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Abstract

It would be nice to have a mathematical understanding of basic biological con-
cepts and to be able to prove that life must evolve in very general circumstances.
At present we are far from being able to do this. But I’ll discuss some partial steps
in this direction plus what I regard as a possible future line of attack.

Can Darwinian evolution be made into a mathemat-

ical theory? Is there a fundamental mathematical

theory for biology?

Darwin = math ?!

In 1960 the physicist Eugene Wigner published a paper with a wonderful title, “The
unreasonable effectiveness of mathematics in the natural sciences.” In this paper he
marveled at the miracle that pure mathematics is so often extremely useful in theoretical
physics.

To me this does not seem so marvelous, since mathematics and physics co-evolved. That
however does not diminish the miracle that at a fundamental level Nature is ruled by
simple, beautiful mathematical laws, that is, the miracle that Nature is comprehensible.

I personally am much more disturbed by another phenomenon, pointed out by I.M.
Gel’fand and propagated by Vladimir Arnold in a lecture of his that is available on the
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web, which is the stunning contrast between the relevance of mathematics to physics,
and its amazing lack of relevance to biology!

Indeed, unlike physics, biology is not ruled by simple laws. There is no equation for
your spouse, or for a human society or a natural ecology. Biology is the domain of the
complex. It takes 3× 109 bases = 6× 109 bits of information to specify the DNA that
determines a human being.

Darwinian evolution has acquired the status of a dogma, but to me as a mathematician
seems woefully vague and unsatisfactory. What is evolution? What is evolving? How can
we measure that? And can we prove, mathematically prove, that with high probability
life must arise and evolve?

In my opinion, if Darwin’s theory is as simple, fundamental and basic as its adherents
believe, then there ought to be an equally fundamental mathematical theory about this,
that expresses these ideas with the generality, precision and degree of abstractness that
we are accustomed to demand in pure mathematics.

Look around you. We are surrounded by evolving organisms, they’re everywhere, and
their ubiquity is a challenge to the mathematical way of thinking. Evolution is not just
a story for children fascinated by dinosaurs. In my own lifetime I have seen the ease
with which microbes evolve immunity to antibiotics. We may well live in a future in
which people will again die of simple infections that we were once briefly able to control.

Evolution seems to work remarkably well all around us, but not as a mathematical
theory!

In the next section of this paper I will speculate about possible directions for modeling
evolution mathematically. I do not know how to solve this difficult problem; new ideas
are needed. But later in the paper I will have the pleasure of describing a minor triumph.
The program-size complexity viewpoint that I will now describe to you does have some
successes to its credit, even though they only take us an infinitesimal distance in the
direction we must travel to fully understand evolution.

A software view of biology: Can we model evolution

via evolving software?

I’d like to start by explaining my overall point of view. It is summarized here:

Life = Software ?
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program −→ COMPUTER −→ output
DNA −→ DEVELOPMENT/PREGNANCY −→ organism

(Size of program in bits) ≈ (Amount of DNA in bases) × 2

So the idea is firstly that I regard life as software, biochemical software. In particular,
I focus on the digital information contained in DNA. In my opinion, DNA is essentially
a programming language for building an organism and then running that organism.

More precisely, my central metaphor is that DNA is a computer program, and its output
is the organism. And how can we measure the complexity of an organism? How can
we measure the amount of information that is contained in DNA? Well, each of the
successive bases in a DNA strand is just 2 bits of digital software, since there are four
possible bases. The alphabet for computer software is 0 and 1. The alphabet of life is
A, G, C, and T, standing for adenine, cytosine, guanine, and thymine. A program is
just a string of bits, and the human genome is just a string of bases. So in both cases
we are looking at digital information.

My basic approach is to measure the complexity of a digital object by the size in bits
of the smallest program for calculating it. I think this is more or less analogous to
measuring the complexity of a biological organism by 2 times the number of bases in its
DNA.

Of course, this is a tremendous oversimplification. But I am only searching for a toy
model of biology that is simple enough that I can prove some theorems, not for a detailed
theory describing the actual biological organisms that we have here on earth. I am
searching for the Platonic essence of biology; I am only interested in the actual creatures
we know and love to the extent that they are clues for finding ideal Platonic forms of
life.

How to go about doing this, I am not sure. But I have some suggestions.

It might be interesting, I think, to attempt to discover a toy model for evolution con-
sisting of evolving, competing, interacting programs. Each organism would consist of
a single program, and we would measure its complexity in bits of software. The only
problem is how to make the programs interact! This kind of model has no geometry, it
leaves out the physical universe in which the organisms live. In fact, it omits bodies and
retains only their DNA. This hopefully helps to make the mathematics more tractable.
But at present this model has no interaction between organisms, no notion of time, no
dynamics, and no reason for things to evolve. The question is how to add that to the
model.

Hopeless, you may say. Perhaps not! Let’s consider some other models that people
have proposed. In von Neumann’s original model creatures are embedded in a cellular
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automata world and are largely immobile. Not so good! There is also the problem of
dissecting out the individual organisms that are embedded in a toy universe, which must
be done before their individual complexities can be measured. My suggestion in one of
my early papers that it might be possible to use the concept of mutual information—the
extent to which the complexity of two things taken together is smaller than the sum of
their individual complexities—in order to accomplish this, is not, in my current opinion,
particularly fruitful.

In von Neumann’s original model we have the complete physics for a toy cellular au-
tomata universe. Walter Fontana’s ALChemy = algorithmic chemistry project went to
a slightly higher level of abstraction. It used LISP S-expressions to model biochemistry.
LISP is a functional programming language in which everything—programs as well as
data—is kept in identical symbolic form, namely as what are called LISP S-expressions.
Such programs can easily operate on each other and produce other programs, much in
the way that molecules can react and produce other molecules.

I have a feeling that both von Neumann’s cellular automata world and Fontana’s al-
gorithmic chemistry are too low-level to model biological evolution.1 So instead I am
proposing a model in which individual creatures are programs. As I said, the only prob-
lem is how to model the ecology in which these creatures compete. In other words, the
problem is how to insert a dynamics into this static software world.2

Since I have not been able to come up with a suitable dynamics for the software model I
am proposing, I must leave this as a challenge for the future and proceed to describe a few
biologically relevant things that I can do by measuring the size of computer programs.
Let me tell you what this viewpoint can buy us that is a tiny bit biologically relevant.

Pure mathematics has infinite complexity and is there-

fore like biology

Okay, program-size complexity can’t help us very much with biological complexity and
evolution, at least not yet. It’s not much help in biology. But this viewpoint has
been developed into a mathematical theory of complexity that I find beautiful and
compelling—since I’m one of the people who created it—and that has important appli-
cations in another major field, namely metamathematics. I call my theory algorithmic

1A model with perhaps the opposite problem of being at too high a level, is Douglas Lenat’s AM
= Automated Mathematician project, which dealt with the evolution of new mathematical concepts.

2Thomas Ray’s Tierra project did in fact create an ecology with software parasites and hyperpara-
sites. The software creatures he considered were sequences of machine language instructions coexisting
in the memory of a single computer and competing for that machine’s memory and execution time.
Again, I feel this model was too low-level. I feel that too much micro-structure was included.

4



information theory, and in it you measure the complexity of something X via the size in
bits of the smallest program for calculating X, while completely ignoring the amount of
effort which may be necessary to discover this program or to actually run it (time and
storage space). In fact, we pay a severe price for ignoring the time a program takes to
run and concentrating only on its size. We get a beautiful theory, but we can almost
never be sure that we have found the smallest program for calculating something. We
can almost never determine the complexity of anything, if we chose to measure that in
terms of the size of the smallest program for calculating it!

This amazing fact, a modern example of the incompleteness phenomenon first discovered
by Kurt Gödel in 1931, severely limits the practical utility of the concept of program-size
complexity. However, from a philosophical point of view, this paradoxical limitation on
what we can know is precisely the most interesting thing about algorithmic information
theory, because that has profound epistemological implications.

The jewel in the crown of algorithmic information theory is the halting probability Ω,
which provides a concentrated version of Alan Turing’s 1936 halting problem. In 1936
Turing asked if there was a way to determine whether or not individual self-contained
computer programs will eventually stop. And his answer, surprisingly enough, is that
this cannot be done. Perhaps it can be done in individual cases, but Turing showed that
there could be no general-purpose algorithm for doing this, one that would work for all
possible programs.

The halting probability Ω is defined to be the probability that a program that is chosen
at random, that is, one that is generated by coin tossing, will eventually halt. If no
program ever halted, the value of Ω would be zero. If all programs were to halt, the
value of Ω would be one. And since in actual fact some programs halt and some fail
to halt, the value of Ω is greater than zero and less than one. Moreover, Ω has the
remarkable property that its numerical value is maximally unknowable. More precisely,
let’s imagine writing the value of Ω out in binary, in base-two notation. That would
consist of a binary point followed by an infinite stream of bits. It turns out that these
bits are irreducible, both computationally and logically:

• You need an N -bit program in order to be able to calculate the first N bits of the
numerical value of Ω.

• You need N bits of axioms in order to be able to prove what are the first N bits
of Ω.

• In fact, you need N bits of axioms in order to be able to determine the positions
and values of any N bits of Ω, not just the first N bits.

Thus the bits of Ω are, in a sense, mathematical facts that are true for no reason, more
precisely, for no reason simpler than themselves. Essentially the only way to determine
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the values of some of these bits is to directly add that information as a new axiom.

And the only way to calculate individual bits of Ω is to separately add each bit you want
to your program. The more bits you want, the larger your program must become, so
the program doesn’t really help you very much. You see, you can only calculate bits of
Ω if you already know what these bits are, which is not terribly useful. Whereas with
π = 3.1415926 . . . we can get all the bits or all the digits from a single finite program,
that’s all you have to know. The algorithm for π compresses an infinite amount of
information into a finite package. But with Ω there can be no compression, none at all,
because there is absolutely no structure.

Furthermore, since the bits of Ω in their totality are infinitely complex, we see that
pure mathematics contains infinite complexity. Each of the bits of Ω is, so to speak,
a complete surprise, an individual atom of mathematical creativity. Pure mathematics
is therefore, fundamentally, much more similar to biology, the domain of the complex,
than it is to physics, where there is still hope of someday finding a theory of everything,
a complete set of equations for the universe that might even fit on a T-shirt.

In my opinion, establishing this surprising fact has been the most important achievement
of algorithmic information theory, even though it is actually a rather weak link between
pure mathematics and biology. But I think it’s an actual link, perhaps the first.

Computing Ω in the limit from below as a model for

evolution

I should also point out that Ω provides an extremely abstract—much too abstract to
be satisfying—model for evolution. Because even though Ω contains infinite complexity,
it can be obtained in the limit of infinite time via a computational process. Since this
extremely lengthy computational process generates something of infinite complexity, it
may be regarded as an evolutionary process.

How can we do this? Well, it’s actually quite simple. Even though, as I have said,
Ω is maximally unknowable, there is a simple but very time-consuming way to obtain
increasingly accurate lower bounds on Ω. To do this simply pick a cut-off t, and consider
the finite set of all programs p up to t bits in size which halt within time t. Each such
program p contributes 1/2|p|, 1 over 2 raised to p’s size in bits, to Ω. In other words,

Ω = lim
t−→∞

 ∑
|p| ≤ t & halts within time t

2−|p|

 .
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This may be cute, and I feel compelled to tell you about it, but I certainly do not regard
this as a satisfactory model for biological evolution, since there is no apparent connection
with Darwin’s theory.
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