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Abstract

Artificial intelligence can be seen as the study of agents which achieve what we
want, an agent being an interactive system with an input/output interface. This
can be mathematically modelled through decision theory, using utility functions to
capture what we want, and with the expected utility of an agent measuring how
well it achieves that. Optimal agents, those that maximally achieve what we want,
have maximal expected utility.

We describe this theory of optimal agents. We detail how these optimal agents
behave, giving an explicit formula for their actions. We discuss applications of this
theory, in particular Marcus Hutter’s AIXI [Hut04]. Finally, we suggest possible
directions for future research extending Hutter’s work on universal AI.
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Chapter 1

Introduction

Our approach to artificial intelligence (AI) follows [Rus97]:

“[O]ne can define AI as the problem of designing systems that do the right thing.”

Intelligence, from this perspective, is the property which makes human brains par-
ticularly successful at achieving good things (when it’s applied towards that end!).
However it’s the good things that matter; intelligence, in AIs, is ultimately only
a means to our ends. It’s for this reason we mathematically define systems that
achieve good things, rather than intelligent systems.

We focus on interactive systems called agents. Agents have a fixed input stream
(“observations”) and output stream (“actions”) but are otherwise isolated from their
environment. The prototypical example is a robot, with sensors as inputs and motor
actions as outputs. We focus on these systems as they can be modelled simply: as
functions mapping inputs to outputs.

We frame AI as a decision theoretical problem: how to best decide which agent
to implement in order to achieve what we want (the right thing; good things). This
framework requires a mathematical description of what we want, of the agents we
choose from, and our knowledge of their effects.

We first give an introduction to decision theory, then a description of agents, finally
applying decision theory to the problem of choosing an agent. Decision theory will
give us the tools (i.e. expected utility) to formally define the optimal agent. We
then describe the how these agents behave, giving a worked example. We end with
some applications, including Marcus Hutter’s AIXI and agents that learn what we
want.

1.1 Relation to previous work

[RN03] describes the agent centered approach to AI. A similar definition of optimal
agents to ours, as agent functions which maximise an expected utility, can be found
in [Rus97]. Agents that maximise expected utility are common in the economics
literature, e.g. see their use in [Han02]. [HBH88] offers a discussion of decision
theoretical approaches to artificial intelligence.
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2 CHAPTER 1. INTRODUCTION

The explicit form for the optimal agent can be found in [Hut04], although Hut-
ter uses rewards [KLM96],[SB98] rather than general utility functions. Our proof
of equivalence is original, although the result is not. Hutter’s work inspired our
reinvention of optimality by general utility functions; his AIXI model is discussed
later.

1.2 Acknowledgements

Particular thanks to my supervisor Cristian Calude, for support and advice, and
Marcus Hutter, who’s work on universal AI [Hut04] inspired this work.



Chapter 2

Decision theory

Decisions are made by choosing the action with the best predicted effect. Consider
a chess player deciding between strategies. The main effect of implementing a chess
strategy is whether it results in a win, a loss, or a draw. Although there are other
effects, this is the only one the chess player directly cares for (we suppose). The
chess player will select the strategy with the best effect, for example the strategy
most likely to win.

Decision theory offers a mathematical model for the above process: making a
choice. We break this down into a method for predicting the effect of an action,
and a method for judging which of a set of effects are best. The former represents
the factual beliefs of the decision maker, the latter their preferences or desires. We
develop a mathematical model of each in turn. We do not attempt to exactly model
human decision making, but describe a common idealisation.

See [Ber93] for a more detailed introduction to the decision theory we describe
here (Bayesian decision theory).

2.1 Predicted effects

2.1.1 The effects of chess

There are three outcomes of a chess game: {loss, draw, win}. Although a par-
ticular chess strategy will result in exactly one of these outcomes, the chess player
can’t generally be certain which one it will be. Uncertainties arise through lack
of information about the other player’s strategy, or the inability to fully compute
the consequences of that information. As a result, we need to handle predictions
involving uncertainty e.g. “with this strategy we will probably lose, but we might
draw”.

Probability theory offers a mathematical treatment of uncertainty (see chapter A).
Each element of a set of mutually exclusive and exhaustive statements (i.e. a set
such that exactly one statement is true), such as {loss, draw, win}, is assigned a real
number in [0, 1] which together sum to 1. The larger the real number (“probability”),
the more the event is expected to occur.

3



4 CHAPTER 2. DECISION THEORY

For example, suppose we have exactly three strategies a, b, c. By some predictive
mechanism, a is predicted to be equally likely to lose, draw, or win. b definitely
won’t draw, but could equally win or lose. c is predicted to definitely draw. This is
represented by the following probabilities:

i pi(loss) pi(draw) pi(win)
a 1/3 1/3 1/3
b 1/2 0 1/2
c 0 1 0

where pa(loss), for instance, is the probability that strategy a will result in a loss.

(Caution: probability theory is widely used to model randomness, with probabili-
ties being interpreted as relative frequencies of events. We use it, instead, to model
the “subjective” plausibility of or belief in a proposition. These probabilities may
or may not be derived from empirical frequencies. See [JB03], [Jay86], and chapter
A.)

2.1.2 Probability distributions

In general, we have a set R of mutually exclusive and exhaustive outcomes. This
may be the set of values of a variable within reality (e.g. the outcome of a chess
game, the temperature in a room at a given time, or the energy a nuclear reactor
generates over a particular day). These are all possible relevant consequences of
our choice. To each outcome r ∈ R we assign a real number p(r) ∈ [0, 1], together
summing to 1 ∑

r

p(r) = 1

Thus, we represent the predicted effect of a choice by a function

p : R → [0, 1]

over outcomes called a probability distribution. Let ∆(R) be the set of all such
probability distributions.

In the following “outcome” will denote the actual consequence of a choice or action
within the world. “Predicted effect”, “effect”, or “uncertain outcome” will denote
a probability distribution over outcomes. The former is what actually happens in
reality, the latter is our knowledge of it.

2.1.3 Conditional probability distributions

We have identified actions with the probability distributions describing their effects,
but this hides nontrivial inference. In practice actions will be understood by their
proximal effects, with the ultimate effect of this on the outcome r ∈ R being de-
rived by some predictive mechanism. For instance, chess strategies (actions) are
understood by which chess pieces to move when (proximal effects), the ultimate
effect being whether we win, lose, or draw. This predicted ultimate effect may be
computed by simulating chess games.
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We do not analyse the details of this predictive process, only the function it
implements. Denoting the set of actions by A, we encapsulate this process with the
notation:

P (r|a)

for the probability of outcome r ∈ R given that action a ∈ A is taken. For each
action a, pa : r #→ P (r|a) is the distribution capturing its predicted effect. P is called
a conditional probability distribution, for it gives the probability of each outcome
conditional on the fact that a certain action a is taken.

In our example above, the actions are the choice of a particular chess strategy:
A = {a, b, c}. The set of outcomes is R = {loss, draw, win}. The conditional
probability distribution P (r|a) is the table, with a the row, r the column, and
P (r|a) the probability at that location.

2.2 The best effects: a decision maker’s prefer-
ence

We model a decision maker’s judgement of which effect is best through utility func-
tions. Utility functions capture tradeoffs between uncertain outcomes. For exam-
ple, different chess players will have different preferences between a 50/50 chance
of winning or losing and a certain chance of drawing. Some would consider these
possibilities equally good, others would prefer to certainly draw, still others would
take the 50/50 chance. Different utility functions can capture these kinds of different
preferences.

A utility function
U : R → R

is a function mapping each possible outcome r ∈ R to a numerical value U(r). The
greater the value, the more the decision maker desires the outcome. In the chess
example this assigns a numerical weight to each outcome: {loss, draw, win}.

Recall from the previous chapter the predicted effect of an action a ∈ A is denoted
by the conditional distribution P (r|a). This gives the predicted probability of each
outcome r ∈ R. With a utility function we can compute the expected utility of an
action a:

E[U |a] =
∑

r∈R

P (r|a)U(r)

This is the average utility, the utility of each outcome weighted by its predicted
probability. The idea is the more probability assigned to valuable outcomes the
larger the expected utility gets; the less probability the lower the expected utility.
The best actions are those with the largest expected utility.

Recall our three chess strategies a, b, c. We show the expected utility of each of
these strategies for three different utility functions. These utility functions describe
chess players with different preferences. All agree that win is better than draw which
is in turn better than loss, but disagree about how much better they are. The first,
U1 considers draw to be equivalent to a 50/50 chance of win or loss. U2 considers
draw to be worse than a 50/50 chance, U3 considers draw better.
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The following table shows the expected utilities:

i P (loss|i) P (draw|i) P (win|i) E[U1|i] E[U2|i] E[U3|i]
a 1/3 1/3 1/3 0 −1/6 1/6
b 1/2 0 1/2 0 0 0
c 0 1 0 0 −1/2 1/2
U1 −1 0 1
U2 −1 −1/2 1
U3 −1 1/2 1

Each utility function orders the effects a, b, c by their expected utility, where we
write a ≺ b if E[U |a] < E[U |b], a ≈ b if E[U |a] = E[U |b]:

U1 : a ≈ b ≈ c

U2 : c ≺ a ≺ b

U3 : b ≺ a ≺ c

The different values given to draw yield the different preferences between otherwise
identical predictions.

Actions which have maximal expected utility will be termed optimal. With A the
set of possible actions, the subset of optimal actions is denoted

argmax
a∈A

E[U |a] ⊆ A

where argmaxx∈X f(x) is the subset of X where f attains its maximum on X

argmax
x∈X

f(x) = {x0 ∈ X : f(x0) = max
x∈X

f(x)}

If there is a unique optimal action this will be a singleton set. Although optimal
actions are entirely equivalent to the decision maker, for theoretical clarity we avoid
making an arbitary choice by selecting them all.



Chapter 3

Agents

We define an agent to be a system isolated from its environment except for a fixed
input/output interface. Intuitively, these systems input percepts or observations
and output actions. The environment consists of everything that isn’t the agent.
This definition is independent of “intelligence”: agents can act in stupid ways, and
not all intelligent systems are agents.

(Unlike other definitions of agents (e.g. [?]) we add no further restrictions on the
system e.g. that it acts as if it had purpose. We will select agents based on how
well they achieve our goals. Any restrictions are at best unnecessary and at worst
risk removing agents that perform well. “Agent” may be a misnomer for the general
class of interactive systems we investigate here.)

For example, a chess strategy describes an agent in two senses:

1. A complete chess strategy can be presented as an agent which inputs the
opponent’s chess moves, and outputs the recommended move.

2. A human using that chess strategy describes a chess playing agent. Input,
observations of the chess board. Output, chess movements.

Environment
!" #$X

!!
Agent%&'(

Y

""

The regulated interaction between agent and environment allows us to abstract
away from the internal details of both. In particular, since agent and environment
interact only through the input/output (I/O) interface, we can characterise an agent
by which outputs follow which inputs. Assuming discrete time steps T = 1, 2, . . .
and with X/Y denoting the fixed set of possible inputs/outputs at each time step,
the complete history of interaction can be represented as a pair of sequences:

x1x2 . . . xN ∈ XN , y1y2 . . . yN ∈ Y N

Typically we view this in an interleaved fashion: the agent receives an input, then
takes an action (or vice versa). Russell and Norvig [RN03] has inputs (percepts)

7



8 CHAPTER 3. AGENTS

before outputs (actions), whereas Hutter [Hut04] has outputs before inputs. This
only makes a difference at the very first and lasts time step – whether the agent’s
first action is taken with or without input, and whether its last is followed by an
input or not. We follow Hutter’s convention.

Further assuming the agent to be deterministic (see chapter C for why nonde-
terminism is unnecessary) and in a fixed state at T = 1, we can characterise its
behaviour by a function mapping a finite sequence of inputs to an output. This
agent function maps the history of inputs, past and present, to the present output.
Agent functions have the form:

a : X∗ → Y

where X∗ is the set of finite sequences of elements from X.

This function summarises the behaviour of the system, ignoring its internal struc-
ture. a(ε) is the first output of the system, a(x1) is the second output of the system
assuming x1 was the first input, a(x1x2) is the third output assuming x1 and x2 were
the first and second inputs, etc.

Interactive systems used in theories of interactive computation, such as Persistent
Turing Machines [Gol04] and Chronological Turing Machines [Hut04], are subclasses
of agents. These theories can be used to define computable agents. For tractable
agents, see boundedly optimal agents in [Rus97].

3.1 String notation

If we have a string over X:
x = x1x2 . . . xn

where each xi ∈ X, i.e. a finite sequence of elements from X, we use the following
notation to denote substrings:

xi:j = xi . . . xj

x<i = x1 . . . xi−1

x≤i = x1 . . . xi

We will use an interleaved notation to describe histories

y1x1 . . . yi−1xi−1yi = yx1 . . . yxi−1yi = yx1:i−1yi = yx<iyi

y1x1 . . . yi−1xi−1yixi = yx1 . . . yxi−1yxi = yx1:i

y1 is the first output, x1 the first input, y2 the second output etc. yx1 is the first
output/input pair, yx2 the second, etc. Histories will either end in an input from
the environment as in yx1:i, or an output from the agent as in yx<iyi.

3.2 Example agents

Example 3.1. One of the simplest agents, a thermostat regulates the temperature
of a room. X, the agent’s set of inputs, is the (finite) set of temperature readings
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from the thermometer, for example {0.0, 0.1, 0.2, . . . , 99.9, 100.0}. Y , the agent’s
set of outputs, is the set {(0, 0), (0, 1), (1, 0), (1, 1)} with the first element of the
pair controlling whether the cooler is on (1 for on, 0 for off), the second element
controlling whether the heater is on. The agent function for this simple thermostat
is

a(x1 . . . xi) =






(0, 1) if xi < T − ε
(1, 0) if xi > T + ε
(0, 0) otherwise

x1 . . . xi is the sequence of temperature readings, where x1 is the first and xi is the
most recent. T is the target temperature, and ε is a small tolerance to avoid oscilla-
tion and damage to the hardware, and because we really have a target temperature
range [T − ε, T + ε]. Note we are treating the inputs xi as numbers, leaving implicit
the decoding function d : X → R.

The agent function checks to see if the most recent temperature reading, xi, is too
hot or too cold. If so, it activates the cooler or heater respectively. If it’s within the
target temperature range it turns both heater and cooler off.

More sophisticated agents could predict temperature changes, finely control the
air conditioning hardware, or achieve more complex temperature goals. This so-
phistication entails larger input and outputs sets X and Y , and more complex agent
functions a.

Example 3.2. Robotic vacuum cleaners (after [RN03]) move around a room sucking
up dirt. We define the agent to be the software controlling the robot (more precisely,
the internal computer running the software). The robot body itself is a (known) part
of the environment the agent is within, the agent’s interface with the environment
connects to internal parts of this robot body.

The agent’s input comes from a variety of instruments: cameras for obstacle detec-
tion, internal sensors (battery charge, temperature, damage indicators, free storage
space, etc), user controls, traction and acceleration sensors, dirt detectors, etc. As
a result, its input is a tuple of k subinputs from different sensors, for example
〈i, b, . . . , d〉 where i is a frame from the camera, b is the battery charge left, and d is
a measure of how dirty the carpet is. So X = X1 ×X2 × . . .×Xk where X1 is the
set of video frames, X2 is the set of battery charges, etc.

Its output is likewise broken into components, making Y also a cartesian product
of sets Yi. These suboutputs would include power levels for the driving and fan
motors, sound output for user interaction, and so forth. The description of the
interface is necessarily low level as that is how the agent actually interacts with its
environment (but see below). Achievment of higher level goals and action such as
moving from A to B or, indeed, cleaning the room, require coordinated sequences
of outputs. The output can thus be thought of as atomic or low-level actions.

Finally, its agent function describes the behaviour of the cleaner’s software. It
describes what the software would do given any possible sequence of inputs. This
software will guide the robot around the room (presumably) cleaning it.

Example 3.3. The Human brain can be seen as an agent. Imagine a surface
surrounding the brain isolating it from the rest of the body. This cuts across the
cranial nerves and spinal cord, the brain’s major communication pathway with the
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outside world. The agent’s interface is the state of these nerves along the surrounding
surface, with X the state of all the incoming neurons in this slice at a given time
instant, and Y the state of the outgoing neurons. The agent function describes
exactly how the brain reacts to any possible sequence of neural inputs, the mapping
between incoming and outgoing neurons.

This is necessarily a rough view of things, since there are interactions with the
environment outside neural signals (e.g. the blood stream, blunt trauma). (The
same can be said for any real world agent, to a greater or lesser extent.)

3.3 Agents in the real world

As the above examples show, we can model real world systems as agents. This
modelling process has a number of complications:

1. Interpreting a system as agents in different ways. In the robotic vacuum
cleaner example we have a central computer connected to a number of sensors
and peripheral motor controllers themselves small computers. We can define
the agent and its interface in different ways by including more of less of the
vacuum cleaner: are the peripheral controllers part of the agent or part of the
environment? Further choices involve using different abstractions of the world
in which to set the division of agent and environment. Perhaps we could even
interpret the entire robot as an agent, with dirt and light as input...

2. Interactions outside the declared interface. In the vacuum cleaner, the agent
function is implemented on a computer. Since these are electrical devices,
their internal state leaks out on electromagnetic radiation, however faint. This
means different programs implementing the same agent function may act differ-
ently: different code will leak different information. Conversely, the computer
can be be manipulated by external radiation, potentially making the output
not simply a function of the input (i.e. the output is different, given fixed
input, if the external radiation is different). More drastic undeclared interac-
tions include the environment directly damaging the robot’s computer. These
interactions make agent functions an approximation of reality.

3. Incomplete control over agent function. We assume the ability to arbitarily
select the agent function. For our purposes this is one of the key differences
between agent and environment. (Another is that we don’t care directly about
the state of the agent, only how it affects the state of the environment.) In
reality we have additional constraints such as computability and tractability.
In general, we are constrained by the need for the agent to run in real time
and be implemented by present-day humans.

4. Intuitive understanding of inputs and outputs. In the above, we describe
agent/environment interaction on an intuitive level. For instance, we describe
inputs as video frames from cameras, outputs as setting the power of motors.
Even setting aside the difficulties of defining a precise and stable interface,
these descriptions are approximate. That part of the input is produced by a
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video camera is an assumption about the environment that need not hold. In
particular, agent actions could invalidate this assumption e.g. by disconnect-
ing the video feed.

Aside from defining the size of the set of inputs and outputs, any description
of what an input or output ‘means’ makes assumptions about how the envi-
ronment is structured. Where and at what level these descriptions are made
is a matter of human psychology, but they’re not often at the very edge of
the causal chain. In the robotic vacuum cleaner example, we think of the
input as a video frame (ignoring the other inputs) which we think of as being
caused by the video camera. But further causes extend both ways: closer to
the agent it’s generated by electrical cabling connected to the camera, closer
to the environment it’s caused by photons propagating through space.

These complications highlight the difference between mathematically well defined
problems, however complex, and the real world. By defining all elements involved
we avoid complications caused by the partial control and knowledge we otherwise
have. However, these complications need to be addressed when applying theory to
systems we can actually build.





Chapter 4

Choosing agents

We apply the decision theory described in chapter 2 to the problem of choosing an
agent from chapter 3. The optimal agent is the one with maximal expected utility.
Successful artificial intelligences are candidates for optimal agents, where they use
their intelligence to achieve the utility function we specify.

Which agent functions are optimal will depend both on the prior knowledge of the
environment, used to predict each agent function’s effect, and on the utility func-
tion, used to specify which effects we prefer. These are free variables of the theory
described here: different choices for them will lead to different optimal agents. If we
know more about the environment we can use this knowledge to design specialised
agents. If we know less we must design more general agents. Similarly, with different
utility functions different agents are optimal. If we want to minimise pollution, one
variety of agent is optimal; if we want to maximise pollution a different variety of
agent is optimal.

For theoretical convenience we assume agent and environment interact for exactly
N steps. Given this, we redefine the agent function from chapter 3:

Definition 4.1. An agent function is a map:

a : X<N → Y

where

X<N =
N−1⋃

i=0

X i

is the set of all sequences of inputs X of length less than N , and X i is the standard
cartesian product X × . . .×X︸ ︷︷ ︸

i

.

Instead of X∗, all finite sequences, as the domain of an agent function we have X<N ,
all sequences of length less than N .

4.1 Predicted effect of an agent

Consider again the problem of choosing between chess strategies. Following chapter 2
we will measure the performance of a chess strategy via its expected utility. This will

13



14 CHAPTER 4. CHOOSING AGENTS

be computed from a probability distribution over {loss, draw, win} (its predicted
effect), and a utility function over outcomes. Following chapter 3 we will model
chess strategies by agent (functions).

This chapter will describe how to predict the effect of an agent. This amounts to
describing how

P (r|a)

(the probability that outcome r occurs given that we have implemented agent a)
depends on the agent function a. In the chess example, this is how the probability
for a loss/draw/win depends on the chess strategy.

We will discover that the knowledge of outcome of an agent

P (r|a)

reduces to the knowledge of the outcome of a complete interaction history

P (r|yx1:N)

and knowledge of how the environment reacts

P (xi|yx1:i−1yi)

These two distributions, unlike the first, can be freely choosen for different problems;
they parameterise the knowledge about an agents’ effect on the outcome.

We use two assumptions:

1. The agent a can only affect the environment by way of the input/output
interface. This has two consequences.

First, given the complete history the outcome r is independent of which agent
a is implemented. Once we know the complete history of interaction yx1:N ,
knowing the exact agent function a tells us nothing more about which outcome
r will occur. We express this probabilistically by the equation:

P (r|yx1:N , a) = P (r|yx1:N)

The probability of outcome r given that we know history yx1:N occurs and
agent a is implemented, is the same as the probability of outcome r given that
we just know history yx1:N occurs. The agent function doesn’t tell us anything
more.

Second, once we know the immediate past yx1:i−1yi, the agent function a tells
us nothing more about how the environment will react:

P (xi|yx1:i−1yi, a) = P (xi|yx1:i−1yi)

This is because the environment receives no agent outputs after yi but before
xi.
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2. The agent is perfectly implemented. That is, once we know the past inputs
x1:i−1 we know what the next action will be:

yi = a(x1:i−1)

This means
P (yx1:N |a)

can be recursively defined just in terms of knowledge of how the environment
reacts, since a completely describes how the agent reacts.

We expand P (r|a) to include the complete history yx1:N :

P (r|a) =
∑

yx1:N

P (r, yx1:N |a)

=
∑

yx1:N

P (r|yx1:N , a)P (yx1:N |a)

Both steps are instances of probability theory theorems: marginalisation, then the
product rule. (See chapter A for a brief review of these theorems.) This says the
probability of outcome r given that agent a is implemented, is the probability that
for some complete history yx1:N :

1. Complete history yx1:N occurs, given that we know agent a is implemented.

2. Outcome r occurs, given that we know complete history yx1:N occurs and
agent a is implemented.

Recall that our assumption that the agent interacts with the environment only
through the input/output streams implies

P (r|yx1:N , a) = P (r|yx1:N)

If we know the history of interaction between agent and environment yx1:N , addi-
tionally knowing the exact agent a tells us no more about the outcome r. So

P (r|a) =
∑

yx1:N

P (r|yx1:N)P (yx1:N |a) (4.1)

The right hand side is the probability that for some complete history yx1:N , the
complete history occurs given that agent a is implemented, and outcome r occurs
given that the complete history yx1:N occurs.

We recursively expand P (yx1:i|a) for 0 ≤ i ≤ N , where yx1:i is the statement that
the history starts with outputs/inputs yx1:i:

P (ε|a) = 1

P (yx1:i|a) = P (yx1:i−1, yi, xi|a)

= P (yx1:i−1|a)P (yi|yx1:i−1, a)P (xi|yx1:i−1yi, a)

= P (yx1:i−1|a)[yi = a(x1:i−1)]P (xi|yx1:i−1yi) (4.2)
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where

[X] =

{
0 if X is false
1 if X is true

The first equality is trivial: any complete history starts with the empty string ε. In
the second we apply the product rule twice. For the third:

1. Once we know the immediate past yx1:i−1, the next output yi is completely
determined by the agent function a:

P (yi|yx1:i−1, a) = [yi = a(x1:i−1)]

i.e. P (yi|yx1:i−1, a) is 1 exactly when yi has the correct value a(x1:i−1), 0
otherwise.

As an aside, this suggests two directions we might generalise agents. First we
might allow nondeterministic agents π which have a probability distribution
over possible future actions where

π(yi|x1:i−1) = P (yi|yx1:i−1, π)

is the probability that action yi is (randomly) chosen given input x1:i−1. This
reduces to the deterministic case when:

π(yi|x1:i−1) = [yi = a(x1:i−1)]

for some agent function a.

Second, we could allow agent functions (i.e. extended agent functions; see
definition 4.7 in chapter 4.3) that depend on the past actions as well as past
inputs:

P (yi|yx1:i−1, a) = [yi = a(yx1:i−1)]

Neither case, nor a combination of both, results in agents with higher expected
utilities (see chapter C) so we stick with regular agent functions (although we
use extended agent functions in chapter B).

2. Once we know the immediate past yx1:i−1yi, the agent function a tells us
nothing more about how the environment will react:

P (xi|yx1:i−1yi, a) = P (xi|yx1:i−1yi)

We will later use the above identity to give a explicit formula for the actions optimal
agents take (in theorem B.5).

As a result of the above, the probability distribution P (r|a) is specified by:

1. P (r|yx1:N). This infers the outcome r from the complete history.

2. For all 1 ≤ i ≤ N , P (xi|yx1:i−1yi). This infers the next input xi from the past
history yx1:i−1yi.
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These two distributions can be chosen arbitarily, to represent different knowledge
about how the agent influences the outcome. Once they are chosen P (r|a) is uniquely
defined. (See equations 4.1 and 4.2 we derived above.)

Example 4.2. Consider again our chess playing agent. There are different ways
to interface this agent with the chess game. We could use a robot, with input X
video frames and output Y motor commands to a robot arm. Or, we could directly
encode the pieces of the chess board in a grid as input X, with descriptions of chess
moves (e.g. Nf3, fxe5) as output Y . Or, we could have move descriptions as both
input X and output Y . Each method yields different input and output sets X and
Y , along with different probability distributions. We’ll assume the second option.

We will suppose a single game is being played, with a time limit of N steps. If
the game isn’t completed in this time limit, it’s a draw. If it’s completed before, we
pad out the inputs e.g. keep on inputing the final chess board setup until N steps
have occurred. Although one can extend the theory to handle variable time limits,
we do not do so here.

In chapter 2.2 we discussed different utility functions U over

R = {loss, draw, win}

We use the same utility functions and variable (i.e. set of outcomes R) here. Now

P (r|yx1:N)

infers whether we’ve won or lost from the entire sequence of chess board inputs and
move outputs. Given our representation we can be sure what the outcome of the
game is: look to see if the game’s finished within time, and if so who’s in check
mate.

Finally,
P (xi|yx1:i−1yi)

predicts the next move xi of the opponent player (more properly, the chess board
state after their next move). yx1:i−1yi tells us everything that’s happened so far, up
to our last move. This probability distribution will depend on what knowledge we
have of the other player. We might simulate the opponent’s strategy or brain to
determine what move they are likely to next make.

4.2 Optimal agents have maximal expected utility

Finally, combining all previous chapters, we have the expected utility of an agent:

E[U |a] =
∑

r∈R

U(r)P (r|a)

which we can use to define optimal agents. This measures how well agent a is
expected to perform, given what we know about the environment and what we want
the agent to achieve.
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Definition 4.3. An optimal agent a∗ is one with maximal expected utility:

E[U |a∗] = max
a

E[U |a]

equivalently
a∗ ∈ argmax

a
E[U |a]

where argmaxa E[U |a], the set of arguments a that maximise E[U |a], denotes the
set of all optimal agents.

In the previous chapter we described the probability distributions needed to specify
P (r|a). With the addition of the utility function U(r), we have all the ingredients
necessary to define optimal agents i.e. everything necessary to evaluate E[U |a]:

1. X, Y , N . The set of inputs, the set of outputs, and the total number of time
steps agent and environment interact.

2. R, U(r), P (r|yx1:N). The set of outcomes, the utility function describing how
we desire outcomes, and the distribution capturing what we can predict about
the outcome from the complete interaction history.

3. P (xi|yx1:i−1yi). What we know about the agent’s next input (generated by
the environment) given the past.

The informal use of “we” in “...how we desire outcomes” and “what we know
about...” above can be interpreted in two senses:

1. The knowledge we, as humans, really have of the environment; what we truly
desire of the outcome. The major problem here is our knowledge and desires
are extremely complex and not explicitly known to us. Furthermore, we want
agents with better knowledge of the environment, and perhaps “better” desires,
than us.

2. The knowledge and desires we want, or presume, the agent to have. One
must be careful to realise “knowledge” and “desire” are short for probability
distributions and utility functions, respectively. When reasoning about agents
one should use the mathematics of the latter, rather than our intuitions of the
former; agents need act nothing like humans.

See also examples 4.2, 4.9, and chapter 5.

4.3 Expectimax agents are optimal

We give an explicit characterisation of the optimal agent functions implicitly defined
in the previous chapter. This will make use of the structure within P (r|a) we
previously extracted (i.e. equations 4.1 and 4.2).

We sketch a brute-force algorithm to compute an optimal agent’s action. At each
time step i the algorithm computes the expected utility of each available action
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yi ∈ Y by evaluating a function over the tree of all possible futures. It then selects
the action with maximal expected utility. This algorithm is similar to the minimax
algorithm of game theory [RN03], and is exactly the algorithm for computing AIXI
generalised to arbitary utility functions and probability distributions [Hut04].

Suppose we have an input set X = {◦, •} and an output set Y = {0, 1}. At any
point in time i, our past is a string

yx<i = y1x1 . . . yi−1xi−1

The set of futures extendeding this past form a tree:

Y Y

X X

0
!!!!!!!!!!!!

X

1

""""""""""""

Y Y

◦
#######

Y

•
$$$$$$$

Y

◦
#######

Y

•
$$$$$$$

X X

0
%%%%%%

X

1

&&&&&&

X

0
%%%%%%

X

1

&&&&&&

X

0
%%%%%%

X

1

&&&&&&

X

0
%%%%%%

X

1

&&&&&&

which can be extended downwards until we reach the leaves. The root is labelled
with yx<i, the next level has the futures after one output yx<i0 and yx<i1, the
second after another input yx<i0◦, etc. Nodes alternate being being output nodes
Y and input nodes X. The Y nodes represent choices for the agent, the X nodes
possible inputs from the environment. The leaves of these trees are labelled by
strings of the form yx1:N : complete interaction histories.

The immediate choice faced by the agent is which child of the root Y node to pick.
As each edge leading to a child is labelled by a possible output (either 0 or 1), this
is equivalent to deciding the next output.

We define the valuation function over this tree of possible histories used by the
agent. This is recursively defined from leaf to root. This function assigns a number
to each node, which will turn out to the maximum expected utility any agent could
achieve from that point in time (see chapter B). The agent will pick the Y node
with the largest value (i.e. largest expected utility) to be the next output.

Definition 4.4. Recursively define the following valuation function V (h) over his-
tories:

V (yx1:N) =
∑

r∈R

U(r)P (r|yx1:N)

V (yx<iyi) =
∑

xi∈X

P (xi|yx<iyi)V (yx<iyxi)

V (yx<i) = max
yi∈Y

V (yx<iyi)

V (yx1:N) is the value of a complete history of interaction. A complete history tells
us as much as we’ll ever know about the outcome r, so this value is simply the
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expected utility given that history

V (yx1:N) =
∑

r

U(r)P (r|yx1:N) = E[U |yx1:N ]

V (yx<iyi) is the value of a X-node: it is the expected value of the X nodes below it,
weighted by the probability that that X node will be selected by the environment
i.e. the environment will send that particular input to the agent.

V (yx<i), the value of an Y node, assumes that in the future the agent picks a yi

node with maximal value (expected utility) V (yx<iyi).

Thus, an expectimax agent:

Definition 4.5. (Expectimax agent) An expectimax agent a0 is one that for all
histories h ∈ Y X<N takes an action maximising the valuation V (h) (definition 4.4):

∀h ∈ Y X<N a0(h) ∈ argmax
y

V (hy)

An expectimax agent, given any history h = yx1:i ∈ Y X<N , chooses the extension
hy which has the largest value. If we label the root of the previous tree h, this
corresponds to a choice of a child X node that has maximal value V (hy). This
doesn’t uniquely define an agent: if there are multiple actions with the maximal
value any one can be choosen. In the chess example, if two moves have the same
expected utility in a given situation, there will be an expectimax agent that picks
the first one and another that picks the second.

Example 4.6. The following is the previous tree with the valuation function dis-
played on it. X-node edges are labelled with probabilities P (xi|yx<iyi). Y -nodes
edges are labelled if the child node has the value of the parent (i.e. has a maximal
value within all its siblings). This is just the root of a full tree, it extends at least
one more level.

Y 4.9

X 0.5

'''''''''
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1
(((((((((

Y 1

0.5
)))))))

0

0.5

*******

5

0.9
)))))))
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*******
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++++++
1

1

,,,,,,

0

0
------

0

1

,,,,,,

5

0
------

5

1

,,,,,,

4

0
------

3

,,,,,,

Notice that Y node values are the maximum of the values of their X node children;
X node values are the weighted sum of their Y node children, with the weightings
on the edges.

Note that the agent function takes a parameter of the form

yx1:i
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rather than
x1:i

i.e. we include the agent’s past outputs. We call these extended agent functions:

Definition 4.7. An extended agent function is a map:

a : Y X<N → Y

where

Y X<N =
N−1⋃

i=0

(Y ×X)i

is the set of all sequences of paired outputs and inputs Y × X of length less than
N .

Extended agents are technically useful as we can define the action yi at step i without
having to compute y<i. This allows us to recursively define a function from longer
to shorter histories. They aren’t any more general: every extended agent function
has an equivalent agent function (see chapter C).

Finally, expectimax agents are optimal agents.

Theorem 4.8. (Expectimax agents are optimal) If a0 is an expectimax agent

∀h ∈ Y X<N a0(h) ∈ argmax
y

V (hy)

then a0 is optimal
a0 ∈ argmax

a
E[U |a]

Proof. See corollary B.8 in chapter B.

In fact a stronger result (almost) holds: the set of expectimax agents is exactly the
set of optimal agents. This, however, requires we ignore how the agents behave
on histories which are expected impossible i.e. any history yx1:i where for some
1 ≤ k ≤ i either

1. yk is not an action the agent would take

yk .= a0(yx<k)

or,

2. xk is not an observation the agent would expect

P (xk|yx<kyk) = 0

Expectimax agents must behave optimally even under these impossible situations,
where as arbitary optimal agents need not. In a sense, expectimax agents are “more
optimal” than arbitary optimal agents. As such, it suffices to consider only expec-
timax agents.
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Example 4.9. Suppose we wish to design an agent to supervise quality control
for a production line. The production line produces one widget per time step, and
the agent has two options: either accept the widget and allow it to pass, or reject
it. Each widget is either good or bad, and the aim is to accept all and only good
widgets. All items that are rejected are destructively tested, so the agent knows
whether these were good or not. The agent otherwise cannot tell the quality of a
widget. The widgets are produced by a machine which has a fixed, but unknown
error rate – a fixed probability of producing bad rather than good widgets.

We wish to model this situation using the above formalism of maximal expected
utility, then solve for the optimal behaviour using the explicit form described above.

First, our sets:

1. Y = {0, 1}. 0 means accept the widget, 1 means reject it.

2. X = {0, 1}. If the last action yi was 1 (reject), the next input xi is 0 if the
widget was good or 1 if it was bad. Otherwise the input is 0.

3. R = R1 ×R2 = [0, N ]× [0, N ]. Our variable of interest is the number of good
and bad widgets accepted. Note that for r = 〈r1, r2〉 ∈ R:

r1 + r2 ≤ N

They will sum to exactly the number of widgets accepted i.e. the number of
yi’s that equal 0.

We give a utility of +α for every good widget accepted and −β for every bad widget
accepted, where α, β ≥ 0:

U(r) = U(〈r1, r2〉) = αr1 − βr2

If we receive $α for every good widget and get penalised $β for every bad widget
this utility is the total number of dollars we will earn.

We define the probability distributions we need

P (r|yx1:N), P (xi|yx<iyi)

with the help of an auxillary variable: ρ, the widget producing machine’s fixed
probability of error. We then have,

P (r|yx1:N) =

∫
P (r|ρ, yx1:N)P (ρ|yx1:N)dρ

P (xi|yx<iyi) =

∫
P (xi|ρ, yx<iyi)P (ρ|yx<iyi)dρ

by a continuous generalisation of marginalisation and the product rule. This first
infers the error probability ρ from the past, then the outcome or next input. Our
prior information about the problem suggests the following:
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1. If
∑N

i=1(1− yi), the number of widgets accepted, is equal to r1 + r2 then
(

P (r|ρ, yx1:N) = P (〈r1, r2〉|ρ, yx1:N) =

r1 + r2r1ρr1(1− ρ)r2

)

otherwise the probability is zero. There are
(

r1+r2

r1

)
ways to have a sequence of

r1 bad and r2 good widgets, each with probability ρr1(1− ρ)r2 .

2. Once we know the probability that the machine will make a bad widget, ρ, we
know all we can about whether the next block is bad and thus the next input
xi:

P (xi|ρ, yx<iyi) =






[xi = 0] if yi = 0
1− ρ if yi = 1, xi = 0
ρ if yi = 1, xi = 1

If yi = 0 (accept) the next input xi is always 0. If yi = 1 (reject), our
expectation is a ρ probability for being bad, 1− ρ for it being good.

3. The last step infers the probability of error ρ from the past history yx1:i. Let
b be the number of bad widgets rejected, g the number of good

b = Σi
j=1xjyj

g = Σi
j=1(1− xj)yj

then

P (ρ|yx1:i) =
P (x1:i|ρ, y1:i)P (ρ|y1:i)∫
P (x1:i|ρ, y1:i)P (ρ|y1:i)dρ

=
ρb(1− ρ)g

∫
ρb(1− ρ)gdρ

=
1

B(b, g)
ρb(1− ρ)g

where B is the Beta function. This is a Beta distribution (see [Ber93] p650).
This formula assumes a prior expectation that the error probability ρ could
equally take on any value between 0 and 1. Note also that

P (ρ|yx1:iyi) = P (ρ|yx1:i)

since a trailing action tells us nothing more about the widget generating ma-
chine.

Next, we use theorem 4.8 to find the optimal agent. We evaluate the valuation
over histories V (h).

V (yx1:N) =
∑

r

U(r)P (r|yx1:N)

=
∑

r

(αr1 − βr2)P (〈r1, r2〉|yx1:N)

= α
∑

r1

r1P (r1|yx1:N)− β
∑

r2

r2P (r2|yx1:N)
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One can show that the mean of this Beta distribution is
∫

ρP (ρ|yx1:N)dρ =
Σi

j=0xjyj + 1

Σi
j=0yj + 2

and as a result that

∑

r1

r1P (r1|yx1:i) = ΣN
j=0(1− yj)

ΣN
j=0(1− xj)yj + 1

ΣN
j=0yj + 2

∑

r2

r2P (r2|yx1:i) = ΣN
j=0(1− yj)

ΣN
j=0xjyj + 1

ΣN
j=0yj + 2

and that

V (yx1:N) =
ΣN

j=0(1− yj)

ΣN
j=0yj + 2

(
N∑

j=0

(α− (α + β)xj)yj + (α− β)

)

(The details of this calculation aren’t important.) The right hand sum is the utility
of the rejected widgets, +α for each good one −β for each bad one (with an extra
good and bad widget thrown in). The left hand fraction rescales this utility from
the number of rejected (plus 2) widgets to the number of accepted widgets. The
intuition behind this is we expect the same proportion of bad widgets in both the
accepted and rejected set, so we simply rescale the latter to estimate the former.

Through further calculation, we find

V (yx<NyN) =
ΣN−1

j=0 (1− yj)− yN

ΣN−1
j=0 yj + 2 + yN

(
N−1∑

j=0

(α− (α + β)xj)yj + (α− β)

)

Similarily, we find:

V (yx<iyi) =
Σi−1

j=0(1− yj)− yi −K

ΣN−1
j=0 yj + 2 + yi + K

(
i−1∑

j=0

(α− (α + β)xj)yj + (α− β)

)

where K = (N − i) if the right hand sum is negative, K = 0 otherwise. In both
cases the next action (yN or yi) influences the scaling fraction: if we reject the next
widget there will be less to accept later on. The optimal action, for any i, is thus:

argmax
y

V (yx<iy) =






{0} if
∑i−1

j=0(α− (α + β)xj)yj + (α− β) > 0

{0, 1} if
∑i−1

j=0(α− (α + β)xj)yj + (α− β) = 0

{1} if
∑i−1

j=0(α− (α + β)xj)yj + (α− β) < 0

The optimal action for the agent is accept (0) if the utility of the rejected widgets
(plus α − β) is greater than zero, reject (1) if its less than zero, or both if its zero.
The intuition behind this is the average utility of the rejected fraction (if we had
accepted it) is the expected gain if we accept the next widget. If this is negative,
we stand to lose: reject. If this is positive, we stand to gain: accept. If it is zero,
nothing should change: either is ok.

The benefit of theorem 4.8 is a concrete grasp of how optimal agents act, along
with a tool to analyse their behaviour.



Chapter 5

Applications

This definition of optimality, i.e. of E[U |a], depends on two key parameters:

1. R, U(r), P (r|yx1:N). What we want (R, U(r)) and how to infer whether we’ve
got it (P (r|yx1:N)).

2. P (xi|yx1:i−1yi). What we know about which inputs the environment supplies
given past history of interaction.

We discuss applications of the above theory. First we describe (implicit) applica-
tions used by Marcus Hutter in his work on universal AI [Hut04]: AIµ and AIXI.
AIµ is intended to be the best AI for any fixed environment, although it requires
complete knowledge of this environment to define. AIXI is intended to be the best
environmentally independent AI, performing “almost” as well as the correct AIµ in
any environment.

We next suggest an area for future work. Although AIµ has complete knowledge
of the environment (in a focused sense; see below) it cannot be guaranteed to achieve
what we want. This is simply because the utility function it uses is fixed and not our
own: it seeks to maximise the reward it receives. With humans in the environment
controlling the rewards this may indirectly achieve what we want, but this is not
necessarily so.

One possibility is to generalise AIµ to an agent which transparently achieves what
we want by adding an extra assumption: its utility function expresses what we
want. Designing an AIXI analog for this class of agents is not trivial, especially
since “what we want” isn’t well defined. This is meant to capture and generalise
the idea of communicating what we want to the AI, of the AI extracting what the
right thing is from the environment, that is implicit in AIµ. One way to formalise
this is by encoding the desired utility function into the environment and requiring
the agent to extract it.

5.1 Hutter’s AIµ and AIXI

Marcus Hutter’s AIµ and AIXI [Hut04] was the original impetus for this thesis. AIµ
is a model of (unattainably) optimal AI, with perfect knowledge of the environment.
This is a special case of this model with two features:

25
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1. The input X is divided into two parts

X = R×O

a reward R (not to be confused with our set of outcomes R) and an ordinary
input O. Rewards encode real numbers, and the goal of the agent is the
maximise the expected total reward received:

∑

r

U(r)P (r|xy1:N) =
∑

i

R(xi)

where R(xi) extracts the reward component from the input. Similar reward-
based goals are found in the field of reinforcement learning [SB98].

2. The probability distribution

P (xi|yx1:i−1yi)

predicts the environment as well as possible. Assuming deterministic envi-
ronments, this always predicts the next input correctly. This corresponds to
complete knowledge of how the universe reacts. This isn’t complete knowl-
edge of the entire universe, but only the aspect that matters to the AI (which
inputs follow which outputs). The AI only “cares” about the reward input it
receives.

(Actually, this describes AIµ with a fixed lifetime and full lookahead; see [Hut04].)

AIµ is intended as the goal: the agent which has learnt everything necessary about
the environment, and performs the task we wish it to perform. Although the utility
function is not something humans directly want (i.e. maximising a numerical input
to the agent), the idea is that humans can control how the agent receives rewards
and thus control the agent itself. (This seems to require us humans have perfect
control of the reward system and AI: any loophole, no matter how tiny, will allow
AIµ to bypass humans and directly maximise rewards.)

AIXI relaxes the assumption of perfect knowledge. In fact, the only thing it
assumes about the environment is that it’s computable; more precisely, that it can
be accurately modelled as a computable function p mapping agent actions to inputs:

p : Y <N → X

Under a formalisation of Occam’s razor, simpler functions (and thus simpler en-
vironments) are seen as initially more plausible. We measure the simplicity of a
computable function by the length of the program needed to encode it, |p|. We give
each possible function p a probability of

2−|p|

(this requires the set of programs is a prefix free binary language; see [Cal02]). If
we were to randomly flip a coin to create a sequence of bits until it described a valid
program, e.g. 0, 01, 011, 0111, 2−|p| would the the probability that program p was
produced.
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As as result (applying similar logic as in example 4.9 but with p replacing ρ) we
have:

P (xi|yx1:i−1yi) =
∑

p

P (xi, p|yx1:i−1yi)

=
∑

p

P (p|yx1:i−1yi)P (xi|yx1:i−1yi, p)

=
∑

p

(
P (x1:i−1|p, y1:i)P (p|y1:i)∑
p′ P (x1:i−1|p′, y1:i)P (p′|y1:i)

)
[p(y1:i) = xi]

=
∑

p

(
[p(y1:i−1) = x1:i−1]2−|p|

∑
p′ [p′(y1:i−1) = x1:i−1]2−|p′|

)
[p(y1:i) = xi]

=

∑
p[p(y1:i) = x1:i]2−|p|

∑
p[p(y1:i−1) = x1:i−1]2−|p′|

where
p(y1:i) = x1:i

is short for
p(y1) = x1, p(y1:2) = x2, p(y1:3) = x3, . . .

The probability that input xi follows yx1:i−1yi is proportional to the probability that
some environment p produces inputs x1:i when the agent takes actions y1:i. The
denominator is a normalisation constant to ensure this is a probability distribution.

Hutter proves a number of theorems which demonstrate that this model performs
almost as well as the AIµ model and as good as any other model independent of
the environment. The intuition behind this is if the environment is encoded by a
program p, AIXI can learn this program at a rate roughly proportional to the length
of this program, after which it performs as well as AIµ.

5.2 Learning what we want

Although Hutter demonstrates AIXI converges toward AIµ, left informally analysed
is the claim that AIµ achieves (e.g. by learning) what we want. Regardless of when
and whether it does, there is need for a theoretical framework in which to analyse
such questions.

One possibility is to generalise AIµ: have an agent with perfect knowledge of
the environment and perfect knowledge of what we want (e.g. the human utility
function). Call this AI∗. One can then study whether and under what circumstances
AIXI, AIµ, or any other universal model converges to AI∗. This rephrases the
problem as extracting a utility function from the environment, or of communicating
a utility function to an agent. Alternatively, we can think of this as defining agents
that both learn how the environment works and learn what we want.

We can state this problem a little more precisely. Suppose we want can be encoded
in a utility function

U : R → R
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over some set of outcomes R, where

P (r|yx1:N)

defines how to extract knowledge of the outcome r from knowledge of the complete
interaction yx1:N . This probability distribution effectively defines what the outcome
r ∈ R is; it is otherwise simply a meaningless set. The utility function describes
which outcome we want to occcur, and how we want tradeoffs under uncertainty to
be taken. (See chapters 2.1 and 2.2 if this doesn’t make sense.)

We will suppose the agent knows the distribution (i.e. knows how to infer the
outcome R) but not the utility U , although the following can easily be generalised
so that both are unknown. We define a class of environments E which encode these
utility functions; each environment e ∈ E encodes utility function

Ue

(there may be multiple environments encoding the same utility function). This may
be an environment filled with agents (e.g. humans) which use this utility function, or
a tablet describing it, or some more abstract specification. Defining how to encode
the utility function is part of the problem. We want to design an agent which learns
this utility function, and then tries to maximise it. That is, we wish to design an
agent a∗ such that for every e ∈ E:

E[Ue|e, a∗]

is near to
max

a
E[Ue|e, a]

where
E[Ue|e, a]

is the utility agent a achieves in environment e. That is, for every environment e in
the class E the agent a∗ performs “almost as well”, according to the utility function
Ue encoded in the environment e, as the optimal agent for the environment/utility
function can.

The aim is to model simplifications of our situation: humans, existing within the
agent’s environment, want various things. The agent should try to determine and
achieve what us humans want it to achieve. This would be considerably simplified
if we knew exactly what we wanted, e.g. if all humans wanted was to calculuate as
many digits of π as possible: then we could directly code the utility function into
the agent. As we don’t understand ourselves well enough to completely describe
what we want, we need to design agents that can learn or otherwise extract what
we want themselves.



Chapter 6

Conclusion

We’ve described a decision theoretical approach to AI through optimal agents. We
explained how probability distributions represent uncertain knowledge of outcomes,
and how utility functions represent preferences over outcomes under uncertainty.
The best choice results in an uncertain outcome with maximal expected utility.

The agent approach to AI, that of intelligent interactive systems, was formalised
through agent functions. The best agent function, that of the optimal agent, has
maximal expected utility. We described an explicit algorithm for computing such
agents, the expectimax algorithm, which evaluates a numerical function over the
tree of possible futures to determine the best next action.

We briefly discussed how Marcus Hutter’s [Hut04] model of AI, AIµ and AIXI, is
a particular instance of the optimal agent defined here. We sketched an approach
to defining when an agent can be said to learn what we want. Future work would
apply this, or a similar framework, to analyse when and whether AIXI can be shown
to achieve what we want.
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Appendix A

Probability Theory

We introduce probability theory as a logic of uncertainty (see [JB03],[Jay86] for
a more detailed presentation; [Har02] for a different derivation). We first describe
propositions, then how to assign truth values and probabilities to them. We end with
a description of probability distributions, and a several theorems for manipulating
them.

A.1 Logic

Propositions are statements that can be either true or false. For example, “the agent
receives input 0 at time step 12”. When modelling an agent, or a decision problem
in general, we implicitly use a background set of propositions. This background set
will vary from problem to problem. With our agent model we have propositions of
the form:

“The agent receives input x at time step i” for all x ∈ X, i ∈ [1, N ]
“The agent sends output y at time step i” for all y ∈ Y , i ∈ [1, N ]
“Agent function a is implemented” for all agent functions a
“Outcome r occurs” for all outcomes r ∈ R

These schemata describe families of propositions, one for each instantiation of the
variables.

Propositions can form other propositions. Negation constructs “the agent does
not receive input 0 at time step 12” from the first example sentence. In general,
from propositions “X” and “Y” we can construct “not X”, “X and Y”, “X or Y”
each with their obvious meanings. These are operations on the background set of
propostions. We assume this background set is closed under these operations e.g. if
“X” and “Y” are in the set, “X and Y” is too.

Logic deals with the truth of propositions. Each proposition is assigned a truth
value, either true or false, in a consistent way. The consistency requirement is if one
proposition logically implies another then whenever the first proposition is true, the
second is true e.g. if the proposition “X” is true then the proposition “X or Y” must
be true, if “X and Y” is true then “X” must be true.
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A.2 Probability as uncertain logic

Assigning true and false to propositions is sufficient to handle both the actual state
of the world and certain knowledge of it. Uncertain knowledge requires degrees of
belief lying between the extremes of certainly true and certainly false. To achieve
this we assign propositions real numbers between 0 and 1, called probabilities. 0
means certainly false, 1 means certainly true, anything else is more or less uncertain.
We denote proposition X’s probability as

P (X)

For propositions X and Y , X ∧ Y or XY will denote the proposition “X and Y ”,
X ∨ Y the proposition “X or Y ”, ¬X the proposition “not X”.

An important feature of uncertain life is we can learn new things. In particular,
if we discover a certain proposition is true this changes our probabilities that other
propositions are true. If we discover “it is raining”, we assign a higher probability
to “the ground is wet”. If E is the proposition describing everything we know to be
true (our evidence), then

P (X|E)

is the probability of X given that we know E is true. This is called the probability
of X conditional on E. It turns out that that

P (X|E) =
P (XE)

P (E)

If we know multiple things, E1, . . . , En, we can combine them into a single propo-
sition

P (X|E1 ∨ . . . ∨ En) = P (X|E)

Our unconditional probability from before is a special case where E is always known
to be true i.e. where P (E) = 1. This holds for tautologies 2 such as E ∧ ¬E (e.g.
“to be or not to be” – necessarily true since at least one of them holds):

P (X) = P (X|2)

Just as with truth values, there are consistency requirements in assigning probabil-
ities. Firstly, we require logically equivalent statements to have the same probability.
Secondly,

P (¬X|E) = 1− P (X|E) (A.1)

P (XY |E) = P (X|E)P (Y |XE) (A.2)

where X, Y are arbitary propositions, and E is the background evidence proposition
we condition on. The first rule means that belief in X is disbelief in ¬X, and
conversely. The second rule, also called the product rule, means we can judge the
probability of XY in two steps, all conditional on E: the probability of X then the
probability of Y given X. The probablity of “its raining and the ground is wet”,
is the probabilty of “its raining” times the probability of “the ground is wet” given
that “its raining”.
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The above elementary rules of probability can be used to derive further results,
and can be derived from more basic principles [JB03]. For example,

P (X ∨ Y |E) = P (X|E) + P (Y |E)− P (XY |E)

where X ∨ Y is “X or Y ”. We also have Bayes’ theorem:

P (X|Y E) =
P (X|E)P (Y |XE)

P (Y |E)

A.3 Variables and probability distributions

We don’t deal with propositions directly, but through variables. A variable V has
an set of possible values V = {v1, . . . , vn}, although it is not generally known which
value it has. For each value v ∈ V the proposition

V = v

says that V has the value v. Exactly one such proposition will be true i.e.

P (V = v1 ∨ . . . ∨ V = vn) = 1

and for any i .= j
P (V = vi, V = vj) = 0

Variables are useful when we have a set of alternatives, exactly one of which must
be true. For example, the input the agent received at time step i. Any proposition
P corresponds to the variable VP which has values {0, 1} depending on whether P
is true or false. More generally, any set of propositions S = {P1, . . . , Pn} that are
mutually exclusive and exhaustive i.e. such that

P (P1 ∨ . . . ∨ Pn) = 1

and for any i .= j
P (Pi, Pj) = 0

forms a variable in an obvious way.

It can be shown, via induction on n and eq (A.2), that

∑

v∈V

P (V = v) = 1

This leads to probability distributions, functions which assign probabilities to values
of variables rather than general propositions:

P : V → [0, 1]

where P (v) = P (V = v). These are simpler to deal with as the consistency require-
ment is simply that all the values sum to 1

∑

v

P (v) = 1
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When dealing with multiple variables, say X and Y and Z,

P (x, y|z)

denotes the conditional probability that variable X has value x and Y value y, given
that we know Z has value z. Implicitly, x ∈ X, y ∈ Y , z ∈ Z. We use labels to
denote the variables involved. A more explicit version of the above would be

P (X = x, Y = y|Z = z)

It is generally clear from context which variable X a label x refers to.

A.4 Marginalisation

Suppose we have two variables X and Y . P (y) denotes the probability that Y has
value y, P (x, y) that X has value x and Y value y. Whatever value Y has, e.g. y,
X must have exactly one value. As a result,

P (y) =
∑

x∈X

P (x, y)

holds. This marginalisation theorem is often used to introduce an additional vari-
able.

A.5 Bayes’ theorem

Suppose we have two variablse X and E. Typically X is something we are uncertain
of, and E is something we are certain of e.g. evidence. We have

P (x|e) =
P (e|x)P (x)∑

x∈X P (e|x)P (x)

where
P (x)

is the prior probability that X has value x, before knowing evidence e, and

P (e|x)

is the probability we would observe evidence e if x happened to be true.



Appendix B

Expectimax Agents are Optimal
Agents

This chapter supplies a proof that expectimax agents are optimal agents. See chapter
4 for why this is interesting.

Recall definition 4.5 of the expectimax agent. We have a valuation function V (h)
over histories:

V (yx1:N) =
∑

r

U(r)P (r|yx1:N)

V (yx<iyi) =
∑

xi

P (xi|yx<iyi)V (yx<iyxi)

V (yx<i) = max
yi

V (yx<iyi)

An expectimax agent a0 is one that for all histories h ∈ Y X<N takes an action
maximising this valuation:

∀h ∈ Y X<N a0(h) ∈ argmax
y

V (hy)

B.1 Possible futures

Given a history of interaction h, we define the set of possible futures extending h,
relative to an agent a. This is the set of all futures where the actions are consistent
with the agent function a and no “impossible” inputs occur. It will turn out that
optimal agent functions need only be optimal on this subset of histories, and can
take any action on “impossible” futures.

Definition B.1. H(ẏx≤i, a) is the set of all possible futures (also called valid fu-
tures) extending ẏx≤i by agent a:

H(ẏx≤i, a) = {ẏx≤iyxi+1:j−1 :

j ∈ [i + 1, N ], yxi+1:j−1 ∈ (Y X)j−i−1,

(∀k > i) yk = a(ẏx≤iyxi+1:k−1) ∧ P (xk|ẏx≤iyxi+1:k−1yk) .= 0}
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This definition says a possible future is made up of:

ẏx≤iyxi+1:j−1

the actual past ẏx≤i and a future yxi+1:j−1 of variable length. Every future action
yk for i < k ≤ j − 1 is the action agent a would take:

yk = a(ẏx≤iyxi+1:k−1)

and each input xk for i < k ≤ j − 1 is seen as possible given the past:

P (xk|ẏx≤iyxi+1:k−1yk) .= 0

We use the following notation to conserve space:

Definition B.2. The utility of a complete history yx1:N is defined to be:

U(yx1:N) =
∑

r∈R

U(r)P (r|yx1:N)

The final definition we require is:

Definition B.3. The expected utility of an agent a, given that it starts acting in
step i with past history ẏx<i:

E[U |ẏx<i, a] =
∑

r∈R

U(r)P (r|ẏx<i, a)

Note that this reduces to the original definition E[U |a] when i = 1 i.e. when agent
starts on first step.

It will turn out that
V (ẏx<i) = max

a
E[U |ẏx<i, a]

i.e. the valuation of history ẏx<i is the expected utility of the optimal agent, given
that it starts acting at step i with history ẏx<i. This is the crucial intermediate
result in showing the expectimax agent, defined through V , yields optimal agents.

B.2 Identities of the expected utility of an agent

We will use the following identities to prove our later result.

The following lemma rephrases definition B.3:

Lemma B.4.

E[U |ẏx<i, a] =
∑

yxi:N

U(ẏx<iyxi:N)P (yxi:N |ẏx<i, a)

E[U |ẏx<iyi, a] =
∑

yxi:N

U(ẏx<iyxi:N)P (xiyxi+1:N |ẏx<iyi, a)
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Proof. The following invokes probability theory (in particular, marginalisation P (y|z) =∑
x P (x, y|z) and the product rule P (x, y|z) = P (x|z)P (y|x, z); see chapter A) and

definition B.2:

E[U |ẏx<i, a] =
∑

r∈R

U(r)P (r|ẏx<i, a)

=
∑

r∈R

U(r)
∑

yxi:N

P (r, yxi:N |ẏx<iyxi:N , a)

=
∑

r∈R

U(r)
∑

yxi:N

P (yxi:N |ẏx<i, a)P (r|ẏx<iyxi:N , a)

=
∑

yxi:N

(
∑

r∈R

U(r)P (r|ẏx<iyxi:N , a)

)
P (yxi:N |ẏx<i, a)

=
∑

yxi:N

U(ẏx<iyxi:N)P (yxi:N |ẏx<i, a)

E[U |ẏx<iyi, a] =
∑

r∈R

U(r)P (r|ẏx<iyi, a)

=
∑

r∈R

U(r)
∑

xiyxi+1:N

P (xiyxi+1:N |ẏx<iyi, a)P (r|ẏx<iyxi:N , a)

=
∑

yxi:N

(
∑

r∈R

U(r)P (r|ẏx<iyxi:N , a)

)
P (yxi:N |ẏx<i, a)

=
∑

yxi:N

U(ẏx<iyxi:N)P (xiyxi+1:N |ẏx<iyi, a)

The following theory states the major recursive properties of the expected utility
of an agent given a fixed history. The expected utility for shorter histories can be
defined in terms of longer histories, the value on the longest history being indepedent
of the agent a (there are no actions for it to take).

Theorem B.5. The following identities hold:

E[U |ẏx1:N , a] = U(ẏx1:N)

E[U |ẏx<i, a] = E[U |ẏx<ia(ẏx<i), a]

E[U |ẏx<iẏi, a] =
∑

xi

P (xi|ẏx<iẏi)E[U |ẏx<iẏixi, a]

Proof. 1. Invoking definition B.2:

E[U |ẏx1:N , a] =
∑

r∈R

U(r)P (r|ẏx1:N)

= U(ẏx1:N)

2. Invoking lemma B.4, the product rule, and the fact that P (yi|ẏx<i, a) = [yi =
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a(ẏx<i)]:

E[U |ẏx<i, a]

=
∑

yxi:N

U(ẏx<iyxi:N)P (yxi:N |ẏx<i, a)

=
∑

yxi:N

U(ẏx<iyxi:N)P (yi|ẏx<i, a)P (xiyxi+1:N |ẏx<iyi, a)

=
∑

xiyxi+1:N

U(ẏx<ia(ẏx<i)xiyxi+1:N)P (xiyxi+1:N |ẏx<ia(ẏx<i), a)

= E[U |ẏx<ia(ẏx<i), a]

3. Invoking lemma B.4, the product rule, and the fact that P (xi|ẏx<iyi, a) =
P (xi|ẏx<iyi):

E[U |ẏx<iẏi, a]

=
∑

xiyxi+1:N

U(ẏx<iyxi:N)P (xiyxi+1:N |ẏx<iyi, a)

=
∑

xiyxi+1:N

U(ẏx<iyxi:N)P (xi|ẏx<iyi, a)P (yxi+1:N |ẏx<iẏixi, a)

=
∑

xi

P (xi|ẏx<iyi, a)
∑

yxi+1:N

U(ẏx<iyxi:N)P (yxi+1:N |ẏx<iẏixi, a)

=
∑

xi

P (xi|ẏx<iyi)E[U |ẏx<iẏixi, a]

B.3 Expectimax agents are optimal agents

We prove this through two theorems. Theorem B.6 shows optimal agent functions
can be described component-wise. Theorem B.7 shows these components correspond
to those in the expectimax agent definition. Corollary B.8 shows that expectimax
agents are optimal agents, the final result. That the entire set of optimal agents are
expectimax agents on the set of possible futures (see definition B.1 above) is left
implicit. (See also the notes after theorem 4.8.)

Theorem B.6. For any fixed history ẏx≤i where 0 ≤ i ≤ N :

a0 ∈ argmax
a

E[U |ẏx≤i, a]

iff

∀h ∈ H(ẏx≤i, a0) a0(h) ∈ argmax
y

max
a

E[U |hy, a]



B.3. EXPECTIMAX AGENTS ARE OPTIMAL AGENTS 39

This theorem shows optimal agents can be defined componentwise. The equation

a0 ∈ argmax
a

E[U |ẏx≤i, a]

means a0 is an optimal agent, given fixed history ẏx≤i. That is, if it only acts on steps
i + 1 . . . N , and given a fixed history ẏx≤i on steps 1 . . . i, it has maximal expected
utility. For i = 0 this is the standard definition of optimality E[U |ε, a] = E[U |a]: the
agent acts on all N steps. For i = N this is a trivial statement: there are no actions
after the Nth steps, so the agent a has no effect on the expectation E[U |yx≤N , a].

The other statement:

∀h ∈ H(ẏx≤i, a0) a0(h) ∈ argmax
y

max
a

E[U |hy, a]

says that for all valid futures h extending ẏx≤i agent a0 takes the best action y, as-
suming that future actions are taken optimally (this is the meaning of maxa E[U |hy, a]).
This defines individual values of a0.

Proof. We prove this by induction over i in the theorem.

For i = N the equivalence is vacuously true:

1. a0 ∈ argmaxa E[U |ẏx≤N , a] holds for any a0, since the agent acts for only N
steps.

2. H(ẏx≤N , a0) is the empty set

Supposing the inductive hypothesis holds for i + 1 where 1 ≤ i + 1 ≤ N , we show
it holds for i. For any history ẏx≤i we have:

a0 ∈ argmax
a

E[U |ẏx≤i, a]

(1)⇐⇒ a0 ∈ argmax
a

E[U |ẏx≤ia(ẏx≤i), a]

(2)⇐⇒ a0(ẏx≤i) = y∗i+1 ∈ argmax
yi+1

max
a

E[U |ẏx≤iyi+1, a]

∧ a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1, a]

(3)⇐⇒ a0(ẏx≤i) = y∗i+1 ∈ argmax
yi+1

max
a

E[U |ẏx≤iyi+1, a]

∧ ∀xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0, a0 ∈ argmax

a
E[U |ẏx≤iy

∗
i+1xi+1, a]

(4)⇐⇒ ∀h ∈ H(ẏx≤i, a0) a0(h) ∈ argmax
y

max
a

E[U |hy, a]

Justification for each step:

1. Lemma (B.5).
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2. First note the equivalence:

(x, y) ∈ argmax
x,y

f(x, y) ⇐⇒ x ∈ argmaxx maxy f(x, y)
∧ y ∈ argmaxy f(x, y)

(B.1)

holds i.e. when maximising a function of two variables one can choose the first
coordinate then the second.

For any history ẏx≤i we can split the agent function a into two parts: 〈a(ẏx≤i), a
†〉

where a† is value of a on all partial histories except ẏx≤i. This separates the
present decision (a(yx≤i)) from the rest of the agent function (a†). With this
decomposition:

a0 ∈ argmax
a

E[U |ẏx≤ia(ẏx≤i), a]

⇐⇒ 〈a0(ẏx≤i), a
†
0〉 ∈ argmax

yi+1,a†
E[U |ẏx≤iyi+1, a

†]

as E[U |ẏx≤iyi+1, a] depends only on the a† component i.e.

E[U |ẏx≤iyi+1, a] = E[U |ẏx≤iyi+1, a
†] (B.2)

(The present decision, a(ẏx≤i), has already been taken so it cannot affect the
expected utility.) Applying equivalence (B.1), we get:

⇐⇒ a0(ẏx≤i) = y∗i+1 ∈ argmax
yi+1

max
a†

E[U |ẏx≤iyi+1, a
†]

∧ a†
0 ∈ argmax

a†
E[U |ẏx≤iy

∗
i+1, a

†]

Finally, applying (B.2) again we get:

⇐⇒ a0(ẏx≤i) = y∗i+1 ∈ argmax
yi+1

max
a

E[U |ẏx≤iyi+1, a]

∧ a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1, a]

3. By lemma (B.5):

a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1, a]

⇐⇒ a0 ∈ argmax
a

∑

xi+1

P (xi+1|ẏx≤iy
∗
i+1)E[U |ẏx≤iy

∗
i+1xi+1, a]

Now,

∀xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0, a0 ∈ argmax

a
E[U |ẏx≤iy

∗
i+1xi+1, a]

=⇒ a0 ∈ argmax
a

∑

xi+1

P (xi+1|ẏx≤iy
∗
i+1)E[U |ẏx≤iy

∗
i+1xi+1, a]

holds because if a value x0 is a maximum of each of fj(x) with nonzero weight
cj then it is a maximum of

∑
j cjfj(x) (weights are nonnegative).
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The converse holds for the following reason. If x0 = 〈x1
0, . . . , x

n
0 〉 maximises the

function f(x) = f(x1, . . . , xn) =
∑

j cjfj(xj) then xj
0 maximises each function

fj with nonzero weight cj. Since E[U |ẏx≤iy
∗
i+1xi+1, a] depends only on the

value of a at arguments extending ẏx≤iy
∗
i+1xi+1 (as the agent takes actions

depending on the entire past history), we can split a into separate parts axi+1

for each value of xi+1 – one for each term in the below sum. So,

a0 ∈ argmax
a

∑

xi+1

P (xi+1|ẏx≤iy
∗
i+1)E[U |ẏx≤iy

∗
i+1xi+1, a]

⇐⇒ a0 ∈ argmax
a

∑

xi+1

P (xi+1|ẏx≤iy
∗
i+1)E[U |ẏx≤iy

∗
i+1xi+1, a

xi+1 ]

=⇒ ∀xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0,

axi+1
0 ∈ argmax

axi+1

E[U |ẏx≤iy
∗
i+1xi+1, a

xi+1 ]

⇐⇒ ∀xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0,

a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1xi+1, a]

In summary,

a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1, a]

⇐⇒ a0 ∈ argmax
a

∑

xi+1

P (xi+1|ẏx≤iy
∗
i+1)E[U |ẏx≤iy

∗
i+1xi+1, a]

⇐⇒ ∀xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0, a0 ∈ argmax

a
E[U |ẏx≤iy

∗
i+1xi+1, a]

4. With the shorthand

Q = {xi+1 : P (xi+1|ẏx≤iy
∗
i+1) .= 0}

by the inductive hypothesis we have

∀xi+1 ∈ Q, a0 ∈ argmax
a

E[U |ẏx≤iy
∗
i+1xi+1, a]

⇐⇒ ∀xi+1 ∈ Q, ∀h ∈ H(ẏx≤iy
∗
i+1xi+1, a0)

a0(h) ∈ argmax
y

max
a

E[U |hy, a]

Recall that H(ẏx≤i, a0) is the set of all possible futures extending ẏx≤i by
agent a0. That is, each future action yj is the action a0 would take:

yi+1 = a0(ẏx≤iyxi:j)

and each input xj is seen as possible given the past:

P (xj|ẏx≤iyxi:j) .= 0

Since every valid extension of ẏx≤i is either ẏx≤i itself or a valid extension of
ẏx≤iy

∗
i+1xi+1 for some xi+1 ∈ Q (since y∗i+1 = a0(ẏx≤i)) we have:

H(ẏx≤i, a0) = {ẏx≤i} ∪
⋃

xi+1∈Q

H(ẏx≤ia0(ẏx≤i)xi+1, a0)
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As a result,

a0(ẏx≤i) = y∗i+1 ∈ argmax
yi+1

max
a

E[U |ẏx≤iyi+1, a]

∧ ∀xi+1 ∈ Q, ∀h ∈ H(ẏx≤iy
∗
i+1xi+1, a0)

a0(h) ∈ argmax
y

max
a

E[U |hy, a]

⇐⇒ ∀h ∈ H(ẏx≤i, a0) a0(h) ∈ argmax
y

max
a

E[U |hy, a]

Theorem B.7. The valuation V (h) is exactly the expected utility of the optimal
agent given a fixed history:

V (h) = max
a

E[U |h, a]

for any history h = yx<i or h = yx<iyi

This shows at any point in time the expectimax agent selects the action which
yields the largest expected utility, assuming that future actions are taken opti-
mally. The valuation V (h) computed over the tree of possible futures is exactly
maxa E[U |h, a].

Proof. Recall definitions (4.4) and (B.2):

V (yx1:N) = U(yx1:N)

V (yx<iyi) =
∑

xi

P (xi|yx<iyi)V (yx<iyxi)

V (yx<i) = max
yi

V (yx<iyi)

Equality between V and maxa E[U |·, a] follows from the definition of V by induction
over histories.

1. By theorem (B.5), U(yx1:N) = E[U |yx1:N , a]. Since the left hand side is inde-
pendent of a it equals maxa E[U |yx1:N , a]. Thus

V (yx1:N) = U(yx1:N) = max
a

E[U |yx1:N , a]

2. We can divide a into segments axi for each xi ∈ X such that:

E[U |yx<iyxi, a] = E[U |yx<iyxi, a
xi ] (B.3)

This is possible because the value on the left hand side depends on a evalu-
ated only on histories extending yx<iyxi: for different xi, a can be indepen-
dently defined. Importantly, this means we can construct agents maximising
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E[U |yx<iyxi, a] for each xi and combine them into one that maximises them
all.

V (yx<iyi)
(1)
=

∑

xi

P (xi|yx<iyi)V (yx<iyxi)

(2)
=

∑

xi

P (xi|yx<iyi) max
a

E[U |yx<iyxi, a]

(3)
=

∑

xi

max
a

P (xi|yx<iyi)E[U |yx<iyxi, a]

(4)
=

∑

xi

max
axi

P (xi|yx<iyi)E[U |yx<iyxi, a
xi ]

(5)
= max

a

∑

xi

P (xi|yx<iyi)E[U |yx<iyxi, a
xi ]

(6)
= max

a

∑

xi

P (xi|yx<iyi)E[U |yx<iyxi, a]

(7)
= max

a
E[U |yx<iyi, a]

Steps 1 follows from the definition of V , step 2 by the inductive hypothesis.
Step 3 holds as P (xi|yx<iyi) is a positive constant independent of a. Step 4 is
the application of equation (B.3): we decompose a into 〈axi : xi ∈ X〉.
Step 5 follows form the result mentioned before: maxima for axi separately
can be combined into a single maxima a. In addition, we can maximise a sum∑

j fj(cj) by maximising each term fj(cj) separately (see theorem (B.6)). Fi-
nally, step 6 and 7 follows from equation (B.3) and theorem (B.5) respectively.

3.

V (yx<i)
(1)
= max

yi

V (yx<iyi)

(2)
= max

yi

max
a

E[U |yx<iyi, a]

(3)
= max

a
max

yi

E[U |yx<iyi, a]

(4)
= max

a
E[U |yx<i, a]

Step 1 follows from the definition of V , step 2 from the inductive hypothesis,
and step 4 from theorem (B.5). Finally step 3 holds as

max
x

max
y

f(x, y) = max
x,y

f(x, y) = max
y

max
x

f(x, y)

selecting the maximal pair x, y can be done in any order.

Corollary B.8. (Expectimax agent is optimal) If

∀h ∈ Y X<N a0(h) ∈ argmax
y

V (hy)



44 APPENDIX B. EXPECTIMAX AGENTS ARE OPTIMAL AGENTS

then
a0 ∈ argmax

a
E[U |a]

Proof. In the following, the first step holds as Y X<N ⊆ H(ε, a0) whilst the final
steps are instances of theorems B.7 and B.6, respectively with i = 0. Recall also
that E[U |ε, a] = E[U |a].

∀h ∈ Y X<N a0(h) ∈ argmax
y

V (hy)

=⇒ ∀h ∈ H(ε, a0) a0(h) ∈ argmax
y

V (hy)

⇐⇒ ∀h ∈ H(ε, a0) a0(h) ∈ argmax
y

max
a

E[U |hy, a]

⇐⇒ a0 ∈ argmax
a

E[U |a]



Appendix C

Odds and Ends

C.1 Extended agents are equivalent to agents

Extended agents and agents are equivalent in the following sense:

1. Any extended agent ae uniquely defines an agent a by:

a(x1:i) = ae(āe(x1:i))

where āe(x1:i) maps x1:i to yxi:1 determining the past actions from the past
inputs:

āe(ε) = ε

āe(x1:i) = āe(x<i)ae(āe(x<i))xi

We often refer to both unextended and extended agents as “agents”; which
kind of agent will be clear from the context.

2. Any agent a defines a family of extended agents equivalent to it (i.e. set of ae

such that a(x<i) = ae(āe(x<i))) by recursively defining for all x1:i:

ae(āe(x1:i)) = a(x1:i)

(this definition is non-circular as āe depends only on values of ae shorter than
x1:i) and setting ae arbitarily on other arguments.

C.2 Nondeterministic and deterministic agents equiv-
alent

A nondeterministic agent π defines the probability of randomly choosing a particular
output yi given an input x<i where

π(yi|x<i)

45
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denotes this probability. When,

π(yi|x<i) = [yi = a(x<i)]

for some agent function a we call the agent π deterministic. The following theorem
shows there are deterministic optimal agents.

Theorem C.1. For every nondeterministic agent π there exists a deterministic
agent aπ with equal or greater expected utility:

E[U |π] ≤ E[U |aπ]

Proof. We prove a stronger result by induction on i: for any history ẏx<i and
nondeterministic agent π we can find a deterministic agent aπ such that

E[U |ẏx<i, π] ≤ E[U |ẏx<i, aπ]

For a complete history ẏx<N+1 = ẏx1:N this holds trivially as

E[U |ẏx1:N , π] = U(ẏx1:N) = E[U |ẏx1:N , aπ]

for any agent aπ by theorem B.5.

Suppose we are given a fixed history ẏx<i where i ≤ N . By the inductive hypoth-
esis we can construct an a such that E[U |ẏx<iyxi, π] ≤ E[U |ẏx<iyxi, a] holds for
any given history ẏx<iyxi. We can combine these function into a single agent aπ,
since E[U |ẏx<iyxi, a] depends only on a evaluated at extensions of ẏx<iyxi. Note
that

E[U |ẏx<iyi, π] ≤ E[U |ẏx<iyi, aπ]

additionally holds since:
∑

xi

P (xi|ẏx<iyi)E[U |ẏx<iyxi, aπ] ≤
∑

xi

P (xi|ẏx<iyi)E[U |ẏx<iyxi, π]

E[U |ẏx<iyi, aπ] ≤ E[U |ẏx<iyi, π]

The first statement holds since E[U |ẏx<iyxi, aπ] ≤ E[U |ẏx<iyxi, π] for any history
ẏx<iyxi, the next by theorem B.5.

Consider:

E[U |ẏx<i, π]
(1)
=

∑

yi

π(yi|ẏx<i)E[U |ẏx<iyi, π]

(2)

≤
∑

yi

π(yi|ẏx<i)E[U |ẏx<iyi, aπ]

(3)

≤ max
yi

E[U |ẏx<iyi, aπ]

(4)
= E[U |ẏx<i, aπ]

These steps follow by:
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1. Theorem B.5 and the definition of nondeterministic agents π.

2. By construction of aπ.

3. Since maxx f(x) is larger than any convex combination
∑

x wxf(x):

∑

x

wxf(x) ≤
∑

x

wx

(
max

x
f(x)

)
= max

x
f(x)

the same holds for f(y) = E[U |ẏx<iy, aπ]. This will be equality iff π gives
nonzero probability only to maximal actions; if any less than optimal action
is given nonzero probability this inequality will be strict.

4. We add an additional requirement on aπ that

aπ(ẏx<i) ∈ argmax
yi

E[U |ẏx<iyi, aπ]

We can do this since we’ve only defined it on histories longer than ẏx<i so far:
it will still be the case that:

E[U |ẏx<iyxi, π] ≤ E[U |ẏx<iyxi, aπ]

since the value on the RHS depends only on a evaluated at histories longer
than ẏx<i. Then, by theorem B.5 we get the equality.

Thus we can construct an agent aπ such that:

E[U |ẏx<i, π] ≤ E[U |ẏx<i, aπ]





Bibliography

[Ber93] James O. Berger. Statistical Decision Theory and Bayesian Analysis
(Springer Series in Statistics). Springer, 1993.

[Cal02] Cristian S. Calude. Information and Randomness: An Algorithmic Per-
spective. Berlin, 2 edition, 2002.

[Gol04] Dina Goldin. Turing machines, transition systems, and interaction. In-
formation and Computation Journal, 194:101–128, 2004.

[Han02] Robin Hanson. Disagreement is unpredictable. Economics Letters,
77(3):365–369, 2002.

[Har02] Michael Hardy. Scaled boolean algebras. Advances in Applied Mathemat-
ics, 2002. to Appear.

[HBH88] Eric J. Horvitz, John S. Breese, and Max Henrion. Decision theory
in expert systems and artificial intelligence. Int. J. Approx. Reasoning,
2(3):247–302, 1988.

[Hut04] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. Springer, Berlin, 2004.

[Jay86] E. T. Jaynes. Bayesian methods: General background. In J. H. Justice,
editor, Maximum-Entropy and Bayesian Methods in Applied Statistics.
Cambridge Univ. Press, 1986.

[JB03] E. T. Jaynes and G. Larry Bretthorst. Probability Theory : The Logic of
Science. Cambridge University Press, 2003.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, Englewood Cliffs, New Jersey, 2 edition, 2003.

[Rus97] Stuart J. Russell. Rationality and intelligence. Artif. Intell., 94(1-2):57–
77, 1997.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning). The MIT
Press, 1998.

49




