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Abstract

We connect Lukasiewicz logic, a well-established many-valued logic, with
weighted logics, recently introduced by Droste and Gastin. We use this connec-
tion to show that for formal series with coefficients in semirings derived from MV-
algebras, recognizability and definability in a fragment of second order Lukasiewicz
logic coincide.

1 Introduction

Recently, Droste and Gastin introduced weighted logics in [7]. In weighted logics, formu-
las are interpreted in semirings. The connectives V and A exactly reflect the semiring
operations and no natural definition of negation is available. Basically, weighted logics
are many-valued second order logics on words.

We compare weighted logics to traditional many-valued logics, especially Lukasiewicz
logic. Lukasiewicz logic emerged in 1920 as three-valued logic and was soon generalized
to the infinite set of truth values [0,1]. Like other many-valued logics, Lukasiewicz
logic was developed as generalization of two-valued logic extending the set of truth
values while keeping as many as possible intuitive properties of the classical connectives
([11, 12, 14]). In addition to the classical connectives V,A and -, Lukasiewicz logic
contains two connectives V (strong disjunction) and & (strong conjunction). Formulas of
Lukasiewicz logic are interpreted in the standard MV-algebra ([0, 1], ®, ®,—,0,1) where
-z = 1 —x for all x € [0,1], the truth function of V is the Lukasiewicz t-conorm &
and the truth function of & is the Lukasiewicz t-norm ®. The connectives V and &
satisfy the normal condition of many-valued logics [11], i.e. restricted to {0, 1}, the MV-
algebra operations @& and ® coincide with the Boolean operations V and A, respectively.
Intensive studies of Lukasiewicz logic resulted in decidability results, axiomatization,
and proof theories for propositional and first-order Lukasiewicz logic. Until the recent
approach of Béhounek and Cintula [2], there has not been much interest in higher order
Lukasiewicz logic.

In [8], Gerla introduced semiring-reducts of MV-algebras. These semirings are com-
mutative and idempotent. In [8, 6], automata and recognizable series over these semirings
were defined and studied.

*Talk given at Weighted Automata: Theory and Applications (WATA 2006)



We define fragments MSO(VL’W)(A, X)) of monadic second order Lukasiewicz logic ap-
propriate for the definition of formal series. These fragments correspond to weighted
logics over MV-semirings. Hence we can apply results from [7] to show that recognizabil-
ity by automata over the MV-semiring W and definability in MSO(VL’W) (A, X)) coincide.

The paper is organized as follows: After a recapitulation of some notions in Section 2,
we introduce MV-algebras in Section 3. In Section 4 we show how to derive semirings
from MV-algebras. Section 5 contains a very short overview over weighted automata and
recognizable series over MV-semirings. Lukasiewicz logic is introduced in Section 6 and
a fragment MSO(VL’W)(A, X)) of Lukasiewicz logic, appropriate for the characterization of
formal series is presented Section 7.

Our main result, the coincidence of weighted logics over MV-semirings and our frag-
ment MSOE/L’W)(A, X)) of Lukasiewicz logic is given in Section 8. In Section 9, we prove
that a formal series is L-recognizable iff it is definable in MSOE/L’W)(A,X). This is a
special case of a result in [7], but for MV-semirings, we present a simpler proof.

2 Preliminaries

As usual, N,7Z, Q, R denote the sets of natural numbers, integers, rational and real
numbers. Two real numbers a,b € R define the real interval [a,b] = {r € R | a <r < b}.
For a finite set .S, |S| is the cardinality of S.

A semiring is a algebraic structure K = (K, +,-,0g, 1) where (K, +,0x) is a com-
mutative monoid, (K-, 1x) is a monoid, O is absorbing w.r.t. -, and - distributes over
+. A semiring K = (K, +,,0x, 1) is called commutative if - is commutative. K is
idempotent iff + is idempotent. Note that K is idempotent iff 15 + 1x = 1x [10].
For idempotent semirings K, the restriction ({Ox, 1x},+, -, Oy, 1) is isomorphic to the
Boolean algebra ({0,1},V,A,0,1). On idempotent semirings, the natural ordering < is
defined by

r<y iff x4+y=y

If 1y is a maximal w.r.t. this ordering then x + 1y, = 1y holds for every x € W ie. 1y
is absorbing for +.

An algebraic structure is locally finite iff every finitely generated subset of its domain
is finite.

For a finite alphabet (set of symbols) A, A" denotes the set of all words a; - --a,
where a; € A for all i € {1,...,n} and A* = |J,, .y A" where A° = {e} with the empty
word €. The length of w € A* is denoted by |w| and pos(w) = {0, ..., |w|} is the set of
positions (next to letters) in w.

For a set W (of truth values) and any set A, a mapping S : A — W is called
W -valued set on A, and a mapping S : A" — W is called n-ary W -valued relation on
A. For a set W and an alphabet A, a mapping S : A* — W is a W-valued language
over A. If W is the domain of a semiring, a W-valued language S : A* — W is called
formal series.

3 MV-algebras

MV-algebras were introduced by Chang as tool to prove the completeness of Lukasiewicz
logic (see e.g. [11, 12, 5]), but they are also interesting research objects for algebraists.



Definition 3.1. An MV-algebra is a structure W = (W, ®, ®, =, Oy, 1) where
1. (W,&,0y) is a commutative monoid,
2. forallz e Wz 1y = 1y,
3. 0w = 1wy and =1y = Ow,
4. forall z,y e W : =(-z® ) = ®y,
5. forallz,ye W:z @ (-2 @y)=y® (-y®@x)
We give several examples for MV-algebras.

Example 3.1. For every a,b € R where a < b, the structure ([a, b}, ®, ®, -, a,b) where
for all z,y € [a, b]

r=a+b—ux

r@y=min{b,x +y—a} r®y =max{a,r +y— b}

is an MV-algebra. The pictures below show both functions.

For a = 0 and b = 1 in Example 3.1, we obtain the standard MV-algebra
0,11% = (0,1, ®,®,,0,1) (1)

In 0, 1]L, the functions ® and @ are called Lukasiewicz t-norm and Lukasiewicz t-

conorm. The standard MV-algebra [0, 1]F is locally finite [14].
For every interval [a,b] C R the function

f:10,1] — [a, b] where  f(z) =a+z(b—a)
is an isomorphism of [0, 1]L and the MV-algebra ([a, b], ®, ®,—,a,b).
Example 3.2. 1. the countable MV-algebra ([0,1] N Q, ®, ®,—,0,1),

2. for every n € N\ {0}, the finite MV-algebra ({% |ie{0,... ,n}} , D, ®,,0, 1)
(These are isomorphic to the finite MV-algebras ({0,...,n}, ®,®,—,0,n) induced
by initial sequences of natural numbers.),

3. for n = 1, the MV-algebra defined in 2. is the Boolean algebra ({0,1},V, A, —,0,1)
Since all MV-algebras in Example 3.2 are (isomorphic to) sub-MV-algebra of [0, 1]L,
they are locally finite.

Example 3.3. The set of all functions from a nonempty set S to the unit interval [0, 1]
is the domain of the MV-algebra ([0, 1%, @, ®,,0, 1) where @, ®, - are the point-wise
extensions of the standard MV-algebra operations and 0 and 1 are the constant functions
mapping every element in S to 0 and 1, respectively.
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Every MV-algebra W = (W, ®, ®, =, Oy, 1) has the following properties:

1. foralz e W : =—x =z,

2. forallz e W:z® ly =2 and z ® Oy = Oy,

3. forallz,yeW: iz (-zdy) =y® (-y d x)

4. = is an isomorphism between W and the dual MV-algebra (W, ®, &, =, 1y, Ow ).

The natural ordering < on an MV-algebra W = (W, ®, ®, -, Ow, ly) is defined as
follows:
for all x,y € W: r <y iff —x®y =1y (2)

Then (W, <, 0w, 1) is a bounded lattice where for all z,y € W, the lattice operations
satisfy the equations

tVy=z® (-rQy) and zTAy=zQ(~xdy) (3)

If for an MV-algebra W, the natural ordering is total then W is called MV-chain.

In all MV-algebras in Examples 3.1 and 3.2, the ordering defined by Equation 2
coincides with the natural ordering of real numbers. Hence these MV-algebras are MV-
chains and the lattice operations with respect to this ordering are

zVy=x® (-x®y)=max{z,y}
rAy=2z® (-rdy) =min{z,y}

Since @ and ® are associative, we can use the common abbreviations

@ a; =a;,®---D,a, and ® a;, =0, R -, a,

and an easy computation implies for [0, 1]L

@ ai:min{l,Zal} ® ai:maX{O,Zai—n—i-l} (5)
n} i

ie{l,..., i=1 ie{l,...,n}

In general, the MV-algebra operations ¢ and ® are not idempotent and do not distribute
over each other, but the following distributive laws hold in every MV-algebra

r®@yVz) = (z®y)V(r®:2) (6)
t@YAz) = (@Y A(zD2)

In any MV-algebra W = (W, ®,®, -, 0w, 1), if @ or ® are idempotent or distribute
over each other then W is a Boolean algebra [14].

Remark 3.1. For every MV-algebra W, the set {Ow,lw} induces a sub-MV-
algebra ({Ow, lw},®,®, -, 0w, ly) of W that is isomorphic to the Boolean algebra
({0,1},V,A,0,1).

Chang’s Completeness Theorem justifies the particular importance of the standard
MV-algebra.

Theorem 3.1 ([4]). An equation holds in every MV-algebra iff it holds in [0, 1),



4 MYV-semirings

As mentioned in Section 3, in an arbitrary MV-algebra W = (W, ®, ®, -, Ow, 1y), the
operations @ and ® do not distribute over each other. Hence usually the reduct W =
(W, &, ®, 0w, lyy) is not a semiring.

Gerla has shown in [8, 9, 6], that MV-algebras have semiring-reducts containing the
lattice operations V and A.

Proposition 4.1 ([8]). For every MV-algebra W = (W, ®, ®, =, 0w, lw ), both struc-
tures

W\/ - <W7\/7®70W71W) and W/\ - <W7/\’@71W70W)
are commutative semirings and the function — is an isomorphism between W, and W ,.

We will call semirings constructed in this way MV-semirings. By definition every
MV-semiring is commutative and idempotent. In [8, 9, 6], weighted automata over these
semirings were introduced.

Example 4.1. From the MV-algebras in Examples 3.1 and 3.2,
we derive the following semirings

e non-countable semirings ([a, b], max, ®, a,b),
especially [0, 1]% = ([0, 1], max, ®,0, 1)

e the countable semiring ([0, 1] N @, max, ®,0, 1)

e for n € N\ {0} the finite MV-semirings ({O, %, ce "T’l, 1} ,max, ®, 0, 1) and
({0,...,n}, max, ®,0,n).

e the Boolean semiring ({0, 1}, max, min, 0, 1)

By definition, all MV-semirings are commutative and idempotent.
If an MV-algebra W is locally finite then the semirings W,, and W, are locally finite.
Hence both semirings [0, 1]¥, [0, 1]F and all their sub-semirings are locally finite.

5 MYV- and L-recognizable series

According to the general definitions of weighted automata [16, 1], a finite (W, A)-
automaton (Q, «, 0, 3) is defined by a finite set @ of states, two vectors «, 5 : QQ — W,
and a morphism § : A* — (Q* — W) from words to square matrices of order |Q)|.
Since § is a morphism, it is uniquely defined by its restriction § : A — (Q* — W) to
letters.

For a word w € A*, the weight of a run (po,...,pw) € Q! of the weighted
automaton A on w is

v ((po, o) w) =ap) @ [ Q) S(w)pi1,pi) | © BDpw) (7)

icpos(w)\ {0}

As usual, the behavior of the (W, A)-automaton A = (@, a, 0, 3) is the formal series
|A|l : A* — W that maps every w € A* to

JAlw) =\ |a@)® &  6(w)pi1,p) @ BB (8)

(P0s+-»P|w]) iepos(w)\{0}



A formal series S : A* — W is M V-recognizable iff there is an MV-semiring W and a
(W, A)-automaton A such that || A = S. A formal series S : A* — W is L-recognizable
iff there is an ([0, 1]¥, A)-automaton A such that ||A| = S.

6 Lukasiewicz logic

Lukasiewicz logic is a well-investigated many-valued logic (see e.g. [11, 14, 12, 5]). There
are several definitions for the syntax of Lukasiewicz logic that differ mostly in the sets
of default connectives. Usually, the unary negation symbol — and some of the binary
connectives & (strong conjunction), V (strong disjunction), V, A (weak disjunction and
conjunction) are used. Since all binary connectives are interpreted by commutative
and associative operations, we will use the common abbreviations for finite sets I =

{1,...,n}:

Vei=orvevo,  Nei=ein-Ag, Spi =18 &ipn
i€l icl ‘

Usually, formulas in Lukasiewicz logic are interpreted in the standard MV-algebra [0, 1]L
but we will also use other MV-algebras W. In many versions of Lukasiewicz logic, truth
constants (syntactic representatives for truth values in the domain of W) are part of the
syntax.

In Lukasiewicz predicate logic, the quantifiers V and 3 are used. We will also use
quantifiers V; and d; not present in standard Lukasiewicz logic. This extension is rea-
sonable since V;, is associated to the Lukasiewicz conjunction & like V is associated to A
in classical (and many-valued) logic.

Like in classical logic, atoms are constructed by a set > of relations symbols, each
coming with its arity, and a set X of variables. Since we will define special monadic
second order logics, the set X = X U Xy contains individual variables (first order) in
X, and set variables (monadic second order) in X, and atoms of the form X (z) where
X € X5 and z € X are allowed.

The set atom(X, X) of atoms in monadic second order Lukasiewicz logic is

atom(X,X) = {p(z1,...,2,) | pe X, zy, ..., 2, e X4} U{X(2) | X € Xy, 2 € Xy}

where p is an n-ary relation symbol.
Formulas in monadic second order Lukasiewicz logic MSO™") (£, X) are constructed
from atoms, connectives and quantifiers, as follows

pu=c|P|=p|o*xy|Qrp

where ¢ € W is a truth value, P is an atom, * € {&,V,V,A}, @ € {V,3,V,,3.}, and
r e X,

The semantics of Lukasiewicz logic is a generalization of the classical semantics of
predicate logic. For a set W of truth values, a W-valued X-structure S = (S, []g) is

defined by
e the non-empty domain S and

e for every n-ary relation symbol p in X, a W-valued relation [p]y : S* — W.



An assignment for X in S maps first order variables to domain elements and monadic
second order variables to unary W-relations:

o: Xy — S o:Xg — (S — W)

An interpretation is a pair (S, 0) of a W-valued ¥-structure S and an assignment o.
The (truth) value of atoms under an interpretation (S, o) is defined as follows

[[p(371, S 7$n)]]($,g) = [p]s (U(Il)a s ’U(xn))
[X(2)] (5,0 = o(X) (o(2))

Usually, formulas in Lukasiewicz logics are interpreted in the standard MV-algebra [0, 1]L
but we may use any other MV-algebra W = (W, ®, ®, =, 0w, ly) as well. The strong
connectives &, V and — are interpreted by the MV-algebra operations &, ® and —,
respectively. The value of a non-atomic formula ¢ € MSOQ®W) (32, X) in an interpretation
(S, 0) is defined as usual:

(9)

[=¢] (So) = [¢] (S,0)
[eVY]iso) = [€lis0) @ W]is0) [P&V]is0)=[Plis0) ® [¥](5.0)
[V lise =[elise)V [¥lise [NV is0 =[Plise) A Y50

[Hz¢] (S,0) = \/ [«] (S,0[z—i]) [Vze] (S,0) = /\ [«] (S,olz—i]) (10)
i€l iel
Bueelisoy = D lelisopmny  [relis s = Q) lelis i
el i€l

for finite SUW?S, I =S for x € Xy and I = W for z € X,.

Every formula ¢ € MSO(L’W)(Z, X)) defines a mapping from the set of all interpreta-
tions into the truth domain W. If o € MSO(L’W)(Z, X)) is a sentence, i.e. does not contain
free variables, the assignment o is irrelevant. Hence every sentence ¢ € MSO(L’W)(E, X)
defines a mapping from structures to truth values, i.e. a W-valued language.

Remark 6.1. By Remark 3.1, the set {Ow, 1y} of truth values is closed under all truth
functions for connectives in MSO™")(2 X). Hence MSO™") (£, X) satisfies the nor-
mal condition (see [11]) of many-valued logics, i.e. V and & coincide with V and A,
respectively.

7 Lukasiewicz logic on words

To characterize recognizable formal series, a fragment of Lukasiewicz logic suffices. The
fragment MSO(L’W)(A,X) is parameterized by an alphabet A and an MV-algebra W.
Since we want to characterize sets of words, we fix the usual signature that contains the
binary relation symbol < and the set {P, | a € A} of unary letter predicates. For every
truth value ¢ € W, a truth constant c is present in the syntax of MSO®™") (A, X).
Since we want do describe formal series, we are only interested in the truth value
of formulas in word structures. Every word w € A* defines the word structure w =

(pos(w),[],,) where
<], (1.4) = {1W iff i < j

Oy otherwise

' lyw iffi>0and w; =a
for every a € A: [P,], (1) = {OW otherwise



An assignment o for w maps first order variables to positions in w and second order
variables to (characteristic functions of) sets of positions in w:

o :X; — pos(w) 0 : Xy — (pos(w) — {Ow, 1w })

The value of atoms in an interpretation (w, o) is calculated from [] , and o according to
Equation 9:

ly iff o(z) <o(y)
[['r S y]](w,o‘) = .
Ow otherwise

[Py (2)] ly iff o(z) > 0 and we(z) = a (11)
a\T =
(w.0) Oy otherwise

[X (@) = o(X)(0(2)) € {Ow, Tw}

Remark 7.1. Although w is a W-valued structure, all atoms are crisp, i.e. have truth
values in {Ow, 1y} under every interpretation.

The semantics of MSO®™")(A, X)-formulas is defined inductively according to the
equations in (11) and (10). Every sentence ¢ € MSO™") (A, X) defines the W-valued
language

Sy AY — W where Se(w) = el (12)

Definition 7.1. For an alphabet A, a truth domain W and a logic language L, a W-
valued language S : A* — W is L-definable iff there is a sentence ¢ € L such that

[¢], =S

To define formal series, we restrict our logic MSO(L’W)(A,X) to the fragments
MSOL") (4, X) where

e the negation symbol — is applied to atoms only,
e V and & are the only binary connectives,
e Jand V, are the only quantifiers.

and MSO"™" (A, X) where
e the negation symbol — is applied to atoms only,
e A and V are the only binary connectives,
e YV and d; are the only quantifiers.

Due to the restricted syntax, the truth value of a sentence ¢ € MSOL™) (A,X) in a
word structure can be calculated using only the MV-algebra operations V and ®, i.e. the
operations of the MV-semiring W,, defined in Proposition 4.1. By a similar argument,
every formula in MSOS\L’W) (A, X) can be interpreted in the MV-semiring W,. Therefore
the following proposition is immediate.



Proposition 7.1. Let A be an alphabet and W = (W, @, ®, =, Oy, 1y)
1. For every sentence ¢ € MSOS/L’W)(A, X), the mapping
Syt A" — W where Se(w) = [¢],,
is a formal series over the semiring Wy, .

2. For every sentence ¢ € MSOE\L’W)(A, X), the mapping
Syt A" — W where Se(w) =[],
1s a formal series over the semiring W .

Since — is an isomorphism of the semirings W, and W ,, we may restrict our attention
to the fragment MSO(VL’W)(A, X).

8 Weighted logics over MV-semirings

According to [7], a finite alphabet A and the semiring W define the weighted logic
MSO(W, A). Since weighted logics were introduced to allow the characterization of rec-
ognizable series by a logic formalism, the connectives in weighted logics reflect the semi-
ring operations very closely. Hence for a general semiring W, the meaning of connectives
and quantifiers is sometimes counter-intuitive.

MV-algebra operations are designed as truth functions for a generalization of the
classical connectives. Hence in weighted logics over MV-semirings, connectives inherit
an intuitive meaning for the underlying MV-algebra.

Comparing the fragment MSO") (A, X) of Lukasiewicz logic to the weighted logic
MSO(W, A), we notice a strong similarity. The set of relation symbols {<}U{P, | a € A}
is the same for both logics. Hence for a fixed set X of variables, the sets of atoms coincide
in MSO(W, A) and MSO{""™ (A, X).

Both logics MSO(W, A) and MSO(VL’W)(A,X) use different symbols for conjunction
and generalization. This is necessary, because in Lukasiewicz logic, the meaning of A and
V is predefined and satisfies certain logic laws. In general, this predefined meaning does
not coincide with the interpretation of A and V in weighted logic over general semirings.

Another difference between weighted logic and our version of Lukasiewicz logic is
merely philosophical and concerns the view to the semiring elements. In weighted
logic, they are special atoms having a fixed meaning in every word interpretation. In
Lukasiewicz logic, their syntactic representatives are truth constants (connectives of arity
0).

We present the semantics of truth constants, atoms and negated atoms in a weighted
logic MSO(W, A) as defined in [7] in comparison to the semantics of the adequate frag-

ment MSO(VL’W)(A, X)) of Lukasiewicz logic:



MSO(W, A) MsOF"(4,X)  (13)

[c] (w,0) = ¢ = [l
T T v 1
[l <w,a>={3 el o) =0 =¥l

According to the definition of weighted logics in [7] and Equation (10), the semantics of
non-atomic formulas is defined by

MSO(W, A) MSOE) (4, X) (14)

Lo Vo] (w,0) = [¢] (w,0) V [¢] (w,0) = V],
[[90 A 1/)]] (w,a) = HQO]] (w70) & [[1/)]] (w70>: [[Qp&w]](g,g)

[Bee] (w,0) = \/ [¢] (w, oz —i]) = [Bre]

el

[Vxe] (w, o) ® [¢] (w, oz —1]) = [[Vﬂ%pﬂ@,a)

el
where I = pos(w) for € X; and I = 2P for z € X,.

Definition 8.1. The mapping ¢ : MSO(W, 4) — MSO") (A, X) is defined by

t(p) ¢ if ¢ is an atom or truth constant
t(~p) = —(t(y))
te V) = te) Vi(y)
toNyY) = t( ) & (1))
t(Fzyp) = ( ()
t(Vop) = Viz(t(p))

Note that the function ¢ in Definition 8.1 is a bijection. An easy induction using the
equations in (13) and (14) shows the following theorem.

Theorem 8.1. For every word w € A, every valuation o and every formula ¢ €

MSO(W, A),
[ely (w, o) = [H@)] w0

Restricted to sentences, we obtain

10



Corollary 8.1. For every sentence ¢ € MSO(W, A): [¢] = Siy)-

This immediately implies
Corollary 8.2. A formal series S : A* — W is definable in MSO(W, A) iff
S is definable in MSOS/L’W)(A,X).

Corollary 8.2 allows to apply all results about locally finite semirings from [7] to our
fragment of Lukasiewicz logic. From

Theorem 8.2 ([7]). For a locally finite commutative semiring K and an alphabet A, it
15 decidable

1. for p,v € MSO(KK, A), whether [¢] = [¢]
2. for p € MSO(K, A), whether 0 € [¢] (A*)

we infer the following decidability result about our fragment of Lukasiewicz logic.

Corollary 8.3. For every alphabet A, it is decidable
1. for p, € MSOE,L’W)(A,X), whether S, = Sy

2. forp € MSO(VL’W)(A,X), whether 0 € S, (A*)

9 MSO(VL’W)(A, X)-definable series

In [7], Droste and Gastin generalized the well-known theorem by Biichi and Elgot [13, 3]
to the following theorem.

Theorem 9.1 ([7]). Let W be a commutative semiring and A an alphabet. Then a
series S : A* — K s recognizable iff S is definable in restricted MSO(W, A).

In formulas from restricted MSO(W, A), the quantifier V does not bind second or-
der variables and all V-quantified formulas satisfy a certain semantic condition. For a
definition of restricted MSO(W, A), see [7].

The proof of Theorem 9.1 in [7] is a generalization of the constructive proof of Biichi’s
and Elgot’s theorem. For a weighted automaton A = (Q,«,d,3) (w.l.o.g. we assume
Q={1,...,n}), a sentence p4 € MSO(W, A) is constructed such that ||A|| = [¢.].

The following sentence is an alternative to the formula in [7]. It is closer to the
traditional style in [17, 15] and avoids the concept of unambiguous formulas used in [7].

o4 = 3X7...3X, (gp A wa A s Aps)  where (15)

Pp = VQ;\/ Xp() A /\ X, ()

PEQ q€Q\{p}
o = VY (—n‘irst(m) Vv (first(a;) AV (Xg(x) A a(q))))
qeQ
o5 = Vavy | =S(x,y) v | Sy) A\ (Xp(x) A Xq(y) A Paly) AS(a)(p, q))
p(,lqEEAQ
03 = Vz (—llast(x) vV (Iast(x) AV (Xg(x) A 5@))))
q€qQ
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where, as usual, first, last and .S abbreviate the following formulas:

first(z) = Vy-(y < x)
last(z) = Vy-(x <y)
S(z,y) = x<yAVz(-(z<z2)V-a(z<y))

Theorem 9.2. For every weighted automaton A = (Q, a, 9, 3) over an arbitrary semi-
ring and the sentence @ 4 defined in Equation (15),

Al = 5.4

Proof. For every word w € A*, the value of ¢4 on w is

elu= > (e Faduwe  [#dwe  [#olws)  (16)

o:{XqlgeQ}—2pros()

We fix an interpretation (w, o) where o : {X, | ¢ € Q} — 2P°*(*) and determine the
values of the subformulas ¢,, ¢a, @s, and g under this interpretation.

It is easy to check that the semantics of the formula ¢, coincides with the classical
semantics of the formula £(p,), i.e.

[o] | 1w if{o(X,) | ¢ € Q} is a partition of pos(w)
Prlwo) = Ow otherwise

Since Oy is absorbing for - and neutral for +, we may simplify Equation 16 to

lealu= > (el [l we  [96)n) (17)

:{Xq|geQ} —2pos(w)
defines partition

In the following computations of [©a] , » + [¢al (0> a0d [#5] ) We assume o to define
a partition {o(X,) | ¢ € Q} of pos(w). Then there is a unique sequence

(4o, -+ q)) € Q™™ such that for all i € pos(w): (18)
¢; € @ is the unique state where i € 0(X,,)

Since Oy is absorbing for -, we have

o) if o@) € o(X,)
Oy  otherwise

[X,(2) A (@) .0y = [Xa(@)] 0y - la) = {

Since Oy is neutral for 4+ and the assignment o defines a partition, we obtain

“—'first(x) V (first(aﬁ) A \/ (Xg(x) A Oé(‘])))]]
(w,o[z—1])

q€Q

_ [[—'fiFSt(iU)]]@,g[xm]) + ([[ﬁrst(:c)]](w’a[w%]) . Z ([[Xq(ﬂl?) A Oé(Q)]](zy,a[aﬂ—d})))

q€eqQ

1w otherwise

_ {a(qo) for i =0
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and since 1y is neutral for -,

1€pos(w q€Q

= a(q) (19)

[pal ey = H |’—|first(x) v (first(x) A \/ (Xy(z) A oz(q)))m
) (w,olr—i])

An analogous computation results in

(6] (w.0) = B(dw)) (20)

Next we determine the semantics of 5 under an assignment o that defines a partition

{o(X,) | ¢ € Q} of pos(w). Since

1 ifp=q, ¢q=¢q;, and w; =a
[X, (@) A Xg(®) A Pa@] oy = § . ch Y :
= Ow otherwise

and for o/ = o[z +— i,y — j], we obtain

=Sz, y) V[ Sz y) A\ (K@) A Xo(y) A Paly) Ad(a)(p, q))

acA

PgER s
lw otherwise

Since 1y is neutral for -, we have

[oslwor = 11 0(w)g-1,9)) (21)

Jjepos(w)\{0}

Finally we combine our results from the equations 17, 19, 20 and 21 to

[¢al, = > alg) - J[ dw)ai-1.4) - Bgu) (22)

:Q—s2Pos(w) i€pos(w)\{0}
defines partition

Equation 18 associates a unique sequence (qo,...,qu|) of states to every assignment
o:{X,|qe€ Q} — pos(w) that defines a partition of pos(w).

leal,= > |elw) ] 0w)@iora) - Blguw)

(40 4}w]) i€pos(w)\{0}
Hence for every word w € A*,

S (w) = [|A][(w)

i.e. the behavior of A and the semantics of ¢4 coincide. m
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It is easy to check that in an idempotent semiring W where 1y, is maximal w.r.t. the
natural ordering of W, an even simpler formula suffices.

Oy = 3X1...3X, (0p AN, A5 ANpy)  where (23)
o = Vx <ﬂfirst(:c) v \/ (X, (z) A a(q)))
q€Q
p5 = Yavy | S(z,y) vV (Xp(@) A Xq(y) A Paly) AS(a)(p, q))
e
Yy = Vx (ﬂ'as’f(l‘) VvV (X(2) /\ﬁ(Q)))
q€Q

The sentence ¢’y is a straightforward extension by truth values of the classical sentence
in the proof of Biichi’s and Elgot’s theorem [17, 15].

Since every MV-semiring W is idempotent and 1y, is maximal w.r.t. the natural
ordering of W, the following theorem is immediate.

Theorem 9.3. Let A = (Q,a,0,3) be an weighted automaton over an MV-semiring,
¢’y the sentence defined in Equation 23 , and t the translation in Definition 8.1. Then

A= 5,

Since semirings derived from the standard MV-algebra and its sub-MV-algebras are
locally finite, the following result from [7] is even more interesting in our context.

Theorem 9.4 ([7]). Let W be a locally finite commutative semiring and A an alphabet.
Then a series S : A* — W is recognizable iff S is MSO(W, A)-definable.

Now, the following corollary is immediate.

Corollary 9.1. A series S : A* — [0,1] is L-recognizable iff S is definable in
MSO O (4 X).

Remark 9.1. Corollary 9.1 is also true for all semirings derived from MV-algebras that
are (isomorphic to) sub-MV-algebras of [0, 1]&.

10 Conclusion

We detected a connection between the new concept of weighted logics from [7] and
Lukasiewicz logic, a well-established many-valued logic.

Normally, formulas in Lukasiewicz logic are interpreted in the standard MV-algebra
0, 1]L. We used a slight generalization of this logic to arbitrary MV-algebras. Due to
8], MV-semirings can be derived from MV-algebras. For every MV-semiring W, we
defined fragments MSOE,L’W) (A,X) and MSOs\L’W)(A, X)) of Lukasiewicz logic appropriate
for the definition of formal series. We presented a straightforward translation between
MSOE/L’W)(A,X) and the weighted logics MSO(W, A) over the MV-semiring W. The
semirings derived from the standard MV-algebra are locally finite. Hence we could carry
over general results about recognizability and decidability of formal series from [7].

Since the strong connectives in Lukasiewicz logic satisfy the normal condition of
many-valued logics, the formula proving that every MV-recognizable series is definable
in MSOE/L’W)(A7 X)) could be simplified for this special case.
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