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Abstract

Guessing the degree of difficulty of a problem before seeing its solution is noto-
riously hard not only for beginners, but also for the most experienced professionals.
Can we develop a method to evaluate, in some objective way, the difficulty of an
open problem? This note proposes such a measure which can be used for a fairly
large class of finitely refutable conjectures which includes, for example, Riemann
Hypothesis and the Goldbach’s Conjecture. According to our measure, Riemann
Hypothesis is more complex than Goldbach’s Conjecture. We also show, in a non-
constructive way, that the Collatz 3x+1 Problem is finitely refutable; consequently,
our method cannot be applied, hence stronger versions of this problem are studied.

1 Introduction

Guessing the degree of difficulty of a problem before seeing its solution is notoriously
hard not only for beginners, but also for the most experienced professionals.

The best illustration is the famous list of 23! open problems proposed by Hilbert at
the International Mathematical Congress in Paris on August 8, 1900 (see [13, 1, 16]),
widely considered the most influential set of problems for the last century mathematics.

! Actually, 24, see [21].



Hilbert’s third problem, “give two tetrahedra that cannot be decomposed into con-
gruent tetrahedra directly or by adjoining congruent tetrahedra”, was solved by Dehn
[8] immediately after the Congress, and the paper including its solution was published
before the publication of the proceedings of the Congress. This may suggest that the
problem was not “that difficult”.

Hilbert’s eitgth problem includes two problems neither which was proved nor dis-
proved: the Riemann Hypothesis (one of the Clay Mathematical Institute Millennium
Problems, [22]; see more about this problem in [12, 16, 17, 18]); its first solution will
be awarded a prize worth 1 million dollars) and the Goldbach’s Conjecture. While the
Riemann Hypothesis is more difficult to explain, Goldbach’s Conjecture, written in a
June 7, 1742 letter to Euler, is easy to state: prove that “every positive even integer can
be expressed as the sum of two primes,” [11, 10].2

Finally, our last open question is Collatz 3x 4+ 1 Problem, about which Erdos com-
mented that “mathematics is not yet ready for such problems”, [14]. The problem asks

to prove (or disprove) that for every seed a > 0, there is an iteration N of the function
T(z) = x/2, if z is even, and T'(z) = 3z + 1, if x is odd, such that TV (a) = 1.

Is there any mathematical way to evaluate the degree of difficulty of any of these
problems? In what follows we will propose a uniform method to evaluate the difficulty of
a finitely refutable problem. A conjecture is finitely refutable if verifying a finite number
of instances suffices to disprove it (see [4]). Our refutable method uses a systematic
enumeration (of the problem’s search domain) that is guaranteed to find a counter-
example if one exists. If the search stops, then it refutes the conjecture; if the search
does not halt, then the conjecture is true.

Both Riemann’s Hypothesis and Goldbach’s Conjecture are finitely refutable, so our
method allows the evaluation of their difficulty: according to our measure, the Riemann
Hypothesis is more difficult than the Goldbach Conjecture. Our analysis shows that
Collatz 3z + 1 Problem, in its original formulation, is finitely refutable, but our proof is
not constructive, so our method does not apply. However, two slightly stronger versions
of this problem are finitely refutable, so they can be studied with our method.

2 The Method

The Halting Problem for Turing machines is the problem to decide whether an arbitrary
Turing machine 7" eventually halts on an arbitrary input . As a Turing machine T' can
be coded by a finite string, say code(T'), it makes sense to ask whether we can design
a Turing machine T4, which given code(T') and z, eventually stops and produces 1 if
T'(x) stops and 0 if T'(x) does not stop. Turing’s famous result states that this problem
cannot be solved by any Turing machine, i.e. there is no such T},q;.

It is perhaps surprising to note that many problems in mathematics can be refor-
mulated in terms of the halting/non-halting status of appropriately constructed Turing
machines. For example, consider Fermat’s Theorem, stating that there is no integers

2At that time 1 was considered prime.



x,y,z,n > 3 such that 2" 4+ y" = 2". It is not difficult to see how to construct a Tur-
ing machine Trepmq: Which enumerates systematically all possible integers (for example,
written in binary) x,y,z,n > 3, checks whether 2" + y" = z", and stops if for some
values z,vy, z,n the relation is true (which would mean that the program has found a
counter-example); otherwise, T' generates a new 4-tuple x,y, z, n and repeats the above
procedure. Clearly, Fermat’s Theorem is equivalent with the statement “I’gepp,q: never
halts”, hence knowing that Fermat’s Theorem is true we know that Tre,mq never halts.
A possible (admittedly, not very promising) way to prove Fermat’s Theorem is to show
that Trerma: never halts. But this is not the point! The point is that we can measure the
difficulty of Fermat’s Theorem by the complexity of Trermat, for example, by the number
of bits necessary to specify Trerma: in some fixed formalism. Of course, there are many
Turing machines equivalent to Trermat, SO a natural way to evaluate the complexity is to
consider the least complex such machine.

In what follows we work with self-delimiting Turing machines C': such a machine reads
the program’s data (in binary) from right to left only, never going back, so its accepted
programs (i.e., its domain) form a prefix-free set. If, after finitely many steps, C' halts
with the program tape head scanning the last bit of the input x, then the computation
is a success, and we write C'(x) < oo; the output of the computation is the binary string
C(z). Otherwise, the computation is a failure, we write C'(x) = oo, and there is no
output.

A classical result states the existence of a universal self-delimiting Turing machine
U: for every self-delimiting Turing machine C' there is a string p (depending upon U, C)
such that U(px) = C(z), for all strings . The halting probability of U, denoted by
Qu (and called Chaitin’s Omega number) is defined by Qp = Yy(m)<00 27*1, where ||
denotes the length of x. With the first NV digits of {2y we can solve the Halting Problem
for all programs x of length less than or equal to N.

Consider now a problem II for which we can construct a program Cp; such that II
is false if and only if U(Cp) < oo (if such a program exists). We propose to define
the “difficulty” of a problem II by the minimal number of bits of €2y necessary to test
whether Cpy stops on U.

Many problems, including Riemann Hypothesis and Goldbach’s Conjecture, are
finitely refutable, so they can be classified according to our measure. Of course, not
every problem is finitely refutable; an example is the Twin Prime Conjecture (TPC) (see
(7], p. 337):

Vn{3p[p > n&p prime & p + 2 prime]}.

However, the stronger Twin Prime Conjecture is finitely refutable:

VYn{3p[n < p < 2" & p prime & p + 2 prime]}.

If the program corresponding to the strong TPC never halts, then the TPC is true;
however, if the program does not halt, then we get no information about the TPC.

Theoretically, the choice of U is irrelevant up to an additive constant, so if a problem
is significantly more complex than another one with respect to a fixed universal self-
delimiting machine, then it will continue to be more complex for any other machine.



However, the proposed measure is uncomputable (see [2]), so in practice we just obtain
an upper bound on the number of digits of €y necessary to check whether U(Chy) < oo.

In practice, to evaluate the complexity of I we need to obtain effectively the program
Ch, and to compute its size in bits: this gives an upper bound on its complexity of Cfy,
hence the difficulty of II.

3 A universal self-delimiting Turing machine

In what follows we will briefly describe the syntax and the semantics of a register machine
program which implements a (natural) universal self-delimiting Turing machine; it is a
refinement of the languages described in [5, 3].

Any register machine has a finite number of registers, each of which may contain an
arbitrarily large non-negative binary integer. The list of instructions is given below in
two forms: our compact form and its corresponding Chaitin style version. The main
difference between Chaitin’s implementation and ours is in the encoding: we use 4 bits
instead of 8 bits per character.

By default, all registers, labeled with a string of ‘a’ to ‘h’ characters, are initialized
to 0. It is a syntax error if the first occurrence of register j appears before register i in
a program, where j is lexicographic greater than 7. Also, all registers lexicographic less
than j must have occurred. Instructions are labelled by default with 0,1,2,... (in binary).

The register machine instructions are listed below. Note that in all cases R2 denotes
either a register or a binary constant of the form 1(0 + 1)* + 0, while R1 and R3 must
be register variables.

—R1,R2,R3 (EQ R1 R2 R3)

If the contents of R1 and R2 are equal, then the execution continues at the R3-th
instruction, where R3 = 0 denotes the first instruction of the program. If they are not
equal, then execution continues with the next instruction in sequence. If the content of
R3 is outside the scope of the program, then we have an illegal branch error.

&R1,R2 (SET R1 R2)

The contents of register R1 is replaced by the contents of register R2.

+R1,R2 (ADD R1 R2)

The contents of register R1 is replaced by the sum of the contents of registers R1 and
R2.

IR1 (READ R1)

One bit is read into the register R1, so the numerical value of R1 becomes either 0 or 1.
Any attempt to read past the last data-bit results in a run-time error.
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% (HALT)

This is the last instruction for each register machine program before the raw data. It
halts the execution in two possible states: either successfully halts or it halts with an
under-read error.

A register machine program consists of a finite list of labelled instructions from the
above list, with the restriction that the HALT instruction appears only once, as the last
instruction of the list. The input data (a binary string) follows immediately after the
HALT instruction. A program not reading the whole data or attempting to read past the
last data-bit results in a run-time error. Some programs (as the ones presented in this
paper) have no input data.

To aid the presentation and development of the programs we use a consistent style
for subroutines. We use the following conventions:

1. The letter ‘L’ followed by characters (usually 1,...,9) and terminated by " is
used to mark line numbers. These are local within the subroutine. References to
them are replaced with the binary constant in the final program.

2. For unary subroutines, registers a = argument, b = return line, ¢ = answer (a and
b are unchanged on return).

3. For binary subroutines, registers a = argumentl, b = argument2, ¢ = return line,
d = answer (a, b and ¢ are unchanged on return).

4. For subroutines, registers e, ..., h are used for temporary values and may be mod-
ified. Also, up to register ‘ah’ should be considered reserved when using secondary
level subroutines like isPrime and Explog.

5. For Boolean data types we use integers 0 = false and 1 = true.

4 Goldbach’s Conjecture

Goldbach’s Conjecture, which is part of Hilbert’s eighth problem, states that all positive
even integers greater than two can be expressed as the sum of two primes. The conjecture
was tested up to 3 x 10! by Oliveira e Silva, [19].

The associated program is straightforward: we just enumerate all positive even inte-
gers greater than two and for each we check the required property (which is computable);
the program stops if and only if it finds a counter-example for Goldbach’s Conjecture.
The program (in human readable form) is the following:

&a,Goldbach
=b,c,a // b=c=0 so jumps to start of Goldbach algorithm

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b

5



&d,0
=a,b,c
+d,1
&e,a
&f,b
&g,L1
&h,L2
L1: +e,1
+f,1
=e,b,cC
=f,a,h
=a,a,g
L2: +d,1
=a,a,cC

// Sub(a,b) returns a-b, where we assume a>=b
&d,0

=a,b,c

&e,b

&f,L1

L1: +d,1

+e,1

=a,e,C

=a,a,f

// Mul(a,b) returns ax*b
&d,0
=a,0,c
=b,0,c
&e,L1

&f,1

+d,a

L1: =f,b,c
+f,1

+d,a
=a,a,e

// Div(a,b) returns integer floor of a/b, assumes b>0

&g,L1
&h,L2

&aa,a // copy of a (variable not used in Cmp & Mul)
&ab,b // copy of b

&ac,c // copy of c

&ad,1 // initial answer

&c,LO

&d ,Cmp



=a,a,d // call Cmp(a,b)

LO: &c,aa

=d,0,g

=d,2,h

&d,0 // else a < b so return 0
=a,a,cC

L1: &d,1 // a=b so return 1
=a,a,cC

L2: &c,L5

&ae,Mul

&a,ad

=a,a,ae

L5: &a,d // just computed adxb
&b, aa

&c,L6

&ae,Cmp

=a,a,ae // call Cmp(ad*b,a)
L6: &b,ab // reset b

&ae,L3

=d,1,ae

&ae,L4

=a,a,ae

L3: +ad,1 // still <

=a,a,h

L4: &d,ad

&a,aa // unpop input parameters
&b, ab

&c,ac

=a,a,cC

// Mod(a,b) returns a mod b, assumes b>0
&af ,a // copy of parameters
&ag,b

&c,LO

&d,Div

=a,a,d // call Div(a,b)

LO: &a,d

&c,L1

&d ,Mul

=a,a,d // call Mul(a/b,b)

L1: &a,af

&b,d

&c,L2

&d,Sub

=a,a,d // call Sub(a, [a/b]l*Db)
L2: &b,ag



=a,a,cC

// isPrime(a) where a >= 2

&d,0
&ah,a
&ba,L1
&bb,L2
&bc,c
&b, 2

//

parameter copy

L1: =b,ah,bb // trial reached so a is prime

&bd ,Mod
&c,L3
=a,a,bd
L3: &c,bc
=d,0,c
+b,1
=a,a,ba
L2: &d,1
&a,ah
=a,a,c

//

//

call Mod(a,b)

divisible by b so not prime

// start of Goldbach Conjecture testing program

&be, 2

LO: +be,2
&bf,2
&a,bf
&c,L1
&bg,isPrime
=a,a,bg
L1: &e,L3
=d,1,e
L2:+bf,1
&d,L6
=bf,be,d
&a,bf
&c,L1
=a,a,bg
L3: &bh,bf
L5: &ca,bf
+ca,bh
&cb,L0
=be,ca,chb
L7: +bh,1
&cb,L2
=bh,be,cb
&c,L4

//
//

//
//
//

//
//

//

//

enumeration of all even integers >= 4
enumeration of all primes bf >= 2 and bf < be

if bf is prime
else increment

found counter example

check is prime again

enumeration of all primes bh >= bf and bh < be
sum of primes

found sum, test next be

try next bf



&a,bh

=a,a,bg

L4: &e,L5

=d,1,e // if bh is prime

&e L7

=a,a,e // else increment bh
L6: %

The machine executable version (see the Appendix) has 135 instructions totaling
length 871 4-bit characters, i.e. its size in bits is 3484.

5 Riemann Hypothesis

Riemann Hypothesis is a famous conjecture included in Hilbert’s eighth problem: this is
the hypothesis that the non-trivial complex zeros of Riemann’s zeta function, which is
defined for Re(s) > 1 by

lie exactly on the line Re(s) = 1/2.

According to Matiyasevich [15], p. 119-121, the negation of the Riemann hypothesis
is equivalent to the existence of integers k, [, m,n satisfying the following six conditions
(here z | z means “x divides z”):

1. n > 600,

2. Wy < nl(y+1) | m],

3. m>0&Vy<mly=mVIzx<n[-[(z+1)]y]],
4. explog(m — 1,1),

5. explog(n — 1,k),

6. (I —n)? > an?k*,

where explog(a,b) denotes the predicate
Jrfr>b+1&(1+1/2)" <a+1<4(1+1/2)"].

The program is fairly straightforward, except for dealing with explog(a,b), which
is computably enumerable only; in this case we have adopted a dovetailing approach.
Indeed, we just enumerate all 5-tuples k,[,m,n,T satisfying conditions 1-3, 6 and the
relativized conditions 4, 5:



4’ explog(m — 1,1,T),

5 explog(n — 1,k,T),
where explog(a,b, T) denotes the predicate

[T >2>b+1&(1+1/2)" <a+1<4(1+1/2)™).

In what follows we will present the program in human readable form only; the machine
executable version can be obtained immediately (as in the case of Goldbach’s program).

&a,Riemann
=b,c,a // b=c=0 so jumps to start of Riemann algorithm

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b

// Mul(a,b) returns axb

// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0

// Pow(a,b) returns a"b where we assume a>0 and b>0
&d,a

=b,1,c // a~1 = a base case?

&g, a

&h,b // keep our own runtime stack for a,b,c
&aa,c

&ab, 1

&ac,L1

&ad,L2

&c,L3

&b,a // get ready to compute a*a

L2: +ab,1

&ae,Mul // replace with address of subroutine Mul
=a,a,ae

L3: &a,d

=ab,h,ac // stop when a"b is computed

=a,a,ad

L1: &a,g

&b,h // unpop stack

&c,aa

=a,a,cC

// Explog(a+l,b); uses global variable ah as upper bound
// to test if there exists ah >= x > b+1 such that

// (x+1)"{xb} <= (a+1)x"{xb} < 4(x+1)"{xb}

&d,0
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=ah,0,c // return if no upper bound set

&ba,a // store parameters locally
&bb,b

&bc,c

&bd,b // start checking x at b+2
+bd, 2

L1: &a,bd // compute x+1 and x*b and store into be and bf
&be,bd

+be, 1

&a,bd

&b ,bb

&c,L2

&d ,Mul

=a,a,d

L2: &bf,d

&a,be // compute bg = (x+1) {bf}
&b ,bf

&c,L3

&d,Pow

=a,a,d

L3: &bg,d

&a,bd // compute x"{bf} and this times a+l, yielding bh
&c,L4

&d,Pow

=a,a,d

L4: &a,d

&b, ba

&c,L5

&d ,Mul

=a,a,d

L5: &bh,d

&a,bg // test first <=

&b,bh

&c,L6

&d , Cmp

=a,a,d

L6: &a,L9

=d,2,a // if false try next x
&a,4 // else compute 4*bg
&b, bg

&c,L7

&d ,Mul

=a,a,d

L7: &a,bh // test second <

&b,d

&c,L8
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&d , Cmp

=a,a,d

L8: &a,L10
=d,1,a //
L9: +bd,1 //
&d,0

&a,L10
=bd,ah,a //
&d,L1

=a,a,d

L10: &a,ba //
&b ,bb

&c,bc

=a,a,c

&ca,599 //
L1: +ca,l
&cb,600

L2: &ah,O

L3: &cc,0

L4: &cd,O

L5: &b,cb //
+b,ah

+b,cc

+b,cd

&a,ca

&d,Sub

&c,L6

=a,a,d

L6: &ce,d
&cf,0 //
&d,L7

L9: +cf,1 //
=cf,cb,d //
&a,ct

&b,cd

&c,L8

&d ,Mod
=a,a,d

L8: &cg,L9
=d,0,cg //
&d,L10

=a,a,d

L7: &cf,1 //
LA2: &d,LA1
+cf,1 //

test if found x
next x

exit if reach upper bound

return

start of Riemann Conjecture testing program

compute ce=ca-cb-ah-cc-cd (=ca-b)

check Cond 1

next y
did we check all y<n (if yes, check Cond 2)

divides when a mod b is zero

check Cond 2

next y
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=cf,cd,d // did we check all y<m (if yes, check Cond 3)

&be, 0

&d,L10

=cd,0,d // check m>0 (kludge!)
LA4: =be,n,d

+be, 1 // did we try all x < n? (next m, if so)
&a,be

&b, cf

&c,LA3

&d ,Mod

=a,a,d

LA3: &c,LA4

=d,0,c // divides so try next x
&d,LA2

=a,a,d // do next y

LA1: &a,cd // check Cond 3

&b, cc

&c,LA5

&d ,Explog

=a,a,d

LA5: &c,L10

=d,0,c // if fail do next m
&a,cb // check Cond 4

&b, ce

&c,LA6

&d,Explog

=a,a,d

LA6: &c,L10

=d,0,c // if fail do next m
&a,cb // check Cond 5

&b, ce

&c,LA9

&d ,Mul

=a,a,d

LA9: &bg,d

+bg,bg // bg=2nk

&a,cc

&b, cb

&c,LA7

&d , Cmp

a,a,d

LA7: &c,LA8 // if 1 > n

=d,2,c

&a,cb // else 1 <= n

&b, bg

+b,cc

13



&c,LBO

&d , Cmp

a,a,d

LBO: &c,LX

=d,2,c // last condition passes
&c,L10 // else try next m
=a,a,cC

LA8: &a,cc

&b, bg

+b,cb

&c,LB1

&d , Cmp

a,a,d

LB1: &c,LX

=d,2,c // 2nd way last condition passes
L10: &bg,cd // next m

+bg,cb

+bg,ah

+bg,cc

&d,L11

=bg,ca,d // check at end of m loop
+cd,1 // else increment

&d,L5

=a,a,d

L11: &bg,cc // next 1

+bg,cb

+bg,ah

&d,L12

=bg,ca,d // check at end of 1 loop
+cc,1

&d,L4

=a,a,d

L12: &bg,ah // next b

+bg,cb

&d,L13

=bg,ca,d // check at end of b loop
+ah,1

&d,L3

=a,a,d

L13: &d,L1 // next n and next s
+cb,1

=cb,ca,d

&d,L2

=a,a,d

LX: %
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The register machine version of our Riemann hypothisis test consists of 290 lines and
1953 characters (7780 bits), as an upper bound on the complexity of the problem.

6 Collatz 3z +1 Problem

Recall that Collatz function is defined by T'(x) = x/2, if x is even, and T'(x) = 3x + 1,
if z is odd. The conjecture states that for every seed a > 0, there is an iteration N such
that TV (a) = 1, see [14]. Again, this conjecture was tested and proved true up to 7258,
see Oliveira e Silva, [20].

First we note that a brute-force tester, i.e. the program which will enumerate all
seeds and for each of them will try to find an iteration equal to 1, may never stop in
two different cases: a) because the conjecture is indeed true, b) because for some specific
seed ag there is no N such that T (ag) = 1. It is not clear how to differentiate these
cases; even worse, it is not clear how to refute b) by a a brute-force tester.

Secondly, there is a non-constructive way to prove that there exists a program Ceojat-
which never stops iff the conjecture is true. Indeed, observe first that the set

Collatz = {a > 0| T"(a) = 1, for some N > 1}

is a computably enumerable set. Collatz 3z + 1 Problem requires to prove that Collatz
contains indeed all positive integers.

If Collatz is not computable, then the conjecture is false, and this can be proven just
by running the brute-force tester (which, we know, it will eventually produce a counter-
example because a) is ruled out). If Collatz is computable, then we can write a program
to check whether each integer is in Collatz, so we can decide whether the conjecture is
true or not. Of course, this argument has no practical value, because we don’t know
which of the above programs should be chosen.

We examine two possibilities to attack the Collatz 3z + 1 Problem with our method.
In the first one we search for a repeating cycle (the other possible case for finding a
counter-example is when there is an infinite sequence of distinct integers). Our first
program looks for a seed that begins such a cycle. This can be observed if the following
statement is found to be false:

Va > 5YN > 0[T"(a) # a).

We set the starting position at a > 5 since the repeating sequence of numbers
1,T(1) = 4,7%(1) = T(4) = 2,73(1) = T(2) = 1,... is not a counter-example. The
main program for our Collatz one-sided tester, given below, systematically increases the
maximum number of iterations to try (register bb) as it expands the set of integers (reg-
ister bc) to test. If this program stops, then it disproves the original Collatz 3x + 1
Problem by halting on a counter-example.
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// start of Collatz loop checking program

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b

// Mul(a,b) returns ax*b

// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0

&ah ,Mod

&ba,5 // integer a to try

&bb, 1 // number of iterations

&bc,2 // current maxtry

LO: +ba,l1

=ba,bc,L1

&bd ,ba

&be, 1

L2: =be,bb,LO

&a,bd

&b, 2

&c,L3

a,a,ah // call Mod(a,2)

L3: &c,L4

=d,0,c // if even

&b,3 // else odd

&c,L5

&d ,Mul

=a,a,d // compute a*3

L5: +d,1 // compute a*x3+1

&bd,L7

=a,a,bd

L4: &c,L7

&d,Div

=a,a,d // compute a/2 (note b=2 from Mod call)
L7: &bd,d

&d,L6

=bd,ba,d // if found a counter-example halt
&d,LO

=bd,1,d // if we reach 1 then try next a
+be, 1 // otherwise do another iteration
&d,L2

a,a,d

L1: +bc,1

+bb, 1

&ba, 1

=a,a,L0

L6: %
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The final program has 127 lines of 808 characters, which totals a length of 3232 bits.

The second approach solves a time-bounded version of the original problem, namely:
Va > 23N [N < 2°&TN(a) = 1].

If the corresponding program never stops, then it will prove the original Collatz 3z +1
Problem. Here is the program:

// start of Collatz time-bounded checking program

// Cmp(a,b) returns 1 if a<b, 0 if a=b, or 2 if a>b
// Sub(a,b) returns a-b, where we assume a>=b

// Mul(a,b) returns ax*b

// Div(a,b) returns integer floor of a/b, assumes b>0
// Mod(a,b) returns a mod b, assumes b>0

// Pow(a,b) returns a"b where we assume a>0 and b>0

&ah,1 // integer a to try

L7: +ah,1

LO: &a,2

&ba,ah // current value of Tx(a)
&b, ba

&c,L1

&d ,Pow

=a,a,d // compute bound 2"a

L1: &bb,d

&bc,0 // iteration counter

L2: +bc,1

&a,ba // else compute next T()
&b, 2

&c,L3

&d ,Mod

a,a,d // call Mod(a,2)

L3: &c,L4

=d,0,c // if even

&b,3 // else odd

&c,L5

&d ,Mul

=a,a,d // compute ax3

L5: +d,1 // compute a*x3+1

&c,L6

=a,a,cC

L4: &c,L6 // even case

&d,Div

=a,a,d // compute a/2 (note b=2 from Mod call)
L6: &ba,d
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&d,L7
=ba,1,d // if passes test then try next a

&d,LX // while less than bound

=bc,bb,d // if not, found counter-example
&d,L2

=a,a,d // else next iteration of Collatz on a
LX: %

The final program has 143 lines of 897 characters, which totals a length of 3588 bits.

7 Final Comments

Our analysis gives a new method of comparing the difficulties of two or more finitely
refutable problem. The main obstacle is the non-computability of the measure. How-
ever, working with upper bounds one can obtain a practical method for evaluating the
complexity. Using this method we showed that the Riemann Hypothesis is more difficult
than the Goldbach Conjecture. Two stronger versions of Collatz 3x + 1 Problem have
been also studied.

Trying to reduce the lengths of our programs should be possible; of course, proving
minimality is much more demanding.
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Appendix

Here is the final machine executable version of the Goldbach program, where one reads
the sequence of instructions down each of the three columns.

19



&a,1101000
=b,c,a
&d,0
=a,b,c
+d,1
&e,a
&f,b
&g,1001
&h,1110
+e,1
+f,1
=e,b,cC
=f,a,h
=a,a,g
+d,1
=a,a,cC
&d,0
=a,b,c
&e,b
&£,10100
+d,1
+e,1
=a,e,C
=a,a,f
&d,0
=a,0,c
=b,0,c
&e, 11110
&f, 1
+d,a

=a,a,e
&g,110000
&h,110010
&aa,a
&ab,b
&ac,c
&ad,1
&c,101011
&d, 10
=a,a,d
&c,aa
=d,0,g

=d,10,h
&d,0
=a,a,c
&d, 1
=a,a,c
&c,110110
&ae, 11000
&a,ad
=a,a,ae
&a,d
&b,aa
&c,111011
&ae, 10
=a,a,ae
&b, bb

&ae, 1000000

=d,1,ae

&ae, 1000010

=a,a,ae
+ad,1
=a,a,h
&d,ad
&a,aa

&b, ab
&c,ac
=a,a,c

&af ,a
&ag,b
&c,1001100
&d, 100010
=a,a,d
&a,d
&c,1010000
&d, 11000
=a,a,d
&a,af

&b,d
&c,1010101
&d, 10000
=a,a,d
&b,ag
=a,a,c
&d,0

&ah,a

&ba,1011101

&bb,1100110
&bc,c

&b, 10
=bd,ah,bb
&bd, 1000111
&c,1100001
=a,a,bd
&c,bc
=d,0,c

+b, 1
=a,a,ba
&d, 1

&a,ah
=a,a,c

&be, 10

+be, 10

&bf, 10
&a,bf
&c,1101111
&bg,1010111
=a,a,bg
&e,1110111
=d,1,e
+bf,1

&d, 10000110
=bf,be,d
&a,bf
&c,1101111
=a,a,bg
&bh,bf
&ca,bf
+ca,bh
&cb,1101001
=be,ca,cb
+bh,1
&cb,1110001
=bh,be,cb
&c,10000010
&a,bh
=a,a,bg

&e, 1111000
=d,1,e

&e, 10000100
=a,a,e

b





