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Abstract

This paper describes an entropy-based approach for the detection of network events.
This is achieved by first converting a stream of network packets into a string and then
computing its approximate average entropy rate using a computable complexity mea-
sure. Changes in the average entropy rate are interpreted as events. The computational
complexity of the presented approach is nearly linear which makes this technique suit-
able for online scenarios. We present the results of several measurements on actual
network data and show that it is indeed possible to associate actual network events
with changes in entropy.

Providing a reliable network service to users is important to many Internet businesses
and organizations. This requires a facility for the early detection of network events such as
DDoS attacks [9] so that countermeasures can be taken. Network event detection is not a
simple task on machines that are not immediately involved in the event. For instance, it
may be difficult for the border gateways of a network to detect an attack against a machine
inside the network.

Kulkarni, Bush and Evans [8] proposed an approach to network event detection by mea-
suring the complexity of stream data. The authors themselves note that “good estima-
tion of Kolmogorov complexity is key to its usefulness”. They further observe that the
“. . . complexity estimation technique used [in their paper] is not the best because empirical
entropy is actually a very poor method of complexity estimation.” Kolmogorov’s [7] observa-
tion that the complexity of a string is not computable presents a major obstacle for this type
of approach. This implies that computable complexity measures can only ever be an ap-
proximation to Kolmogorov complexity. As a consequence, the question arises as to whether
a particular approximation to Kolmogorov complexity provides adequate properties for net-
work event detection. This paper proposes the use of T-entropy [4], a measure derived from
a recursive parsing of strings. T-entropy has been shown experimentally to have a close cor-
respondence with known physical entropies while its computational complexity is relatively
low. We discuss its merits in network event detection.

A key component of our approach is the simplification of stream data by mapping the
stream’s IP packets into symbols. This results in a string of characters whose complexity is
related to the complexity of the original packet stream.
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T-decomposition, T-complexity, and T-entropy

T-complexity is a complexity measure proposed by Titchener [10, 12, 11] and has also been
discussed in a paper by one of the authors [5]. One fundamental property that makes
T-complexity attractive for us is its computability. T-complexity serves as the basis for
two further measures, T-information and its gradient, the T-entropy. Ebeling, Steuer and
Titchener [4] showed that T-entropy exhibits a close relationship with known entropies such
as the Kolmogorov-Sinai entropy of the logistic map. It has hence been conjectured that
T-complexity represents a good approximation to Kolmogorov complexity.

The T-complexity of a string can be computed via an algorithm called T-decomposition.
T-decomposition will be explained in the following paragraphs, followed by a discussion of
T-complexity, T-information, and T-entropy.

Let A = {a1, a2, a3, . . . , an−1, an} denote a finite alphabet. We denote the cardinality
of A by #A, thus #A = n. Elements ai ∈ A are called characters. Let A∗ be the set of
finite strings that can be generated by concatenating characters from A. λ ∈ A∗ denotes the
empty string. Let A+ = A∗ \{λ}. For two strings x, y ∈ A∗, let xy denote the concatenation
of x and y. We further use xk to denote the concatenation of k copies of x and |x| to denote
the length of x measured in characters.

The T-decomposition of x ∈ A+ is carried out as follows.

1. Initialize a counter m = 1 and an array k = [ ].

2. Parse x left-to-right over A. Thus each character is parsed into a token.

3. Identify the last (rightmost) token in the current parsing of x. We will call this last
token a.

4. Identify pm as the penultimate token (the token immediately to the left of a). Identify
the maximum length km (in tokens) of the run pkm

m of km ≥ 1 tokens that are copies of
pm which ends in the penultimate token. Store km in k[m].

5. If the run identified in the previous step starts with the leftmost token, go to step 8.

6. Parse x left-to-right into a new set of tokens using the following rule: Existing consec-
utive tokens are merged into a single token if they form the following concatenations:

(a) p`
mq, where q 6= pm and 1 ≤ ` ≤ km; or

(b) pkm+1
m .

Part (a) of the rule comprises runs of tokens pm of length shorter than or equal to km

followed by a token that is not pm. (b) represents runs of km + 1 tokens pm.

7. Increment m and go to step 4.

8. Return (m, k).
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The values returned by the T-decomposition procedure are all we need to calculate the
T-complexity of x. It is defined as follows:

CT (x) =

m∑

i=1

log2(ki + 1). (1)

Example: Determine the T-complexity of the binary (A = {0, 1}) string x = 11101010.
Dots are used as delimiters between tokens.

Initially we have m = 1 and k = [ ] in step 1. We parse in step 2 and obtain x as a
series of single character tokens: 1.1.1.0.1.0.1.0. In steps 3 and 4 we determine a = 0, p1 = 1
and k[1] = 1. The condition in step 5 is not met at this stage, so we proceed with step 6.
Merging the tokens according to the rules in step 6, we obtain a new parsing into tokens for
x: 11.10.10.10. In step 7, we set m = 2 and proceed with step 4.

In step 4 we determine p2 = 10 and k[2] = 2. The condition in step 5 is still not met at
this stage, so we proceed with step 6. Merging the tokens according to the rules in step 6,
we obtain a new series of tokens for x: 11.101010. In step 7 we set m = 3 and proceed with
step 4.

In step 4 we determine p2 = 11 and k[3] = 1. The condition in step 5 is now met, so we
proceed with step 8 where we return the result.

We have thus retrieved k = [1, 2, 1] and m = 3 as the result of the T-decomposition of x.
We may now use it to calculate the T-complexity of x:

CT (11101010) =
3∑

i=1

log2(k[i] + 1)

= log2(2 ∗ 3 ∗ 2) ≈ 3.5849

A closed form for an upper bound for the maximum T-complexity of strings x of length
|x| has not been formulated yet, but Titchener conjectured that the logarithmic integral
represents a good approximation of the asymptotic upper bound [10, 12, 11]. CT (x) is not
a linear function. Therefore, one may define IT (x), the T-information of x, as a more linear
measure for the amount of information carried in a string x. This “linearization” is achieved
by using the inverse logarithmic integral:

IT (x) = li−1(
CT (x)

ln#A
) (2)

T-information is measured in nats, i.e., natural information units (base e). The gradient of
the T-information is called T-entropy and is measured in nats per symbol:

HT (x) =
IT (x)

|x|
(3)

In other words: T-entropy is a measure of the change of information as |x| increases. Unlike
other entropy measures, T-entropy is not normalized to 1 and values larger than 1 are
common. We used T-entropy as our measure in a number of tests that are described in the
following section.
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Network Event Detection with T-Entropy

In order to perform event detection, we needed data about the network traffic at our mon-
itoring site. This data was captured by a DAG [1, 3] card on a monitoring machine. DAG
cards usually have two network interfaces, so that network traffic can be directed through
them. For reasons of privacy and volume, a DAG card only produces a fingerprint of each
packet that travels though it by capturing the first n bytes of the packet. Typical values are
n = 64 and n = 84. Thus no application layer payload is recorded. The packet fingerprints
contain, among other information:

� precise timing information,

� the link layer packet header,

� the complete IP header, and

� the transport protocol header or a part of it, dependent on the transport protocol used.
The most common transport protocols, TCP and UDP, are fully covered if no IP or
TCP options are present.

The data produced by the DAG cards can be used in two different ways:

� It can be stored as tracefile records. Tracefiles are frequently used in the development of
analysis software as they permit software fine-tuning by replay of interesting scenarios.

� Real-time analysis of data retrieved from a live interface. Network event detection
software runs on live interfaces.

In our experiments, we used tracefiles in order to be able to replay scenarios. Each record
from a tracefile was mapped into a single symbol according to selected properties of the IP
and/or TCP/UDP headers. We used simple ASCII characters as symbols. Higher symbol
resolutions may require multi-byte symbols.

Example: Table 1 shows a simple mapping based on the protocol field from the IP header:

IP protocol ID Symbol

0x01 (ICMP) ’i’

0x04 (IP) ’I’

0x06 (TCP) ’t’

0x11 (UDP) ’u’

0x29 (IPv6) ’6’

0x84 (SCTP) ’s’

other ’.’

Table 1: A simple mapping for IP packets: packets are mapped to symbols according to the packet’s protocol

header field.

Mapping tracefile records into symbols rather than using their plain data content has
two advantages for our experiments:
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� It is possible to focus on selected properties of a record. Other information carried
in the record can be stripped away. Mapping hence permits viewing the data stream
from different angles.

� Mapping records into symbols reduces the amount of input data by a factor f =
RecordSize
SymbolSize

. As T-decomposition requires almost linear time to complete, the speed-up
factor is almost equal to f .

� Redundant information is removed, e.g., the network portion of the destination IP
addresses of inbound packets.

After mapping, the symbols were concatenated into a string in order of packet arrival
time. This string was then broken up into fragments of equal size. The average T-entropy
was determined for each fragment. We call the value of a fragment’s average T-entropy a
sample. We chose the size of the fragments to be 500 symbols. This number was chosen
under two considerations:

� It is small enough to provide for several thousand samples per tracefile.

� It is large enough not to cause excessive jumps between samples because of too low
granularity.

This produced a series of samples that permitted observation of the average T-entropy.
The mapping part of our approach requires an algorithm with linear time complexity. The

subsequent T-decomposition step is performed by an algorithm that was developed by Yang
and Speidel [6]. This algorithm runs in order O(nlogn) time. The logn component of this
upper bound is due to the addressing scheme used by the algorithm. In real implementations
with limited n this component can be neglected. In our approach n is constant. Thus
the overall computational complexity of approch is linear and therefore suitable for online
scenarios.

Experimental Results

For our experiments we needed input data. The data for our tests originates from DAG
tracefiles recorded at the University of Auckland in December 2003 by Jörg Micheel from
NLANR [2]. Each tracefile reflects one hour of network traffic at the monitoring point.

We used four different mappings to convert tracefile records into symbols:

� Size mapping: packets mapped into 43 symbols according to overall IP packet size.

� Protocol mapping: packets mapped into 10 symbols according to selected transport
protocols.

� Flag mapping: packets mapped according to the three flag bits from the IP header,
resulting in 8 symbols.

� Port mapping: packets mapped into 10 symbols according to TCP ports (only for TCP
packets, the smaller of source- and destination port).
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We present the results of our experiments as graphs. Where appropriate, we also provide
alternative statistical data from our tracefiles.

The first tracefile we analyzed, T1, consists of 2022922 records. It contains three events
we were interested in. In Figure 1 we present a graph of T1’s packet rate to provide some
background for the entropy computations carried out with this file. The three events are
marked as A, B and C in the graph:
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Figure 1: The packet rate of tracefile T1.

A closer look at the graph of Figure 1 and at the raw data of T1 revealed that the
“normal” packet rate was about 500 packets per second. It also revealed more details about
the events A, B, and C:

� Event A is caused by a burst of medium-sized (psize = 10761) IP packets with a packet
rate of about 1500 packets/s. TCP was used as transport protocol. The source and
destination ports used were 34134 and 59863 respectively.

� Event B is caused by a sudden burst of small (psize = 40) IP packets with a packet
rate of ≈ 3800 packets/s. A more detailed analysis of T1 showed that this event was
a scan on port 9999.

� Event C is caused by a burst of small (psize = 48) IP packets with a packet rate of
about 1300 packets/s. For this event the in-depth analysis of T1 also revealed scanning
activity, this time on port 445.

Our first T-entropy measurement with T1 used size mapping. The result of this measure-
ment is presented in Figure 2. Note that the horizontal axis states the sample number, not
the time.

The events A, B, and C from Figure 1 are clearly visible in Figure 2 as drops in the
average T-entropy. The drop in T-entropy does not come as a surprise: As we have already
mentioned, the respective sections of the tracefile contain a large number of very similar
packets - a scenario that one would classically associate with low entropy.

Protocol, port, and flag mappings for T1 are shown below in Figure 3, 4, and 5.
Again, the events A, B, and C are noticeable in Figure 3 to 5 as drops in the respective T-

entropies. Our other experiments confirm that T-entropy measurements of a single tracefile

1All packet sizes are given in bytes.
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Figure 2: T-entropy graph of the size-mapped tracefile T1. The events A, B, and C from Figure 1 are visible.
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Figure 3: T-entropy graph of the protocol-mapped tracefile T1. Again, the three events are visible and marked

as A, B, and C.

often exhibit similar characteristics, even for different mappings. This is consistent with
the observation that there is significant correlation between different packet properties. For
example, packets relating to a particular application may not only use the same ports, but
may also be similar in size. Network events that involve packets sent by similar source and
destination applications may thus be detectable via the mapping of different properties.

In order to determine the average non-event T-entropy HT for each mapping, we com-
puted the histogram of the samples and determined HT as the T-entropy value of the largest
peak of the histogram. The results of these calculations are presented in Table 2. For com-
parison, the table also shows average T-entropies HR taken from random sources with the
same number of symbols. We may thus observe that the average T-entropies measured in
the tracefiles were all reasonably low already. Given the generally highly correlated nature
of network traffic, this had to be expected.

In the following paragraphs we present the results of four more experiments with different
tracefiles, T2 - T5. These files contain 2513861 (T2), 11357132 (T3), 2029780 (T4), and 4005695
(T5) records respectively. A short description of the cause of the event(s) is given for each
graph.

The graph in Figure 6 shows an event between samples 2000 and 3100 in tracefile T2.
The graph was generated by size mapping. A closer inspection of the tracefile data revealed

7



 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

T
-E

nt
ro

py
, m

=
24

Packet sample, sample size n=500 packets

T-Entropy for Auckland-VII 20031214-020000, Flags

A

B

C

Figure 4: T-entropy graph of the flag-mapped tracefile T1.
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Figure 5: T-entropy graph of the port-mapped tracefile T1.

that two consecutive events were responsible for the drop in T-entropy:

1. An FTP transfer which caused the packet rate to leap from ≈ 500 packets/s to ≈
2300 packets/s between samples 2000 and 2900. Most of the packets involved had a
size of 1500 bytes.

2. An unspecified network event using source and destination TCP ports 36640 and 41320,
approx. between samples 2900 and 3050 at a packet rate of about 1500 packets/s. Most
of the packets involved had a size between 1001 ≤ psize ≤ 1200 bytes and were mapped
into a single symbol.

Mapping symbols HT HR

Flag 8 0.281 1.630

Port 10 0.559 1.792

Protocol 10 0.209 1.792

Size 43 1.422 2.720

Table 2: Characteristic values for the symbol mappings used: number of symbols, most predominant T-entropy

value HT and a reference value HR for the T-entropy of random strings with the same number of symbols.
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Figure 6: Two consecutive network events in tracefile T2 between samples 2000 and 3050: The T-entropy of

T2’s size-mapped samples dropped by up to 40% compared to HT .
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Figure 7: Events are not necessarily marked by a drop in T-entropy: This graph of tracefile T3 shows a scenario

where the T-entropy of the protocol-mapped samples rose by approx. 50% due to a temporary increase in the

UDP packet rate between samples 4500 and 10500.

Figure 7 shows a graph of the T-entropy of the protocol-mapped tracefile T3. A rise in
T-entropy by about 50% occurs between samples 4500 and 10500. This increase is caused
by a more complex arrangement of the records in T3 with respect to their transport protocol
field. An examination of T3 revealed that the affected fragments contain additional UDP
symbols at a rate of approx. 250 packets/s. These symbols originate from UDP records
using port 16384 – presumably VoIP traffic. Figure 8 shows the fraction of UDP packets on
the link at the time of the event in percent. The rise in UDP traffic between 4500 and 10500
seconds is clearly visible.

The event presented in the graph of Figure 9 was most likely a port scan on machines
inside the network of the University of Auckland. It involved thousands of TCP SYN packets
attempting to open connections to port 4000 of various destination machines inside the
university network. The following excerpts of nine consecutive records2 from tracefile T4

show that the destination IPs were scanned in almost sequential order. The out-of-sequence
arrivals may have been caused by router queues or different network paths:

12.34.56.78:3311 → 130.216.33.60:4000

2Source IP address anonymized.
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Figure 9: A port scan in tracefile T4.

12.34.56.78:3308 → 130.216.33.57:4000

12.34.56.78:3309 → 130.216.33.58:4000

12.34.56.78:3310 → 130.216.33.59:4000

12.34.56.78:3310 → 130.216.33.59:4000

12.34.56.78:3312 → 130.216.33.61:4000

12.34.56.78:3314 → 130.216.33.63:4000

12.34.56.78:3315 → 130.216.33.64:4000

12.34.56.78:3313 → 130.216.33.62:4000

This port scan caused the T-entropy to drop from HT = 0.517 to about 0.16, constituting
a drop of 69%.

Figure 10 also shows a graph of a port scan in tracefile T5. An investigation of T5 showed
a similar situation as we found for the event presented in Figure 9:

87.65.43.21:4707 → 130.216.195.108:4899

87.65.43.21:4705 → 130.216.195.107:4899

87.65.43.21:4708 → 130.216.195.109:4899

87.65.43.21:4709 → 130.216.195.110:4899

87.65.43.21:4710 → 130.216.195.111:4899

87.65.43.21:4712 → 130.216.195.112:4899

While this port scan only had a moderate effect on the link’s packet rate, the T-entropy
dropped by about 55% from HT = 0.256 to 0.115.
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Figure 10: A port scan between samples 6300 and 7000 in tracefile T5.

Conclusions

Our experiments show that T-entropy is a sensitive measure for the detection of sudden
changes in network traffic patterns. They demonstrate that various network events have
an impact on T-entropy, even if only very simple mappings are used. The measurements
in general confirm that network traffic has a low entropy. Events such as port scans tend
to cause a drop in T-entropy. However, as demonstrated by the UDP example, this is not
universally so - events may also result in an increased T-entropy. The average T-entropy HT

of “normal” traffic depends on the observation point, on the mapping used, and may also
change with the time of day, week, etc.

Event detection by T-entropy offers two distinct advantages: Firstly, it permits events
affecting individual hosts inside a network to be detected at the gateway rather than at the
victim host, which may be overloaded or disconnected. Secondly, T-entropy detection is able
to look at arbitrarily many packet parameters simultaneously. It thus offers an opportunity
for detecting events about whose characteristics one has only a limited á priori knowledge,
reflected by the chosen symbol mapping.

The data we had available for our experiments did not contain actual attacks. We expect
attacks to have an even stronger impact on the T-entropy than the port scan experiments
we presented here.

Our future work will focus on the detection of network events that are difficult to detect
statistically. We also aim to develop more complex and powerful mappings. The eventual
goal is the development of a monitoring application that will automatically detect network
events and raise corresponding alarms.
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