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In 1931 Kurt Gödel astonished the mathematical world by showing that no finite set of
axioms can suffice to capture all of mathematical truth. He did this by constructing an
assertion GF about the whole numbers that manages to assert that it itself is unprovable
(from a given finite set F of axioms using formal logic).1

GF : “GF cannot be proved from the finite set of axioms F .”

This assertion GF is therefore true if and only if it is unprovable, and the formal ax-
iomatic system F in question either proves falsehoods (because it enables us to prove
GF ) or fails to prove a true assertion (because it does not enable us to prove GF ). If
we assume that the former situation is impossible, we conclude that F is necessarily
incomplete since it does not permit us to establish the true statement GF .

Either GF is provable and F proves false statements,
or GF is unprovable and therefore true, and F is incomplete.

Today, a century after Gödel’s birth, the full implications of this “incompleteness” result
are still quite controversial.2

An important step forward was achieved by Alan Turing in 1936. He showed that
incompleteness could be derived as a corollary of uncomputability. Because if there
are things that cannot be computed (Turing’s halting problem), then these things also
cannot be proven. More precisely, if there were a finite set of axioms F that always
enabled us to prove whether particular programs P halt or fail to halt, then we could
calculate whether a given program P halts or not by running through the tree of all
possible deductions from the axioms F until we either find a proof that P halts or we
find a proof that P never halts. But, as Turing showed in his famous 1936 paper “On
Computable Numbers with an Application to the Entscheidungsproblem,” there cannot
be an algorithm for deciding whether or not individual programs P halt.3

1Gödel’s paper is included in the well-known anthology [1].
2Compare for example the attitude in Franzén [2,3] with that in Chaitin [4,5,6].
3Turing’s paper is also included in the collection [1].
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If we can always prove whether or not P halts,
then we can always calculate whether or not P halts

(by systematically running through the tree of all possible proofs).

Now let’s combine Turing’s approach with ideas from Sections V and VI of Leibniz’s
Discours de métaphysique (1686). Consider the following toy model of what physicists
do:

Theory (program) → COMPUTER → Experimental Data (output).

In other words, this is a software model of science, in which theories are considered to be
programs for computing experimental data. In this toy model, the statement that the
simplest theory is best corresponds to choosing the smallest, the most concise program
for calculating the facts that we are trying to explain. And a key insight of Leibniz [7]
is that if we allow arbitrarily complicated theories then the concept of theory becomes
vacuous because there is always a theory. More precisely, in our software model for
science this corresponds to the observation that if we have N bits of experimental data
then our theory must be a program that is much less than N bits in size, because if the
theory is allowed to have as many bits as the data, then there is always a theory.

Understanding = Compression!

Now let’s abstract from this the concept of an “elegant” program:

P is an elegant program if and only if
no smaller program Q written

in the same programming language
produces exactly the same output that P does.

In our software model for science, the best theory is always an elegant program. Fur-
thermore, there are infinitely many elegant programs, since for any computational task
there is always at least one elegant program, and there are infinitely many computational
tasks. However, what if we want to prove that a particular program P is elegant? As-
tonishingly enough, any finite set of axioms F can only enable us to prove that finitely
many individual programs P are elegant!

Why is this the case? Consider the following paradoxical program PF :
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PF : The output of PF is the same as
the output of the first provably elegant program Q

that is larger than PF is.

PF runs through the tree of all possible deductions from the finite set of axioms F until
it finds the first provably elegant program Q that is larger than PF is, and then PF

simulates the computation that Q performs and then produces as its output the same
output that Q produces. But this is impossible because PF is too small to be able to
produce that output! Assuming that F cannot enable us to prove false theorems, we
must conclude that Q cannot exist. Thus if Q is an elegant program that is larger than
PF is, then the axioms F cannot enable us to prove that Q is elegant. Therefore F can
only enable us to prove that finitely many individual programs Q are elegant. Q.E.D.4

My personal belief, which is not shared by many in the mathematics community, is that
modern incompleteness results such as this one push us in the direction of a “quasi-
empirical” view of mathematics, in which we should be willing to accept new math-
ematical axioms that are not at all self-evident but that are justified pragmatically,
because they enable us to explain vast tracts of mathematical results. In other words, I
believe that in mathematics, just as in physics, the function of theories is to enable us
to compress many observations into a much more compact set of assumptions.5

So, in my opinion, incompleteness is extremely serious: It forces us to realize that perhaps
mathematics and physics are not as different as most people think.6

Mathematics ≈ Physics?!
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