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Abstract

In 1985 Simion and Schmidt gave a constructive bijection ¢ from F,,_; to S, (123, 132, 213),
where F,,_1 is the set of all length (n — 1) binary strings having no two consecutive 1s and
Sn(123,132,213) is the set of all permutations of {1,2,...,n} that avoid all patterns in the
set {123,132,213}.

In this paper we generalize ¢ to an injective but not surjective function from {0,1}7~1!
to the set S, of all length n permutations. From this not bijective function we derive three
bijections ¢ : P — @ where P C {0,1}"7! and Q C S,; the domains are sets of restricted
binary strings and the codomains are sets of pattern-avoiding permutations. As particular
case of one of these bijections, we retrieve back the original Simion-Schmidt bijection.

We also show that the obtained bijections are actually combinatorial isomorphismes; i.e.,
closeness preserving bijections. Each domain of them has known Gray code and generating
algorithm, hence we propose similar results for each of corresponding codomains, through
the corresponding combinatorial isomorphism.

Keywords: pattern-avoiding permutations, Fibonacci strings, constructive bijections, com-
binatorial isomorphisms, Gray codes.

1 Introduction and Motivation

A permutation 7 of the set of integers [r] = {1,2, ..., n} is a bijection from [n] onto itself and we
denote by 5, the set of all such permutations. For two permutations 7 € S; and 7 € .5,,, with
k < n, we say that a subsequence 7y, , 7, ..., 7y, of 7 has type T whenever 7, < 7, if and only if

7 < 1;forallz,7,1 <+¢,7 <k. In this context the permutation 7 is called pattern. For example,
the subsequence 523 of the permutation 15423 has type 312. Now, let 7' = {7y, 79, ..., 7%} be a
set of patterns. We say m avoids T whenever m contains no subsequence of type 7; for all 7, € T,
and we will denote by S,,(7") the set of all such permutations. For example, the permutation
15423 € S5 avoids the set of patterns {231,213} because it has no subsequence of type 231 nor
213. So we have 15423 € S5(231,213) but 15423 ¢ S5(312). Clearly S, (T1) C S, (T32) if T, C T7.

This paper is inspired by Simion-Schmidt’s result [5, Proposition 15*] which gave a construc-
tive bijection ¢ from F,_; to S, (123,132,213). Here F),_; is the set of all length (n — 1) binary
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strings having no two consecutive 1s (also known as the set of Fibonacci strings). In this paper
we generalize ¢ to an injective but not surjective function ¢ from {0,1}"7! to S,. From this
not bijective function we derive three bijections ¢ : P — @Q where P C {0,1}*! and Q C S,,.
The three pairs (P, Q) are:

1. ({o, 13771 S,.(123,132)),

2. (F;fi)l, S,(123,132,0,)), where ng)l is the set of length (n — 1) binary strings with no p
consecutive ones and o, is the length (p+ 1) permutation p(p—1)(p—2)...1(p+1) (when
p = 2 the bijection ¢ becomes the original Simion-Schmidt’s bijection), and

3. (Cono1 gy S! 1 (123,132)), where C,,_y , is the set of binary strings in {0, 1}*~! having exactly
k 1s and S;’l x(123,132) is the set of permutations in S, (123, 132) having exactly k left-
inversions.

We denote by ¢ the Simion-Schmidt bijection and its extensions because they have same
mapping rule but different domain-codomain pairs.

In this paper we also prove that the three bijections ¢ : P — ) are combinatorial isomor-
phisms, those are, closeness preserving bijections. Each domain of these bijections has known
Gray code and generating algorithm, hence we propose Gray code and sketch generating algo-
rithm for S,(123,132), 5,,(123,132,0,), and S/ ,(123,132), each of them obtained through the
corresponding combinatorial isomorphism. 7

The structure of this paper is as follows. After this introduction, Section 2 presents the
generalization of the Simion-Schmidt’s bijection and the derivation of the three bijections. Sec-
tion 3 shows that these bijections are actually combinatorial isomorphisms, Section 4 proposes
a Gray code for each codomain of these bijections, and Section 5 delivers some graph theoretical
consequences and sketches generating algorithm for each Gray code. The final section gives
some concluding remarks.

2 The Simion-Schmidt Generalized Injection

For any b = byby---b,_1 € {0,1}"~! we construct a permutation = € S,, which has its ith entry,
7;, given by the following rule. If X; = {1,2,--- ,n} — {m, 79, -+, m_1}, then set
| the largest element in X; if b; = 0 (1)
* | the second largest element in X; if b; = 1

and finally 7, is the single element in X,,.

We denote by ¢(b) the unique image of b € {0,1}"~! through this procedure. Furthermore,
two different strings in {0,1}"~! are mapped into two different permutations in S,,, therefore
¢ :4{0,1}"~t — S, is an injective function. Moreover, since for n > 3, |S,| > [{0,1}"7} = 2771,
hence ¢ : {0,1}"~! — S, is not surjection, and so ¢ is not bijection.

The construction above was already given by Simion and Schmidt [5] in a particular context,
namely as a bijection between length (n — 1) binary strings with no two consecutive ones and
permutations in S5,,(123,132,213). The next two lemmata generalize they result.

Lemma 1.

1. ¢ :{0,1}""t = 5,(123,132) is a bijection.



w1 — Sn(123,132,0,) is a bijection, where Fézi)l is the set of length (n — 1) binary
strings having no p consecutive 1s and o, is the length (p + 1) permutation p(p — 1)(p —
2)...1(p+1).

Proof. 1. Let m € S,(123,132) and k, 1 < k < n, such that 7y = n. If & > 1 then m; > 744
forall ¢, 1 <1 < k — 1, else 123 could not be avoided. Moreover, m; > 7; for all ¢ < k£ and
J >k, else mympm; is a sequence of type 132. Therefore, 7 = mymy .. .17’ with m; = w41 + 1 for
1<i<k-—1and 7’ € 5,_(123,132).

By recurrence, if # € 5,,(123,132) then there exist integers 0 = kg < k1 < ... <k, < ... <
k., = n such that 7 is a sequence of m blocks

2. @:F(p)

M= TUTG e Ty w e« They 41T hey 42 -+« Ty« o e Tk 41T k1 +2 + - - Thiy (2)

with
e the rightmost elements of each block are in decreasing order: n =mp, > m, > ... > 7y,

e in each block containing more than one element

— the first element equals the last one minus one: m, _, 41 = m, — 1,

— all elements, except the last one, are consecutive integers in decreasing order: m, =
w1+ 1for k.1 +1 <0<k, —1.

It is easy to check that b € {0,1}"~! defined by

b — Oif e =k, forsomer,1<r<m
71 1 otherwise

satisfies p(b) = 7.
2. In addition, if 7 avoids o, = p(p—1)(p—2) ...1(p+1) then each block 7k, _, 417k, _,42... 7k,
has length at most p and b defined above has no p consecutive 1s. O

Figure 1 shows the permutations 976548213 and 978546213 in Sg(123,132) in array repre-
sentation; the rightmost element of each block, as is mentioned in the proof above, is underlined.
Table 1 gives the domains and codomains of the bijection ¢ : {0,1}*"! — S,(123,132), and
P F7£2_)1 — 5,,(123,132,213), for n = 5. The listing actually is in Gray code order; see Section
4 for more about Gray code.

Let now C),_; i be the set of strings in the {0, 1}7~! with exactly k occurrences of 1. Strings

in C),_; 1 are the usually binary string representation of the combinations of k objects chosen
from (n — 1) so |Ch_1 k| = (”;1)

Definition 1. In a permutation © € S,, a pair (1, j), with i < j, is called an inversion iff m; > 7,
and left inversion iff m; < 7;.

We write S, 1 (T') to denote the set of permutations in S, (7") having exactly k inversions,
and similarly, 57’17k(T) for the set of permutations having exactly k left inversions.

Lemma 2. ¢:Cy_q1 1 — S! ,(123,132) is a bijection.



Table 1: (a) The set of permutations in S5(123, 132) is constructed
from the set of binary strings {0, 1}* through the bijection ¢. (b)
The set of permutations in S5(123,132,213) is constructed from

the set Ff) of Fibonacci strings through the bijection ¢.

(a) (b)

{0,137 ] S5(123,132) || £ | 55(123,132,213)
0111 53214 0100 53421
0110 53241 0101 53412
0100 53421 0001 54312
0101 53412 0000 54321
0001 54312 0010 54231
0000 54321 1010 45231
0010 54231 1000 45321
0011 54213 1001 45312
1011 45213

1010 45231

1000 45321

1001 45312

1101 43512

1100 43521

1110 43251

1111 43215

Proof. Let b € {0,1}" ! and i, 1 < i < n, such that b; = 1. Then 7 induces exactly one left
inversion in m = ¢(b). Indeed, let j the position of the leftmost 0 bit in b at the right of 7 if any,
and j = n otherwise. In 7w, m; > 7, for all £ > 4, except for £ = j, and so, (¢, ) is a left inversion
and the number of left inversions in 7 equals the number of 1s in b. O

Table 2 shows the domain and codomain of the bijection ¢ : Ch_q 1 — S! .(123,132) for
n=>5and k = 2. U4 is listed such that consecutive strings differ in two positio7ns; when these
positions are consecutive the corresponding permutations differ in 3 positions and in 4 positions
otherwise. As we will see in Section 3 this is valid for all n.

By considering the definition (1) of the function ¢ it is easy to check the following

Table 2: The set of all length 5 permutations of S5 ,(123,132) is
constructed from the set of all length 4 and 2 occurrences of 1s
strings in C4 2 through the bijection ¢.

Cia  SL,(123,132)

0110 53241
0101 53412
0011 54213
1010 45231
1001 45312
1100 43521




Remark 1. Let i, 1 <i<n-—1,bb € {0,1}"! and suppose b, = b), except for { = i. Then
T = @(b) and ' = p(b') are such that my = 7, except for £ € {i,j} with j is as follow: the
leftmost position at the right of © where b; = 0 if any, and n otherwise.

3 The Isomorphism of ¢

In a combinatorial class we say that two objects are close if they differ in some pre-specified,
usually small, way; the Hamming distance is a customary specification. A (combinatorial)
tsomorphism between two combinatorial classes is a closeness preserving bijection, i.e., two
objects in a class are close if and only if their images through this bijection are also close. In
this section we show that the bijections in Lemmata 1 and 2 are actually isomorphisms.

Definition 2.

1. Two binary strings in {0,1}"~! are close if they differ in a single position.
2. Two permutations in S, (123, 132) are close if they differ by the transposition of two entries.

For example, the binary strings 0111 and 0110 are close and so are their images through ¢,
i.e., the permutations 53214 and 53241.

Lemma 3. Let bt € {0,1}"7! and 7 = p(b), 7' = (V') € S,(123,132). The followings are
equivalent:

1. b and b are close in {0,1}"71,
2. m and ' are close in S, (123,132),

3. the decomposition in blocks of ©' (as in relation (2)) is obtained from the one of 7 either
by splitting a block (into two adjacent blocks) or by merging tow adjacent blocks.

Proof. ‘1 = 2’ Results directly from Remark 1.

‘2= 3" Let m € 5,(123,132) and suppose 7’ is obtained from 7 by transposing the entries in
positions 7 and j, 1 <7 < j < n. If 7’ avoids 123 and 132 then, in the permutation 7 (with the
notations in relation (2)), j must be the rightmost entry in its block and 7 is either (a) in the
same block as j, or (b) the rightmost entry of the precedent block. In the case (a) 7’ is obtained
from 7 by splitting the block containing j into two blocks and in the case (b) by merging tow
adjacent blocks.

‘3 = 1’ By considering the definition of the function ¢, with the notations in the previous point,
by = b) except for £ = 4. In the case (a) b; = 1 and b, = 0; and in the case (b) b; = 0 and b} = 1.
See Figure 1 for an example. O

By the above lemma and since the restriction of a combinatorial isomorphism to a subclass
remains a combinatorial isomorphism we have:

Corollary 1. The bijections
o ©:{0,1}"71 — 5,(123,132), and
o o: P 5 5,(123,132,0,)

are combinatorial isomorphisms.



Under Definition 2, C,_; j does not contain close strings and now we relax this definition.
Definition 3.

1. Two binary strings in Cy,_y  are close if they differ by the transposition of two bits.
2. Two permutations in S! ,(123,132) are close if they differ by two lransposilions.

Corollary 2. The bijection ¢ : Cpo_q ) — S! . (123,132) is a combinatorial isomorphism under
Definition 3.

Proof. Let b and b' two close strings in C),_1 %, and 7 and 7’ their images in 57’17,9(123, 132)
through the bijection ¢. Consider a binary string ¢ € {0,1}"~! such that ¢ differs from b and
from &' in a single position and 7 € S,,(123, 132) the image of ¢ through ¢. Notice that ¢ ¢ C\,_;
and so 7 ¢ S/ ,(123,132), and there are two such strings ¢. By Lemma 3, 7 differs from 7 and
from 7’ by a ‘éransposition thus 7 differs from 7’ by two transpositions. Similarly, if 7 and 7’
are close in 57’17,9(123, 132) then so are they preimages in Cj,_q . O

Notice that, when the two transpositions in the previous proof have no disjoint domains then
7 and 7’ differ by a three length cycle. For example, the transition from the first to the second
permutation in Sg ,(123,132) as shown in Table 2, namely from 53241 to 53412, is done via a
three length cycle.

? 3

(a) (b)

Figure 1: The permutations 976548213 and 978546213 in Sg(123, 132) in array representation. Transpos-
ing two entry results block-splitting (from (a) to (b)), or block-merging (from (b) to (a)).

4 Gray Codes

A list £ for a string set L is an ordered list of the elements of L. If the elements of £ are in
some order such that two consecutive elements are close, the list is called a Gray code list.

Let o be an integer or a string and £ a list of strings, then « - £ denotes the list obtained
by concatenating « to each string of £, e.g., if @« = 4 and £ = {123,132,213}, then o - L =
{4123,4132,4213}. If £’ is an other list then £ o £’ is the concatenation of the two lists, e.g., if
L' = {231,312,321} then £ o £’ = {123,132,213,231,312,321}. Furthermore, by £ we denote
the reverse of the list £ and £* is the list £ after increasing the largest entry in all strings of £
by one. So, with £ as above, £ = {213,132,123} and £* = {124, 142,214},



In this section we construct Gray codes for S,,(123,132), 5,,(123,132, 0,,), and S! ,(123,132)
by considering Gray codes of their pre-images under the bijection ¢. We begin this section
with the concept of dual reflected order which will be used in constructing a Gray code for each
pre-images of the bijection . The dual reflected order, defined below, is a slight modification
of reflected order [1] and like lexicographical order, both of them are particular cases of genlex
order [8], that is, any set of strings listed in such an order has the property that strings with a
common prefix are contiguous.

Definition 4 ([7]). For two strings b = biby...b, and V' = bib,...b] in {0,1}" we say that
b is less than b' in dual reflected order if biby...by, the length k prefiz of b, contains an odd
number of 0s, where k is the leftmost position with by # b),.

In [7] is noticed that: (1) bis less than b’ in dual reflected order iff &’ is less than b in reflected
order, with b and &’ the bitwise complement of b and b'; (2) Like reflected order, dual reflected

order induces a Gray code on {0,1}" and C}, , but only the last one yields a Gray code on Fép).
Here we adopt this order relation in constructing Gray codes for 5,,(123,132), 5,,(123, 132, 213),
and S, (123,132).

4.1 Gray code for S5,(123,132)

The following Gray code for the set {0,1}" can be obtained from the famous Binary Reflected
Gray Code [1] by replacing in it all 0 bits in each string by 1 bits and vice-versa, and then
reversing the obtained list; two consecutive strings differ in a single position and the listing
order is the dual reflected order [6].

B 0 if n=0
Bn o { 0 'En—l ol- Bn—l if n Z 1. (3)
By considering ¢, the list B,,_; is transformed to the following list for the set S,,(123,132):
B {1} if n=0
5n(123,132) = { n-S,_1(123,132)0 (n — 1) - 8F_,(123,132) if n>1. 4)

Through the isomorphism ¢, two consecutive permutations in the list (4) differ by a transposi-
tion, and so §,(123,132) is a Gray code. See Table 1 (a) for B4 and S5(123,132).

4.2 Gray code for 5,(123,132,0,)

The following list is a Gray code for the set F [6]:

0 if n=0
F) = {0,1} if =1 (5)
O.f(p_)lo10.?(79_)20...0179—10-?39_)79 if n>1

n n

with two conventions: (1) the list « - ]:Epl) consists of the single string list obtained from « by
deleting its last bit, and (2) ]:g) is the empty list for ¢ > 1. In the list above, two consecutive
strings differ in a single position and the listing order is the dual reflected order. By considering
o, the list ]:7579_)1 is transformed to the following list for the set S,,(123,132,0,):

-~



{1} if n=0
{21,12} if n=1
- Sn-1(123,132,0,)

Sn(128,132,0,) = o(n— 1)n-8,_(123,132,0,) (6)

oln—1(n-2)...(n—p+1)n-8,_,(123,132,0,) if n>1.

with the conventions: (1) the list ar-Sp(123,132,0,) = o, and (2) S_+(123,132, 0,) is the empty
list for ¢ > 0.
Through the isomorphism ¢, two consecutive permutations in the list (6) differ by a transposi-

tion, and so S,,(123,132,0,) is a Gray code. See Table 1 (b) for ]—'f) and S5(123,132,213).

4.3 Gray code for 5] ,(123,132)

The following list is the restriction of B,, defined in (3) to the set C), . Two consecutive strings
differ in two positions and this list is similar to Liu-Tang Gray code [2] except it lists strings in
dual reflected order.

1] ifn=20
B {07} ifn>1and k=0
Cok = {17} ifn>1and k=n ™)

0- zn_l’k ol 'Cn—l,k—l ifn>1land 0 < k < mn.

Through function ¢, C,—1 x is transformed to the following list for the set S/ ,(123,132):

{1} ifn=0
, B {n(n—-1)...21} ifn>1land k=0
n (123, 132) = {(n=1)(n—=2)...21n} ifn>1land k=n (8)

-8y x(123,132) 0 (n— 1) - Sy ,_1(123,132) ifn>land 0<k < n.

Through the isomorphism ¢, two consecutive permutations in the list (8) differ by two transpo-
sitions, and so ) ; (123, 132) is a Gray code. See Table 2 for C4 2 and for §f ,(123,132).

5 Graph Theoretical and Algorithm Considerations

5.1 Graphes

Here we deliver some graph theoretical interpretations of the previous results. The graph induced
by a combinatorial class is that where the objects of the class act as its vertices. Two vertices
of this graph are connected if the associated two combinatorial objects are close. We denote
by G(X) the graph induced by the combinatorial class X and the hypercube @, is the graph
G({0,1)7).

Two graphs G(X) and G(Y) are isomorphic if there is a bijection p : X — Y such that two
vertices ¢ and b are connected in G(X) if and only if the vertices p(a) and p(b) are connected
in G(Y), and so, combinatorial and graph isomorphism are equivalent notions, and in this case

G(p(X)) = p(G(X)).



A graph is connected if there exists a path between any two vertices. A Hamiltonian path
is a path between two vertices of a graph which visits each vertex exactly once. A Hamiltonian
path corresponds to a Gray code for the related class.

Figure 2 (a) and (b) show the isomorphic graphs Q3 and G(S4(123,132)). Hamiltonian
paths—or equivalently, Gray codes for the corresponding combinatorial classes—are in bold.
The graph G(FT(LP_)I) is the restriction of @, to the set Fép_)l, and in Figure 2 (c) the subgraph
G(F:)EQ)) is in bold. Similarly, through the isomorphism ¢ : Fézi)l — 5,(123,132,0,), the graph
G(5,(123,132,0,)) is the restriction of G(S5,(123,132)) to the set S, (123, 132,0,).

For all £, 1 < k < n —1, and under Definition 2, the restriction of (),_; to the set C\_;
is not connected because the Hamming distance between any two strings in C),_ j is at least 2.
Now, let G™ be the m-th power of the graph G, i.e., the graph where two vertices are connected
if there is a path in G of length at most m between these vertices. In this context the graph
G(Ch-1,k), with respect to the closeness Definition 3 is the restriction of Q%_l to the set C_q g,
and through the isomorphism ¢ : Cy_1x — S, (123,132), G(S, ,(123,132)) is the restriction
of G*(5,(123,132)) to the set S, x(123,132). In Figure 2 (d) is depicted Q% and its restriction
to 0372.

011 111 4213 3214 011 111 011 111

001 101 4312 3412 001 101 001 1

010 110 4231 3214 010 110 0 110

000 100 4321 3421 000 100 000 100

(a) (b) () (d)

Figure 2: (a) The graph (s, and (b) that induced by S4(123,132); A Hamiltonian cycles in each graph
are in bold. (c¢) The graph @3 and, in bold, its restricted to Féz). (d) Q3%, the square of the cube, and in
bold, its restricted to Cs 1.

5.2 Algorithm considerations

Here we show how the isomorphism of ¢ allows us to construct efficient generating algorithms
for the lists defined in (4), (6) and (8).

Let b and b’ be two successive strings in B, defined by (3) and suppose that b and b’ differ
in position ¢. Dual-reflected order has the following consequence: either 7 = n or b;y; = 0.
Indeed, if b;1; = 1 then the string by ...b;0b;15...b, is larger than b and smaller than &', in dual
reflected order, so b’ is not the successor of b. This remark remains true if b and b’ are successive
strings in ]—)Sp). Let now next be a procedure which computes the position ¢ where a given string

b differs from its successor in the list X = B,_; or X = ]:7579_)

;- When X = B,,_; ¢ is alternatively
n — 1 and the rightmost position in b with b;4.9 = 0. When X = ]—'7527_)1, next is a little more
complicate, and is given in [6]. The following algorithm results from the isomorphism of ¢ and

generates the list S,,(123,132) when A = B,,_; and the list 5,,(123,132,0,) when X = ]—'7579_)1.



e Initialize b by the first string in X and 7 by ¢(b). The first string in B,,_; is 01”72 and
the first one in F7)

/) 1s given in [6].

e Run next. If b differs from its successor in X" in position ¢ then the successor of 7 in ¢(X)
is obtained by transposing the entries in position ¢ and 7 + 1.

e Stop when the last string in X is reached. The last string in B,,_; is 1*~! and in the case

of the list f(p)

/) next detects its last string in constant time [6].

Now let discuss the generation of S ,(123,132) defined in (8), the image of C,_1 1 through
the function ¢. Let b = biby...b, be a7binary string in C', ; which is not the last one in dual
reflected order. Suppose that b differs from its successor, in dual reflected order, in positions ¢
and 7, ¢ < j. Again, dual-reflected order has the following consequences: (1) either b;4; = 0
or biy1 = biya = ... = b, = 1 (in the latter case j = ¢ + 1), and (2) either j = n or b;41 =0
or bj41 = bj42 =...=b, = 1. Let next be a procedure which computes the positions ¢ and j
where a given string b differs from its successor in C,,_; . Such a procedure can be obtained by
a direct implementation of definition (7) or by a slight modification of Liu-Tang algorithm [2].
The following algorithm results from the considerations above and the isomorphism of ¢ and
generates the list 5] , (123,132).

e Initialize b by 01%0"~%=2  the first string in C,_1 x, and 7 by ©(b).
e Run next and let 7 and j, ¢ < j, the positions where b differs from its successor in Cp,_1 k.

— if b;41 = 0 then transpose 7; and m;41, else transpose 7; and 7,

— if j=mn —1or bjy1 = 0 then transpose 7; and 7,4 else transpose 7; and m,.
e Stop when b = 1%0"~*~1 that is, when the last string in Cr—1,; is reached.

Each of the procedures next above has a constant time implementation and so are the
obtained generating algorithms.

6 Concluding Remarks

The bijections ¢ : B,_; — 5,(123,132), ¢ : F,_; — 5,(123,132,213), and ¢ : Cp_1p —
Spnk(123,132) are isomorphisms. Since the lists defined in (3), (5), and (7) are Gray codes so
are their images under o, namely the lists defined by (4), (6), and (8). Tables 1 and 2 actually
are the mentioned Gray codes for n = 5 (and with £ = 2 in Table 2).

B,, is a superset of F), and C,,  as well as S,,(123, 132) is a superset of 5,,(123,132,213) and
S! .(123,132). Our choice of Gray codes (3), (5), and (7) induced some interested properties to
théy images through ¢; following are two of them.

1. The restriction of the list B,_; to the set Fj,_y (resp. Cj_1) is exactly the list F,_4
(resp. Cn—_1,), or equivalently F,,_y and C,_q are (scattered) sublists of B,_;. For
instance, deleting all elements of B4 having two consecutive 1s from the list in Table 1(a)
produces Fy in Table 1(b), deleting all elements of B4 having no exactly two 1s from the
list in Table 1(a) produces C45 in Table 2; similarly

2. The restriction of the list §,(123,132) to the set S,,(123,132,213) (resp. S! ,(123,132))
is exactly the list §,,(123,132,213) (resp. S] ,(123,132)). 7

10
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