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Abstract

This paper describes the derivation of the T-complexity and T-in-
formation theory from the decomposition of finite strings, based on the
duality of strings and variable-length T-codes. It further outlines its sim-
ilarity to the string parsing algorithm by Lempel and Ziv. In its first
version [15], it was intended as a summary of work published mainly by
Titchener and Nicolescu. Apart from minor corrections, the present ex-
tended version incorporates feedback from previous readers and presents
new results obtained since.

1 A brief introduction to T-codes

This paper first gives an introduction to T-codes and their construction tech-
nique, as this is fundamental for the understanding of the T-decomposition al-
gorithm that underpins the T-complexity measure. It also assists in its physical
interpretation.

T-codes [3, 4, 11] are similar to Huffman codes in that they are codes with
variable-length codewords. Depending on the source symbol probabilities, a
Huffman code may also be a T-code. In fact, any T-code set could theoretically
have been constructed as a result of a Huffman code construction algorithm.
By inference, every T-code set is complete, a property also called exhaustive by
some authors. In complete codes, all internal nodes of the (Huffman) decoding
tree are fully populated. Moreover, like Huffman codes, T-codes are prefix codes,
again a property that is also – somewhat confusingly – known as prefix-freeness,
implying that no codeword in the set is a proper prefix of another.

Similarities largely end there, however. Most Huffman codes are not T-
codes, and at least from today’s perspective, the significance of T-codes is not
in Huffman-like source coding. Rather than letting the source symbol probabil-
ities determine the length of the codewords and the structure of the decoding
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tree, T-codes are constructed without regard to symbol probabilities. Their
construction focuses instead on a recursive tree structure.

A T-code set is constructed as follows:

1. Start with a finite alphabet S (e.g., the binary alphabet, where S = {0, 1}).
Every finite alphabet is a (trivial) T-code set by default, with the letters
being primitive codewords.

2. Given a T-code set, another T-code set may be derived from it by a process
called “T-augmentation”. This involves choosing an arbitrary codeword
from the existing T-code set, called the “T-prefix”, and a positive inte-
ger, called the “T-expansion parameter”[3, 4, 11] or “copy factor”[14].
Any T-code set may thus be derived from an alphabet in a series of n
T-augmentations using a series of T-prefixes p1, p2, . . . , pn and a series
of T-expansion parameters k1, k2, . . . , kn. The resulting set is denoted

S
(k1,k2,...,kn)
(p1,p2,...,pn) and is said to be a T-code set at “T-augmentation level” n.

The T-augmentation itself is performed according to the following equation:

S
(k1,k2,...,kn+1)
(p1,p2,...,pn+1)

=

kn+1⋃

i=0

{pi
n+1s|s ∈ S

(k1,k2,...,kn)
(p1,p2,...,pn)\{pn+1}} ∪ {pk+1

n+1} (1)

where S
()
() = S and pi

n+1s donates the concatenation of i copies of the T-prefix

pn+1 with s.

In the tree picture, this is equivalent to the following operation:

1. select a T-prefix pn+1 from the existing set S
(k1,k2,...,kn)
(p1,p2,...,pn) , which has been

derived from an alphabet S by n ≥ 0 T-augmentations.

2. select a T-expansion parameter kn+1 ≥ 1.

3. make kn+1 additional copies of the decoding tree.

4. Successively concatenate the new copies and the original of the tree via
the T-prefix chosen, i.e., the root of the first copy attaches to pn+1, that
of the second copy to pn+1pn+1, etc.

Figure 1 depicts the construction of the T-code set S
(2,1)
(1,10) starting from

the elementary decoding tree for the alphabet S. The latter consists of a root
node and two branches denoting the “reception” of a 0 and 1 respectively. The
branches terminate in two leaf nodes, which correspond to the two trivial code-
words 0 and 1 in S.
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Figure 1: T-augmentation as a copy-and-append process of decoding trees

In the first T-augmentation in this example, the tree for S is copied three
times and the three copies are linked to each other via the respective leaf nodes
corresponding to the codeword 1. The second T-augmentation links two copies

of the tree for S
(2)
(1) via the leaf node 10.

Another example, using codeword lists rather than trees, is shown in Table 1.
Note here that each codeword, once created, remains in the subseqent sets

unless it is used as a T-prefix, at which point it disappears for good. By T-
augmenting a set over and over again, we can generate arbitrarily large sets.

By choosing the T-prefixes and the T-expansion parameters wisely, a T-code
tree may be shaped to suit a particular source. However, this is not of prime
relevance here as this paper is not about Huffman-style source coding.

It is worth noting here that some T-code sets may be constructed with

more than one set of T-prefixes and T-expansion parameters. E.g., the set S
(3)
(0)

is the same as the set S
(1,1)
(0,00). A set of T-prefixes and T-expansion parame-

ters used in the construction of a T-code set is called a “T-prescription”. As
the example illustrates, a T-code set may have more than one T-prescription.
The concept of a T-augmentation level is thus only defined with respect to a
particular T-prescription. However, all T-prescriptions for a given T-code set
can be derived from each other with ease. For the purposes of this paper we
shall assume that, if several T-prescriptions exist, we will always refer to the
one T-prescription for which the T-expansion parameters are maximised (anti-
canonical T-prescription). For a detailed discussion of this topic see [2] or [8].
A less rigorous version of the proof may also be found in [11].
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T-augmentation level
n 0 1 2 3
kn n/a 1 1 3

set S S
(1)
(1) S

(1,1)
(1,10) S

(1,1,3)
(1,10,0)

0 0 0 0/
1 1/ − −

10 10// −
11 11 11

100 100
− −

1010 1010
1011 1011

00//
−
−

011
0100

−
01010
01011

000///
−
−

0011
00100

−
001010
001011

0000
−
−

00011
000100

−
0001010
0001011

Table 1: T-augmentation from the binary alphabet S via the intermediate T-code

sets S
(1)
(1) and S

(1,1)
(1,10) to the final set S

(1,1,3)
(1,10,0). The columns show the codewords in

the respective T-code sets. The “deleted” strings are the now internal nodes of the

new decoding tree.
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2 The significance of the longest codewords

Consider the two longest codewords in the sets of the examples in Table 1 and
Figure 1. In each set, the longest codewords differ by exactly one letter, the last
letter, and they all belong to the same copy of the elementary tree for S. Thus,
the number of longest codewords is given by the cardinality of the alphabet S.
In our binary sets, for example, there are exactly two longest codewords per set.
Furthermore, the longest codewords contain – in reverse succession – all the
T-prefixes that were used in the construction of the set. The length of the runs
of the T-prefixes in the longest codewords equals the T-expansion parameter (in
the T-prescription for which the T-expansion parameter is maximised).

As it turns out, it is possible to derive each T-code set from any of its
longest codewords. The algorithm for this is described in the next section. For
the moment, let us simply note that it exists.

Furthermore, given an arbitrary finite string over an arbitrary finite alpha-
bet, it is always possible to find a T-code set for which this string is one of
its longest codewords. This set is unique, i.e., there is no other T-code set for
which the same string is also one of the longest codewords. For a proof of this
theorem see [2] or [8].

Since the longest codewords in any T-code set are identical except for the
last letter, we may regard their common part as an identifier for this T-code
set.

This duality between strings and T-code sets means that we can use the
T-code set construction algorithm not only to construct codes, but also as a
string construction (production) algorithm. The T-augmentations are the steps
in this algorithm.

If we consider the string production aspect, we can create (or lengthen) a
string as follows:

1. take an existing string (which may consist of just one letter) and consider

the T-code set S
(k1,k2,...,kn)
(p1,p2,...,pn) for which it is one of the longest codewords.

2. pick a codeword pn+1 from S
(k1,k2,...,kn)
(p1,p2,...,pn) and append kn+1 copies of it to

the left of the string. The new string is now one of the longest codewords

from S
(k1,k2,...,kn+1)
(p1,p2,...,pn+1)

.

If we repeat this as often as we desire, we can generate arbitrarily long strings
of the format:

p
kn

n p
kn−1

n−1 . . . pk2

2 pk1

1 a (2)

where a ∈ S.
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Consider now the choice of T-prefix codeword and T-expansion parameter:
if we choose a long pn+1 to append to the left, we create a longer resulting string
than by choosing a short codeword. However, the number of steps needed to
create the string remains constant - and the patterns that the “extra” bit of
string includes are indeed all patterns we have already seen as T-prefixes in the
initial set (or, in other words, as substrings in the original string).

Similarly, by choosing a large kn+1, one does not add much extra infor-
mation, but merely repeats an already occurring pattern. Note that a similar
theme of construction steps and focus on recurring patterns is found in parsing
algorithm underpinning the Lempel and Ziv production complexity [1].

Before we take this theme further, however, we need to discuss how an
existing string can be parsed to yield the corresponding T-code set.

The next section describes how one arrives at the T-augmentation construc-
tion recipe for a string, i.e., at a T-prescription for the corresponding T-code
set. The parsing algorithm used to obtain this T-prescription is called “T-
decomposition”.

3 T-decomposition

Suppose that, for a given string x and a letter a from the alphabet S, we want
to find the T-code set for which xa is one of the longest codewords. Consider
the following algorithm:

1. Set m = 0.

2. Decode xa as a string of codewords from S
(k1,k2,...,km)
(p1,p2,...,pm) .

3. If xa decoded into a single codeword from S
(k1,k2,...,km)
(p1,p2,...,pm) , set n = m and

finish.

4. Otherwise, set the T-prefix pm+1 to be the second-to-last codeword in the

decoding over S
(k1,k2,...,km)
(p1,p2,...,pm) .

5. Count the number of adjacent copies of pm+1 that immediately precede
the second-to-last codeword. Add 1 to this number, and define it to be
the T-expansion parameter km+1.

6. T-augment with pm+1 and km+1.

7. Increment m by 1 and goto step 2 above.

Example: Let x = 011000101010 and a = 0, and let xa = 0110001010100
be the longest codeword in some T-code set. Decoding xa over S = {0, 1}, we
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obtain the following codeword boundaries indicated by dots:

xa = 0.1.1.0.0.0.1.0.1.0.1.0.0.

From these, we identify p1 = 0 and k1 = 1. Decoding xa over S
(1)
(0) we obtain

xa = 01.1.00.01.01.01.00.

i.e., p2 = 01 and k2 = 3. Hence, decoding over S
(1,3)
(0,01), we get

xa = 011.00.01010100.

such that p3 = 00, k3 = 1, and subsequently we obtain p4 = 011 with k4 = 1.
The reader may wish to verify that xa = 0110001010100 is indeed one of the

longest codewords of S
(1,3,1,1)
(0,01,00,011).

One can also regard this mechanism as a succesive elimination of lower-level
codeword boundaries, as shown in the following graphic for a different string:

S 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1)

(1) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1)

(1,10) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3)

(1,10,0) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1)

(1,10,0,11) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1)

(1,10,0,11,1010) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1,1)

(1,10,0,11,1010,1010011) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

S
(1,1,3,1,1,1,2)

(1,10,0,11,1010,1010011,100) 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

A more detailed treatment of T-decomposition using the current notation
may be found in [11]. As mentioned above, the original proof may be found
in [2, 8].

The reader may have noticed that the T-decomposition algorithm described
above has a time complexity of O(|x|2). In a more recent result [17], Yang
and the author have shown that the above algorithm can been simplified to
run in both O(|x| log |x|) time and space. The key to this improvement is the
insight that only codeword boundaries following the respective pm+1 need to be
removed in each decoding pass. By adding the decoded codewords to a special
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data structure with intertwined doubly-linked lists, it is possible to line up the
codewords like “beads on a thread”. One thread represents the string as such
and the other threads each represent a series of identical codewords in the string.
One then only follows the “thread” for the respective T-prefix in each decoding
pass, skipping all other codewords in the process.

4 T-complexity

When Lempel and Ziv [1] proposed their production complexity, they recognised
that the number of parsing steps would give a meaningful measure of string
complexity.

Titchener pursued a similar thought and proposed a “T-complexity” measure
CT (xa) as follows [10, 7, 9, 13]:

CT (xa) =
n∑

i=1

log2(ki + 1) (3)

where the ki are the T-expansion parameters found in the decomposition of xa.
The units of CT are effective T-augmentation steps, or taugs. Note that if all
ki = 1, we have CT (xa) = n.

Note further that CT is invariant under change of T-prescription, and that
it a “physical” interpretation. 2CT (xa) equals the number of internal nodes in
the decoding tree for the T-code set defined by xa, and CT (xa) this denotes the
number of bits required to address each of these nodes. It is thus a measure for
the state space required by a T-code decoder for the set.

The CT measure was published in [7] and has since been discussed in several
other papers by Titchener [9, 10, 13] and in a paper by Titchener, Fenwick,
and Chen [12]. A further paper by Ebeling, Steuer, and Titchener [14] shows
experimentally that T-complexity is closely related to the Kolmogorov-Sinai
entropies arising from bipartition of the logistic map. This establishes a strong
link to Shannon entropy. More recent results [19] compare various entropy
estimators in the same context as Ebeling, Steuer, and Titchener’s paper. Here,
T-complexity-based estimates outperform those obtained from Shannon’s n-
gram entropy and show about the same accuracy as estimates based on the
Lempel-Ziv production complexity.

5 Bounds on the T-complexity

Titchener further considered the question which strings would deliver maxi-
mal/minimal T-complexity for a given length.
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For a given string length L = xa, minimal T-complexity is delivered by
strings that contain L − 1 copies of a single letter, repeated over their entire
length, followed by an arbitrary letter. If L is the length of the string xa, then
we have a single step and CT (xa) = log2 L.

Maximal T-complexity for some L seems to be attained by strings that satisfy
both of the following two conditions:

1. A T-prescription can be found for the string such that all T-expansion
parameters in the T-prescription are equal to one, and

2. all of the T-prefixes in that T-prescription are shorter than the shortest
codeword from the T-code set that the string represents.

This ensures a maximum number of T-augmentations for a given length of string.
Note that these two conditions together may be sufficient but are certainly not
necessary: If we calculate the T-complexity of all strings of length L, then
there there must obviously always be at least one string among them whose
T-complexity is maximal for the given L and #S. However, there are certain L
for which no strings exist that satisfy the two conditions above (e.g., for a binary
alphabet, strings with L = 3 and L = 9 that satisfy the conditions exist, but no
such strings exist for L = 6). To get to L = 6 with T-expansion parameters of
1, one would need to T-augment either:

1. twice with a T-prefix of length 1 followed by a T-prefix of length 3, which
leaves three codewords of length 2 in the set and violates the second con-
dition, or

2. once with a T-prefix of length 1 followed by two T-prefixes of length 2,
which leaves a codeword of length 1 and also violates the second condition.

The construction rule for strings with maximal T-complexity implies that there
must be an upper bound for CT for a given alphabet. Titchener found by ex-

perimentation that the logarithmic integral li(L ln #S) =
∫ L ln #S

0
dq

ln q
seems to

provide such an upper bound, asymptotically. Moreover, he found that the max-
imal T-complexity appears to converge rapidly towards this bound for strings
that are only a few dozen letters long. A proof of this theorem has yet to be given
— it is currently based largely on experimental evidence, with the exception of
a partial result recently proven in [16].

This latter work, by Titchener, Gulliver, Nicolescu, Staiger and the author
in [16], points at the possibility that the upper bound may be given by a series
expansion where each term contains a logarithmic integral and a coefficient, the
non-zero coefficients are given by the prime factors of L. The higher order terms
seem to have a tendency to cancel out, yielding the asymptotic bound.

Experimental evidence also indicates the following:
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• If all strings of a given length L are analyzed, they show on average a high
but sub-maximal CT . This is easily explained in that “random” strings,
during their production in a random process, are predominantly extended
by short T-prefixes rather than long ones, and longer T-prefixes occur only
occasionally. Most of the strings of a given length L have T-complexities
that fall within a very narrow band. As L increases, the distribution of
CT values for strings of length L seems to become increasingly peaked
and the bulk of the distribution seems to drop away from the maximum
value of CT for that length. Note that this result has a caveat attached to
it: Since it is not computationally feasible to check CT for all strings of
length L unless L is small, any “random” sample of strings of length L is
necessarily subject to any “random sample generator” bias.

• Except for very small L, most T-expansion parameters in strings of length
L are equal to 1.

• Strings that would generally be regarded as being non-random (e.g., rep-
resentations of rational numbers) fall outside of this peak. Irrational num-
bers such as π,

√
2 etc. or strings produced by natural random processes

such as radioactive decay seem to fall inside the band.

6 T-information and T-entropy

For practical purposes, i.e., comparisons between strings of different length and
their substrings, a nonlinear concave function such as the logarithmic integral
is a bit unwieldy.

One can argue that a string with maximal CT that is T-augmented a number
of times, each time with one of the – respectively – shortest T-prefixes available,
has information added to it at a high and – approximately – constant rate over
its length.

Applying the inverse logarithmic integral to CT thus results in “linear-
looking” curves for both strings with maximal CT and for strings that fall within
the narrow band mentioned above.

Titchener recognized this [13] and thus defined an information measure IT

as:
IT = li−1(CT ) (4)

where li−1 is the inverse logarithmic integral.

He further defined a T-entropy as HT = ∆IT /∆L, i.e., the rate of change of
IT along the string. H̄T = IT /L denotes the “average T-entropy”.
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7 Other observations

Other observations indicate that there is a link between T-codes and the theory
of necklaces and irreducible polynomials [20].

8 Applications

T-complexity and its derived measures are useful in entropy estimation, simi-
larity measurement and event detection as well as other classification problem.
They are currently being used in network event detection [18] as well as in a
medical classification application.

9 Conclusions

The T-complexity definition seems reasonable given a similar approach to string
complexity by Lempel and Ziv [1]. From this, the derivation of T-information
and T-entropy also seem to be reasonable steps to take.

Experimental evidence suggests that they produce “meaningful” results. For
example, the results by Ebeling, Steuer, and Titchener show that T-entropy and
the Kolmogorov-Sinai entropy seem to be closely related in nonlinear (symbolic)
dynamics [14].
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