λ, 0), let Xλ be the event that a is the
winner when this rule is used. Clearly Pr(Xλ) = 1/3.

These conditions describing Xλ amount to

x1 + (1 + λ)x2 + (2λ− 1)x3 + (λ− 1)x4 + 2λx5 ≥ λ (a beats b with rule λ) (3.7)

2x1 + (2− λ)x2 + (1 + λ)x3 + (1− λ)x4 + λx5 ≥ 1 (a beats c with rule λ). (3.8)

The Condorcet efficiency of rule λ is Pr(Xλ∩C)/ Pr(C) which equals 3·5!(16/15) vol(Pλ∩
PC). In the special cases λ = 0, 1/2, 1 of plurality, Borda, antiplurality, respectively,
we obtain 119/135, 41/45, 17/27. These last three results were obtained long ago by
Gehrlein.

We can consider further intersections of such events. For example, Gehrlein has
computed limiting results under IC for the conditional probability that rule λ chooses
the Condorcet winner given that Borda does, that Borda does given that rule λ does, and
that both rules choose the Condorcet winner given that it exists. The answers to these
questions are easily found for IAC using the above methods and are listed in Table 1.
These have not previously been published as far as we are aware. In Table 1 we let A|C
denote the event that antiplurality chooses the Condorcet winner given that it exists,
B|(P ∩C) the probability that Borda chooses the Condorcet winner given that plurality
does, etc. These can be computed easily using the events C and Xλ above. For example,
the entry B|(P∩C) corresponds to the probability of the event that Borda and Condorcet
agree given that plurality and Condorcet agree. This is simply the volume of the polytope
P1/2 ∩ PC ∩ P0 divided by the volume of P0 ∩ PC (the factor of 3 cancels out because we
are computing conditional probabilities via P (E1|E2) = P (E1 ∩ E2)/P (E1)).

We consider even more intersections of such events in the next section.
In [2] the value of λ for which the positional rule with weights (1, λ, 0) is most Con-

dorcet efficient was determined. It is an algebraic irrational number given as the root
of a polynomial of degree 8 and to 5 decimal places equals 0.37228. The corresponding
value of the Condorcet efficiency is approximately 0.92546, only slightly more than that
for Borda.

To use this particular value of λ in computations similar to those above, it is probably
best to switch to software that performs floating point computations in order to compute
volumes. One such is vinci. We obtain, for example, the joint Condorcet efficiency of
the optimal rule and the Borda rule equals, to 5 decimal places, 0.89183.

We finish here by discussing Borda’s Paradox. Some rules can elect a Condorcet
loser, namely a candidate that is beaten by every other when pairwise comparisons are
made. The probability of this event for plurality and antiplurality has been studied
under IAC in [14], and it has long been known to be zero for Borda. The methods in
this section can be applied directly, since we need only replace the Condorcet winner
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conditions by the same ones with the direction of the inequality reversed. This shows
that Borda’s Paradox occurs for plurality with probability 1/36, agreeing with [14]. The
corresponding results for Borda and antiplurality are 0 and 17/576, corroborating the
previous results. The probability that the most Condorcet efficient rule above elects the
Condorcet loser is, as one might expect, very small: approximately 0.00131.

3.3 When do all common rules elect the same winner?

For three-alternative elections, all positional voting rules elect the same winner in a
given situation if and only if both plurality and antiplurality elect the same winner, since
the vector of scores is a convex combination of those for the two extreme rules. The
probability of this event has been investigated under IC but not under IAC as far as we
are aware. In [18] Merlin, Tataru and Valognes also investigated the probability under
IC that all positional rules and all Condorcet efficient rules yield the same winner (in
this case, all scoring runoff rules also yield this same winner).

We again suppose that a is the winner. We want to compute the probability of the
event P∩A as described in the previous section. The relevant polytope has 18 vertices and
m = 12. Its volume is 113/77760 and so the limiting probability that all positional rules
yield the same winner for 3 alternatives under IAC is 113/216 ≈ 0.52315 (this confirms
a result in [10]). We could also investigate the relationship between, say, plurality and
Borda. They agree with probability 89/108 ≈ 0.82407, whereas antiplurality and Borda
agree with probability 1039/1512 ≈ 0.68717.

The probability that all Condorcet rules and all positional rules elect the same winner
given that the Condorcet winner exists is obtained easily via computation of Pr(P∩C∩A)
as above. The answer is 3437/6480. The polytope involved has 29 vertices and m = 12.

We must also consider the case when no Condorcet winner exists. There are two
cases corresponding to the two cycles a, b, c, a and a, c, b, a. In the first case, [18] shows
that the rules all agree if and only if all positional rules give the ranking a, b, c, and this
occurs if and only if both plurality and antiplurality give that ordering. The computa-
tion is straightforward as above and the probability of this event is only 5/10368. The
contribution from the cyclic case is therefore 32 times this, or, 5/324, and the final result
for the probability that all rules agree is 10631/20736 ≈ 0.51268.

We can also consider the probability that two rules agree in their whole ranking, not
just in the choice of winner. This is easily computed similarly to above: plurality and
antiplurality agree on their whole ranking with probability 8/27 ≈ 0.29630, while Borda
and plurality agree with probability 61/108 ≈ 0.56481. Borda and antiplurality also
agree with probability 61/108, which is clear by symmetry in any case.

3.4 Abstention and Participation Paradoxes

In [17] Lepelley and Merlin discuss various ways in which voters can attempt to manip-
ulate an election by abstaining from voting. All scoring runoff rules and Condorcet rules
suffer from this problem. Although abstaining turns out to be a dominated strategy
for scoring runoff rules, it is still of interest to compute the probability that a situation
may be manipulated in this way. Lepelley and Merlin carry this out under IC and IAC
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Rules Probability of electing same winner
Antiplurality and Borda 0.68717

Antiplurality and plurality (hence all scoring rules) 0.52315
Plurality and Borda 0.82407
All common rules 0.51268

Table 2: Probability of agreement of various rules under IAC, 3 candidates

for scoring runoff rules based on plurality, antiplurality and Borda. For the latter (the
Nanson rule) the limiting probability was not computed exactly (Table 5 of [17] refers to
results of Monte Carlo simulation). Note that the table appears to have several errors.
We compute some exact values here.

We use the linear system given in [17]. Suppose that c eliminated first and a then
beats b in the runnoff. The Positive Participation Paradox occurs when voters ranking a
first are added to the electorate, and yet a then loses. This cannot happen when plurality
is used at the first stage, but for other rules it can happen that b now loses the first stage,
and a subsequently loses the runoff against c. Note that only voters with preference order
acb can cause this to occur, and it can only occur when c originally beats a pairwise.

The system describing this set of voting situations contains the inequalities stating
that a beats b and b beats c using the given scoring rule, and also that a beats b pairwise.
In addition we have another constraint as described in [17] (note that n6 in the first
equation on p.58 of that paper should be −n6). Carrying out the (by now routine)
computation we obtain 1/72 ≈ 0.13889 which confirms the simulation result 0.14 referred
to above. Note that the polytope involved has only 6 vertices and 6 facets but m = 18;
if e = 18 (which we have not checked), it would be difficult to compute the Ehrhart
polynomial using the old methods, which probably explains why only simulation results
were obtained in the paper cited above.

Similarly we may compute the result for plurality and antiplurality runoff, for each of
several other participation paradoxes. The results for the negative participation, positive
abstention and negative abstention paradoxes (see [17] for definitions and characteriza-
tions of the polytopes) are respectively 1/48, 1/96, 1/72 confirming the earlier simulation
results 0.020, 0.010, 0.14.

3.5 The referendum paradox

This gives an example where the variables describing our polytopes are slightly different.
In [7] the referendum or Compound Majority Paradox is studied. In the simplest

case there are N equal sized districts each having n voters. There are two candidates a
and b and voters in each district use majority rule to decide which candidate wins each
district. The candidate winning a majority of districts is the winner of the election; the
paradox occurs when this candidate would have lost if simple majority had been used in
the union of all districts.

Among other things, the authors of [7] derive the probability of occurrence for N =
3, 4, 5 under IAC using the older methods and state that they are not able to extend it to
N ≥ 6. Using the methods of the present paper it is easy to perform the computations
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for at least a few more values of N . Let ni denote the number of voters voting for a in
district i.The relevant set turns out to be described (ignoring ties for simplicity) by the
union of polytopes of the form

ni ≥ N/2 for 1 ≤ i ≤ k (a wins k districts)

0 ≤ ni ≤ N/2 for k + 1 ≤ i ≤ N (b wins N − k districts)∑
i

ni ≤ Nn/2 (b wins overall)

for bN/2c + 1 ≤ k ≤ N − 1. The polytope Pn corresponding to k must have volume
multiplied by 2

(
N
k

)
to account for the symmetries of the problem. Note that there are

(n + 1)N situations to consider and so the leading term in n of the Ehrhart polynomial
gives the probability required.

Doing the analogous computation for N = 3 and N = 4 we obtain (as n → ∞, in
other words computing the volume of Pn/n) results agreeing with [7]. However already
for N = 5 we obtain 61/384 as opposed to their result 55/384. For N = 7 we have
9409/46080. The most complicated corresponding polytope in the last case has 36 vertices
and 11 facets. We did not attempt to find the maximum value of N for which our software
could obtain an answer; the answer is instantaneously given for N = 7.

4 Summary and discussion of future work

We have shown that a wide variety of natural probabilistic questions for 3-alternative
elections under IAC can be answered by applying standard algorithms for counting lattice
points in, and computing volumes of, convex polytopes. For 4 or more alternatives the
computations are conceptually the same but necessarily more complicated. However, the
scope for extending results in the 3-candidate case to 4 or more candidates is obviously
higher than for the older methods, which now appear to be completely superseded. One
important point to notice is that many algorithms for volume computation have running
times that are very sensitive to the number of defining hyperplanes and the number of
vertices. Thus finding the most efficient description of the input system is important.
It is certainly clear that further progress in this area will require researchers in social
choice theory to understand in some detail how the fastest algorithms for lattice point
counting and volume computation actually work. This may even lead to proofs for larger
(or general) numbers of candidates when the polytopes concerned have a particularly
nice structure.

Many questions naturally arise from our work here. One obvious line of attack is
to try to find the optimal parameter for 3-alternative scoring rules that minimizes the
probability of a certain undesirable behaviour occurring. The present authors are already
engaged in carrying this out for the case of (naive, coalitional) manipulability. Numerical
results obtained in [19] show that the answer may well be plurality, but this has never
been proved. An attack on this problem along the lines of the approach in the present
paper would require computation of volumes of a polytope whose defining constraints
depend linearly in a parameter λ, and this requires considerable work as shown in [2].
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Understanding of how to carry out such a computation would help in understanding the
variation between positional rules. For example, the probability of electing a Condorcet
loser is of order 0.03 for both plurality and antiplurality, but an order of magnitude
smaller near the Borda rule, and as a function of λ is very flat there. Quantifying this
type of variation analytically may show, for example, that it is not worth the trouble of
replacing Borda by the Condorcet-optimal positional rule.

Another direction is to consider other probability models. For simplicity here we
have not considered some common assumptions such as single-peaked preferences and the
Maximal Culture Condition. Many computations in these cases reduce to ones identical
in spirit to those we have undertaken here. More general Polya-Eggenberger distributions
would lead to the more difficult issue of integrals of nonconstant probability densities over
polytopes, but some results may be forthcoming there.

Note added 5 May 2006. Today, while preparing the present paper for submis-
sion, the authors became aware of completely independent work by Lepelley, Louichi
and Smaoui which covers very similar ground. The fact that two groups of researchers
discovered this approach almost simultaneously shows that the time has indeed come
for these methods to be assimilated by the social choice community! The only example
in common between the two papers is the computation of the limit 132953/264600 for
Borda manipulability, which underlines the breadth of applicability of these methods.
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[1] Benno Büeler, Andreas Enge, and Komei Fukuda. Exact volume computation for
polytopes: a practical study. In Polytopes—combinatorics and computation (Ober-
wolfach, 1997), volume 29 of DMV Sem., pages 131–154. Birkhäuser, Basel, 2000.
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