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It is well-known that the estimation of the Hausdorff dimension or measure of
even simply definable sets might be rather complicated (cf. [Ed90, Fa90, Fa97]). It
was shown in [St93, MS94, FS01] that results from language theory facilitate this
task.

In Fractal Geometry the calculation of the Hausdorff dimension of fractals gen-
erated by iterated function systems (IFS) is well understood. The papers [MW88,
Ba89, ČD93] introduced a combination of IFS controlled by finite automata for the
description of a wider class of fractals. A different way of generalising IFS was
pursued e.g. in [Fe94b, Ma95, MU96] where the iterated function systems were
allowed to contain infinitely many functions. In contrast to usual (finite) IFS an
infinite IFS has a fixed point which is not necessarily closed in the topology of the
underlying space. Hence the closure of the fixed point (which will be called the
attractor of the IFS) might be larger.

The aim of the present paper is twofold. On the one hand, we derive results
for the calculation of the Hausdorff measure for a class of fractals generated by
infinite IFS in Cantor space. Here we use the setting of the theory of languages
and ω-languages.

On the other hand, we use this result to exhibit examples for the possible levels
of distinction between the fixed point and the attractor of an infinite IFS. These
levels are presented by constructing languages defining infinite IFS for which the
fixed point and the attractor have different values in Hausdorff dimension and
Hausdorff measure.

Hausdorff dimension and Hausdorff measure in Cantor space are particularly
interesting in Algorithmic Information Theory. Here Ryabko’s [Ry86] lower bound
on Kolmogorov complexity (or, equivalently on constructive dimension [Lu03]) by
Hausdorff dimension can be strengthened for subsets of non-null Hausdorff mea-
sure (see Lemma 3.1 of [St93] or Corollary 5.5 of[CS06]).

It should be mentioned that these results are not restricted to the Cantor space
of infinite words as a direct translation of our results on infinite IFS to the unit
interval [0, 1] ⊆ IR can be obtained by considering an infinite word ξ ∈ {0, . . . , r −

1}ω as the r-ary expansion 0.ξ of a real number. As indicated in [MS94], this
translation generalises easily to unit cubes in d-dimensional space IRd. Moreover,
this translation preserves Hausdorff dimension and, up to a certain linear bound,
also Hausdorff measure.

1 Notation and Preliminary Results
Next we introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .}

we denote the set of natural numbers. Let X be an alphabet of cardinality |X| = r.
By X∗ we denote the set (monoid) of words on X, including the empty word e, and
Xω is the set of infinite sequences (ω-words) over X. For w ∈ X∗ and η ∈ X∗ ∪ Xω

let w · η be their concatenation. This concatenation product extends in an obvious
way to subsets W ⊆ X∗ and B ⊆ X∗ ∪ Xω. For a language W let W∗ :=

⋃
i∈IN Wi

be the submonoid of X∗ generated by W, and by Wω := {w1 · · ·wi · · · : wi ∈ W \
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{e}} we denote the set of infinite strings formed by concatenating words in W.
Furthermore |w| is the length of the word w ∈ X∗ and A(B) is the set of all finite
prefixes of strings in B ⊆ X∗ ∪ Xω. We shall abbreviate w ∈ A(η) (η ∈ X∗ ∪ Xω) by
w v η.

As usual, a language V ⊆ X∗ is called a code provided every word w ∈ V∗ has a
unique factorisation into words v1, . . . , vk ∈ V . If e /∈ V and for arbitrary w, v ∈ V

the relation w v v implies w = v the language V is called a prefix code. Further
we denote by B/w := {η : w · η ∈ B} the left derivative of the set B ⊆ X∗ ∪ Xω. As

usual a language W ⊆ X∗ is regular provided its set of left derivatives {W/w : w ∈
X∗} is finite. In the sequel we assume the reader to be familiar with basic facts of
language theory (e.g. [BP85, HU79] or Vol. 1 of [RS97])

For a language W ⊆ X∗ let sW : IN → IN where sW(n) := |W∩Xn| be its structure
function. The structure generating function corresponding to sW is

sW(t) :=
∑

i∈IN
sW(i) · ti. (1)

sW is a power series with convergence radius rad W := lim inf
n→∞ 1

n
√

sW(n)
. It is conve-

nient to consider sW also as a function mapping [0,∞) to [0,∞) ∪ {∞}.
The convergence radius rad W is closely related to the entropy of the language

(cf. [Ku70, St93]),
HW = lim supn→∞ logr(1+sW(n))

n
.

The parameter t1(W) := sup{t : t ≥ 0 ∧ sW(t) ≤ 1} is important for the calculation
of rad W∗. It fulfills the following (see [Ei74, Ku70, St93]).

Lemma 1 It holds sW(t1(W)) = 1 or sW(rad W) < 1. If sW(rad W) ≤ 1, then t1(W) =

rad W = rad W∗. If sW(rad W) > 1 then rad W∗ ≤ t1(W).
If W is a code then we have always rad W∗ = t1(W).

We consider the set Xω as a metric space (Cantor space) (Xω, ρ) of all ω-words over
the alphabet X where the metric ρ is defined as follows.

ρ(ξ, η) := inf{r−|w| : w @ ξ ∧ w @ η} .

This space is a compact, and the mapping φw(ξ) := w ·ξ is a contracting similitude
if only w 6= e. Thus a language W ⊆ X∗ \ {e} defines a possibly infinite IFS (IIFS)
in (Xω, ρ). Moreover, C(F) := {ξ : A(ξ) ⊆ A(F)} is the closure of the set F (smallest
closed subset containing F) in (Xω, ρ).

Next we recall the definition of the Hausdorff measure and Hausdorff dimen-
sion of a subset of (Xω, ρ) (see [Ed90, Fa90, Fa97]). In the setting of languages
and ω-languages this can be read as follows (see [St93, St98]). For F ⊆ Xω and
0 ≤ α ≤ 1 the equation

ILα(F) := lim
l→∞ inf

{ ∑
w∈W

r−α·|w| : F ⊆ W · Xω ∧ ∀w(w ∈ W → |w| ≥ l)
}

(2)

defines the α-dimensional metric outer measure on Xω. The measure ILα satisfies
the following.
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Corollary 2 If ILα(F) < ∞ then ILα+ε(F) = 0 for all ε > 0.

Then the Hausdorff dimension of F is defined as

dim F := sup{α : α = 0 ∨ ILα(F) = ∞} = inf{α : ILα(F) = 0} .

It should be mentioned that dim is countably stable and shift invariant, that is,

dim
⋃

i∈IN
Fi = sup{dim Fi : i ∈ IN} and dim w · F = dim F . (3)

We list some relations of the Hausdorff dimension and measure for ω-power lan-
guages to the properties of the structure generation functions of the corresponding
languages (see [St93, MS94, FS01]).

Proposition 3 dim Wω = − logr rad W∗

Proposition 4 If α = dim Wω then ILα(Wω) ≤ 1.
If W is a regular language then 0 < ILα(Wω) ≤ ILα(C(Wω)) ≤ 1, and if W is

regular and a union of codes then ILα(Wω) = ILα(C(Wω)).

The following direct connections between the structure generation function sW and
Hausdorff measure ILα(Wω) or dim Wω are helpful.

Proposition 5 1. If sW(r−α) ≤ 1 then α ≥ dim Wω.

2. If sW(r−α) < 1 then ILα(Wω) = 0.

3. If W is a code and sW(r−α) > 1 then α < dim Wω.

2 The Hausdorff Measure of ω-power Languages
As we have seen in Proposition 4 the Hausdorff measure ILα(Wω) may vary only
between 0 and 1 when α = dim Wω. In this section we give some upper bounds on
the measure of ILα(Vω) or ILα(Vω/w). more precise than the ones in Section 1. In
particular, we derive a formula for the measure ILα(Vω) when Vis a prefix code.

We start with the following known properties of the ω-power Wω.

(V ·W)ω = V · (W · V)ω (4)
(V ∪W)ω = (V∗ ·W)ω ∪ (V ∪W)∗ · Vω (5)

These properties are called the rotation (Eq. (4)) and union splitting (Eq. (5)) prop-
erties, respectively.

Lemma 6 Let w ∈ A(V) \ V · X · X∗, that is, w v v for some v ∈ V but no v ′ ∈ V is a
proper prefix of w, and let W := V ∩w · X∗ and V̂ := V \ W. Then

Vω ∩w · Xω = W · Vω = W · (V̂∗ ·W)ω ∪W · V∗ · V̂ω and (6)
Vω/w = (V/w · V̂∗ ·w)ω ∪ (V/w) · V∗ · V̂ω . (7)
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Proof. The first identity in Eq. (6) follows from the fact that every w1 ·w2 · · · ∈ Vω

with w v w1 · w2 · · · has w1 ∈ W, and the second one is an application of union
splitting of (W ∪ V̂)ω (see Eq. (5)).

The second equation follows from the first one, the rotation property and the
observations that V/w = W/w and w · V/w = W. ❏

2.1 Upper bounds on the Hausdorff measure
With these prerequisites we derive some general properties of the Hausdorff mea-
sure of ω-power languages. First, we get a property of the measure of left deriva-
tives.

Lemma 7 If V ⊆ X∗ is a code, α ≥ dim Vω, and w ∈ A(V) \ V · X · X∗ then
ILα(Vω/w) = ILα

(
(V/w · (V \ w · X∗)∗ ·w)

ω
)

. In particular, ILα(Vω/w) ≤ 1.

Proof. We use V̂ := V \ w · X∗ as in Lemma 6.
Since V is a code, we have

∑
v∈V r−α|v| ≤ 1 for α ≥ dim Vω. Now V̂ ⊂ V implies∑

v∈V̂ r−α|v| < 1. Hence ILα(V̂ω) = 0 and ILα((V/w) · V∗ · V̂ω) = 0. Thus, the first
assertion follows from Eq. (7), and then the second one from Proposition 4. ❏

For prefix codes V we have the property that for every u ∈ A(V)∗ there is a w ∈
A(V) \ {e} such that Vω/u = Vω/w.

In [MS94, Theorem 11] we proved that for every subset E ⊆ Xω having ILα(E) >

0, α = dim E it holds sup{ILα(E/w) : w ∈ X∗} ≥ 1. Using this result and Proposi-
tion 4 we obtain as a corollary to Lemma 7 the following.

Corollary 8 If V is a prefix code then ILα(Vω/w) ≤ 1 for all w ∈ X∗, and 0 <

ILα(Vω) iff sup{ILα(Vω/w) : w ∈ X∗} = 1.

We say that a language V ⊆ X∗ \ {e} satisfies the countable intersection property
provided |V | = 1 or Vω is infinite and the set w ·Vω ∩ v ·Vω is at most countable for
every pair of words w, v ∈ V ,w 6= v. It should be noted that every language V ⊆ X∗

satisfying the countable intersection property is a code. The converse is not true
as Example 2.6 of [DL94] shows.

Theorem 9 If V ⊆ X∗ satisfies the countable intersection property,
∑
v∈V

r−α|v| = 1 for

some α, 0 < α ≤ 1, and
∑

wvv,v∈V

r−α|v| ≥ c · r−α|w| for some word w ∈ A(V) \ V · X · X∗.

Then α = dimVω and ILα(Vω) ≤ c−1.

Proof. α = dim Vω follows from Lemma 1 and Proposition 3.
Set W := V ∩w · X∗ and V̂ := V \ w · X∗ as above and observe that

∑
v∈V̂

r−α|v| < 1.

As V satisfies the countable intersection property, we have ILα(w ·Vω ∩ v ·Vω) = 0

whenever w, v ∈ V ,w 6= v. Consequently, ILα(W · Vω) =
∑

v∈W ILα(v · Vω) =∑
wvv,v∈V r−α|v| · ILα(Vω).
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On the other hand, using the identity w · W/w = w · V/w implies W · Vω =

w · (Vω/w). Thus from Lemma 7 the inequality ILα(W ·Vω) = r−α·|w| · ILα(Vω/w) ≤
r−α·|w| follows.

Combining the two estimates for ILα(W · Vω) yields
ILα(Vω) ≤ r−α·|w| · (

∑
wvv,v∈V r−α|v|)

−1 ≤ c−1. ❏

Letting the constant c in Theorem 9 tend to infinity (if possible) we obtain the
following.

Corollary 10 Let V ⊆ X∗ satisfy the countable intersection property,
∑
v∈V

r−α|v| = 1

for some α, 0 < α ≤ 1, and assume that for all k ∈ IN there is a word w ∈ A(V) \ V ·
X · X∗ such that

∑
wvv,v∈V

r−α|v| ≥ k · r−α|w|. Then α = dimVω and ILα(Vω) = 0.

2.2 A lower bound on the Hausdorff measure

A converse to Theorem 9 can be proved for prefix codes.

Theorem 11 Let V ⊆ X∗ be a prefix code,
∑
v∈V

r−α|v| = 1 for some α, 0 ≤ α ≤ 1,

and assume that there is a constant c > 0 such that
∑

wvv,v∈V

r−α|v| ≤ c · r−α|w| for all

w ∈ A(V). Then α = dimVω and Lα(Vω) ≥ 1
c
.

Before proceeding to the proof we have to state in the setting of formal language
theory and Cantor space a major tool for deriving lower bounds on Hausdorff mea-
sure, the mass distribution principle [Fa90, Principle 4.2]. To this end we mention
that the support suppµ of a measure µ on Xω is the smallest closed subset E ⊆ Xω

having µ(E) = µ(Xω).

Theorem 12 (Mass distribution principle) Let µ be a measure on Xω such that
suppµ ⊆ F and suppose that for some α there are numbers c0 > 0 and n0 ∈ IN such
that

∀w(w ∈ X∗ ∧ n0 ≤ |w| → µ(w · Xω) ≤ c0 · r−α·|w|) .

Then ILα(F) ≥ µ(F)/c0.

Proof. (of Theorem 11) As in the proofs above
∑
v∈V

r−α|v| = 1 implies dimVω = α

provided V is a code.
Since

∑
v∈V r−α|v| = 1, in case V is infinite we may choose a sequence of natural

numbers ln, n ∈ IN, such that for Vn := {v : v ∈ V ∧ |v| ≤ ln} we have pn :=∑
v∈Vn

r−α|v| ≥ 1 − r−(n+1). Observe that 1 ≥
∏∞

i=0 pi > 0.

If V is finite, we choose Vn := V for all n ∈ IN.
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For technical reasons, we introduce the following concepts depending on the
sequence (ln)n∈IN:

W :=

∞⋃
i=0

i∏
n=0

Vn , and (8)

l(w) := min{i : ∃w ′(w ·w ′ ∈
i∏

n=0

Vn)} for w ∈ A(W) (9)

In order to apply the mass distribution principle we introduce a set function µ on
balls w · Xω with w ∈ W (Observe that w ∈ V0 · · ·Vi implies l(w) = i.):

µ(w · Xω) :=
∏l(w)

n=0

1

pn

· r−α|w|

Due to the choice of the coefficient pn for w ∈ W we have the identity

∑
v∈Vl(w)+1

µ(w · v · Xω) =
∑

v∈Vl(w)+1

l(wv)∏
n=0

1

pn

· r−α|wv|

= r−α|w| ·
l(w)∏
n=0

1

pn

·
∑

v∈Vl(w)+1

1

pl(w)+1

· r−α|v|

=
( l(w)∏

n=0

1

pn

)
· r−α|w| = µ(w · Xω)

Letting µ(u · Xω) := 0 for u /∈ A(W) we observe that µ is extendible to a metric
outer measure on Xω with support suppµ = V0 ·V1 · · ·Vi · · · ⊆ Vω and µ(suppµ) =

1 as follows:
From suppµ ∩w · Xω ⊆

⋃
wvv

v∈V0···Vl(w)

v · Xω ⊆ w · Xω we obtain

µ(w · Xω) =
∑

wvv,v∈V0···Vl(w)

µ(v · Xω) for w ∈ A(W) = A(suppµ).

This yields that µ(w · Xω) = 0 or

µ(w · Xω) ≤
∑
wvv

v∈V0···Vl(w)

l(w)∏
n=0

1

pn

· r−α|v| ≤
∞∏

n=0

1

pn

·
∑
wvv

v∈V0···Vl(w)

r−α|v|

Now, w ∈ A(W) splits uniquely into the product w = v ′ ·w ′ where v ′ ∈
∏l(w)−1

i=1 Vi

and w ′ ∈ A(Vl(w)) ⊆ A(V). Consequently the inequality assumed in the theorem
implies ∑

wvv
v∈V0···Vl(w)

r−α|v| = r−α|v ′| ·
∑
w ′vv

v∈Vl(w)

r−α|v| ≤ c · r−α|v ′| · r−α|w ′| = c · r−α|w| .
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Thus, µ(w · Xω) ≤ c ·
∏∞

n=0 p−1
n · r−α|w| for w ∈ X∗.

Next, we apply the mass distribution principle (Theorem 12) to obtain

ILα(Vω) ≥ µ(Vω)

c·
∏∞

n=0 p−1
n

= 1
c
·

∞∏
n=0

pn > 0.

Since the choice of the sequence (ln)n∈IN is arbitrary, we can make
∏∞

n=0 pn as
close to 1 as possible, and we obtain the assertion ILα(Vω) ≥ c−1. ❏

Combining Proposition 5.2 and Theorems 9 and 11 we obtain the following.

Theorem 13 Let V ⊆ X∗ be a prefix code and α = dim Vω.

Then ILα(Vω) =

{
0 , if sV(r−α) < 1 , and
inf{sV/w(r−α)−1 : w ∈ A(V)}, if sV(r−α) = 1 .

Proof. Observe that sV/w(r−α) = rα·|w| ·
∑

wvv,v∈V

r−α|v|. ❏

Consider also the following interpretation of the constant c > 0 in Theorems 9 and
11. Let V · F ⊆ F and let w ∈ A(V). Then

⋃
wvv,v∈V

v · F ⊆ w · F/w. Now, if V is a prefix

code and 0 < ILα(F) < ∞, we have
∑

wvv,v∈V

r−α·|v| ≤ ILα(F/w)
ILα(F)

· r−α·|w|.

If we apply this inequality to a prefix code V and F = Vω with α = dim Vω

and 0 < ILα(Vω) and use Corollary 8 we obtain the upper bound ILα(Vω) ≤
inf{sV/w(r−α)−1 : w ∈ A(V)} of Theorem 13.

2.3 A formula for the measure of a product
We conclude this part providing a formula for the Hausdorff measure of the ω-
power of the product of two languages. Since ILα is a metric outer measure on Xω,
the rotation property Eq. (4) implies the equivalence

ILα((W · V)ω) = 0 iff ILα((V ·W)ω) = 0 , (10)

from which dim(W · V)ω = dim(V ·W)ω is immediate.
If, moreover, 0 < sW(r−α), sV(r−α) < ∞ we have

1

sW(r−α)
· ILα((W · V)ω) ≤ ILα((V ·W)ω) ≤ sV(r−α) · ILα((W · V)ω) .

If W,V are prefix codes fulfilling an additional condition we can calculate
ILα((W · V)ω) from ILα(Wω) and ILα(Vω). Observe that the product of two pre-
fix codes is again a prefix code (see [BP85]).

Theorem 14 Let V,W ⊆ X∗ be prefix codes which satisfy dim(W · V)ω ≥
max{dim Wω, dim Vω}.

Then dim(W · V)ω = max{dim Wω, dim Vω} and
ILα((W · V)ω) = min{ILα(Wω), ILα(Vω)} for α = dim(W · V)ω .
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Proof. Since the product of W and V is unambiguous, we have sW·V(t) = sW(t) ·
sV(t). Let α ′ ≥ max{dim Wω, dim Vω}. This implies sW(r−α ′

) ≤ 1 and sV(r−α ′
) ≤ 1

and, consequently, sW·V(r−α ′
) ≤ 1 whence α ′ ≥ dim(W · V)ω. This shows dim(W ·

V)ω ≤ max{dim Wω, dim Vω}, hence the first assertion.
To show the second one we distinguish two cases. If sV(r−α) < 1 we have

sW·V(r−α) = sW(r−α) · sV(r−α) < 1 and, consequently, ILα(Vω) = ILα((W · V)ω) = 0

If sV(r−α) = 1 we use the relation

sW·V/u(t) =

{
sV/v(t) , if u = w · v with w ∈ W and v ∈ A(V) ,

sW/u(t) · sV(t), if u ∈ A(W) ,

for u ∈ A(W · V). Then Theorem 13 yields the following estimate.

ILα((W · V)ω) = inf{sW·V/u(r−α)−1 : u ∈ A(W · V)}

= min{inf{ 1
sW/w(r−α)

: w ∈ A(W)}, inf{ 1
sV/v(r−α)

: v ∈ A(V)}}

= min{ILα(Wω), ILα(Vω)}
❏

The assumption dim(W · V)ω ≥ max{dim Wω, dim Vω} in Theorem 14 is essential
as the following simple example shows.

Example 1 Consider W = {a} , a ∈ X, and V = X. Then 0 = dim Wω < 1/2 =

dim(W · V)ω < 1 = dim vω and IL1/2((W · V)ω) = (
√

|X|)−1 < 1 whereas IL0(W
ω) =

IL1(V
ω) = 1. ❏

3 Construction of prefix codes from languages
In this section we derive our examples which show that limit sets and their clo-
sures (attractors) for IIFS in Cantor space do not coincide. We present different
levels of non-coincidence using Hausdorff dimension and Hausdorff measure.

We intend to find simple examples for these levels of non-coincidence. Simplic-
ity here means, on the one hand that our examples are prefix codes, which makes
the IIFS simple, and on the other hand we try to choose them in low classes of the
Chomsky hierarchy, preferably linear context-free languages or only a bit more
complex.

3.1 Limit Set and Attractor
The limit set in Cantor space of an IIFS described by a language L ⊆ X∗ \ {e} is Lω.
It is also the largest solution (fixed point) of the equation F = L ·F when F ⊆ Xω (see
[St97b]). The attractor of the IIFS is C(Lω). Using the ls -limit (or adherence) of
[LS77] (see also [St97a]) we can describe the difference C(Lω) \ Lω more precisely.

Set lsL := {ξ : ξ ∈ Xω ∧ A(ξ) ⊆ A(L)}, for L ⊆ X∗. Then (see [LS77, St97a])

C(Lω) = lsL∗ = Lω ∪ L∗ · lsL (11)
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Now Eq. (3) implies dim C(Lω) = max{dim Lω, dim lsL}. For prefix codes L we have
additionally the following identity (see [St98]).

ILα(C(Lω)) = ILα(Lω) + ILα(lsL) ·
∑

i∈IN
sL(r

−α)i (12)

From our Eq. (12) we obtain several dependencies between the dimensions
dim Lω, dim C(Lω) and the corresponding measures ILα ′(Lω), ILα ′(C(Lω)) and
ILα ′(lsL).

Proposition 15 Let L ⊆ X∗ be a prefix code. Then the following hold true.

1. If ILα ′(Lω) > 0 then

ILα ′(C(Lω)) =

{
ILα ′(Lω) , if ILα ′(lsL) = 0 , and∞ , otherwise.

2. If 0 < ILα ′(lsL) < ∞ and sL(r
−α ′

) < 1 then ILα ′(C(Lω)) is zero, finite or infinite
according to whether ILα ′(lsL) is zero, finite or infinite, respectively.

3. If dim Lω < α ′ then ILα ′(C(Lω)) = ∞ if and only if ILα ′(lsL) = ∞.

4. If dim Lω = α then ILα(C(Lω)) = ∞ if and only if ILα(lsL) = ∞ or ILα(lsL) > 0

and sL(r
−α) = 1.

Proof. All properties are immediate from Eq. (12).
1. follows since ILα ′(Lω) > 0 implies sL(r

−α ′
) ≥ 1.

2. If sL(r
−α ′

) < 1 then ILα ′(Lω) = 0 and
∑

i∈IN sL(r
−α)i < ∞.

3. If ILα ′(Lω) = 0 then sL(r
−α ′

) < 1 and 3 follows from 2.
4. This holds, since dim Lω = α implies sL(r

−α ′
) ≤ 1. ❏

3.2 The Padding Construction
In this section we describe a simple construction of prefix codes L for which the
properties guaranteeing ILα ′(Lω) > 0 or ILα ′(Lω) = 0 are easily to decide.

We start with a language W ⊆ (X \ {d})∗ where d is a letter in X, and define for
an injective function f : IN → IN satisfying f(n) > n when sW(n) > 0

L := {w · df(|w|)−|w| : w ∈ W} . (13)

Then L is a prefix code and sL(t) =
∑

n≥0 sW(n) · tf(n). Because f is injective and
sL(i) > 0 implies that i = f(j) for some j ∈ IN we have

(rad W)
lim inf
n→∞ n

f(n) ≥ rad L = lim inf
n→∞

1
f(n)

√
sW(n)

≥ (rad W)
lim sup
n→∞ n

f(n)
. (14)

If lim
n→∞ n

√
sW(n) exists then we have rad L = (rad W)

lim sup
n→∞ n

f(n) .
Since C(Lω) = Lω whenever L is finite, we are interested only in infinite lan-

guages W,L ⊆ X∗. In this case 0 < 1
|X|−1

≤ rad W ≤ rad L ≤ 1.
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Lemma 16 Let W ⊆ (X \ {d})∗ be an infinite language and let L be constructed
according to Eq. (13) and let γ ≥ 1.

1. If f(n) ≥ γ · n then rad L ≥ γ
√

rad W, sL(t) ≤ sW(tγ) for 0 ≤ t ≤ γ
√

rad W, and
t1(L) ≥ γ

√
t1(W).

2. If f(n) ≤ γ · n then rad L ≤ γ
√

rad W, sL(t) ≥ sW(tγ) for 0 ≤ t ≤ γ
√

rad W, and
t1(L) ≤ γ

√
t1(W).

3. If, moreover, γ = lim
n→∞ f(n)

n
then rad L =

γ
√

rad W.

Proof. The first two assertions are immediate consequences of the identity
sL(t) =

∑
n≥0 sW(n)·tf(n) =

∑
n≥0 sW(n)·tγ·n ·tf(n)−γ·n and the fact that rad L, rad W ≤

1, and the last one follows from Eq. (14). ❏

It should be mentioned, however, that Eq. (14) and γ = lim
n→∞ f(n)

n
do not imply

t1(L) = γ
√

t1(W) (see Example 9).
In order to apply Theorem 13 we are interested in connections between sL/w

and sW/w for w ∈ A(W).

Lemma 17 Let W ⊆ (X \ {d})∗, f(n) ≥ γ · n for sW(n) > 0. If w ∈ A(W) then
sL/w(t) ≤ sW/w(tγ) for 0 ≤ t ≤ γ

√
rad W.

If w /∈ A(W) then sL/w(t) ≤ 1 for 0 ≤ t ≤ 1.

Proof. Let w ∈ A(W). We consider the identity L/w = {u · df(|wu|)−|wu| : wu ∈ W}.
From this we obtain

sL/w(t) =
∑
n∈IN

sW/w(n) · tf(|w|+n)−|w| =
∑
n∈IN

sW/w(n) · tγ·n · tf(|w|+n)−|w|−γ·n ,

whence sL/w(t) ≤ sW/w(tγ) if f(n) ≥ γ · n for sW(n) > 0 and the first assertion is
proved.

The second assertion is obvious. ❏

Next we want to bound the values of sL/w(t), w ∈ A(W), uniformly by sW(tγ).

Lemma 18 Let W ⊆ (X \ {d})∗ be infinite, f(n) ≥ γ · n for sW(n) > 0, and suppose
there are k ∈ IN, g : IN → IN and c ≥ 0 such that sW/w(n) ≤ g(|w|) · (

∑k
j=0 sW(n +

j) + c) for all w ∈ X∗ and n ∈ IN.

Then sL/w(t) ≤ t(γ−1)|w| · g(|w|) ·
(
(

k∑
j=0

1

tγ·j ) · sW(tγ) +
c

1 − tγ

)
for 0 < t < 1 and

w ∈ A(W).

Proof. We have, for w ∈ A(W) and 0 ≤ t ≤ 1,

sL/w(t) =
∑

n∈IN
sW/w(n) · tf(|w|+n)−|w|

=
∑

n∈IN
sW/w(n) · tγ·n · tf(|w|+n)−γ(|w|+n) · t(γ−1)·|w|
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≤ t(γ−1)|w| · g(|w|) ·
∑
n∈IN

( k∑
j=0

1

tγ·j sW(n + j) · tγ·(n+j) + c · tγ·n
)

≤ t(γ−1)|w| · g(|w|) ·
(
(
∑k

j=0

1

tγ·j ) · sW(tγ) +
c

1 − tγ

)
.

❏

Under some special assumptions on the language W we obtain the following esti-
mate for ILα(Lω).

Corollary 19 Under the hypotheses of Lemma 18 and the additional assump-
tions that sL(t1(L)) = 1, sW(t1(L)γ) < ∞ and the function g satisfies ∃c1∀n(g(n) ·
t1(L)(γ−1)n ≤ c1), we have ILα(Lω) > 0 for α = dim Lω = − log|X| t1(L).

Proof. First, in view of Lemmata 18 and 17, the conditions sW(t1(L)γ) < ∞ and
∃c1∀n(t1(L)(γ−1)n · g(n) ≤ c1) ensure that

sL/w(t1(L)) ≤ c1 · (
∑k

j=0
1

t1(L)γ·j ) · sW(t1(L)γ) + c
1−t1(L)γ ) < ∞

independently of w ∈ X∗ .
Then, sL(t1(L)) = 1 allows the application of Theorem 13, which yields the

assertion. ❏

The next corollary treats the special case of regular languages W.

Corollary 20 If W ⊆ (X \ {d})∗ is an infinite regular language, f(n) ≥ γ · n for
sW(n) > 0, sW(t1(L)γ) < ∞ and sL(t1(L)) = 1 then dim Lω = − log t1(L) and
ILα(Lω) > 0 for α = dim Lω.

Proof. With sL(t1(L)) = 1 the first hypothesis of Theorem 13 is fulfilled, and
dim Lω = − log t1(L).

Observe that t|w| · sW/w(t) ≤ sW(t) whenever 0 ≤ t. If W is regular, there is a
constant k ∈ IN such that for every w ∈ X∗ there is a ŵ, |ŵ| ≤ k with W/w = W/ŵ.

According to Lemma 17 we have sL/w(t1(L)) ≤ max{1,
sW(t1(L)γ)

t1(L)k } for arbitrary
w ∈ X∗, and Theorem 13 shows ILα(Lω) > 0 for α = dim Lω. ❏

If we change the order in the construction of Eq. (13) we obtain for d̃ ∈ X and
W̃ ⊆ (X \ {d̃})∗

L̃ := {d̃f(|w|)−|w| ·w : w ∈ W̃} , (15)

and the results on the structure generating function Eq. (14) and Lemma 16 re-
main valid. In particular, L̃ is also a prefix code1. Moreover we have a lower bound
for seL/w.

Proposition 21 If w = d̃f(n) then seL/w(t) ≥ sfW(n) · tn.

1This is, however, not true in general. But if e /∈ W̃ and f(n) − f(m) 6= n − m for n 6= m then the
assertion is true. These hypotheses are, in particular, satisfied for the constructions in Section 3.3.
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Observe that then t1(L̃) > rad W̃ implies lim sup
n→∞ sfW(n) · t1(L̃)n = ∞. This enables

us to apply Corollary 10 and we obtain the following.

Corollary 22 Let W̃ ⊆ (X \ {d̃})∗ be infinite, f : IN → IN injective and f(n) > n for
sfW(n) > 0. If L̃ = {d̃f(|w|)−|w| · w : w ∈ W̃} and t1(L̃) > rad W̃ then ILα(L̃ω) = 0 for
α = dim L̃ω.

It should be mentioned that for linear functions f : IN → IN, f(n) = γ · n + δ with
rational coefficients, and regular languages W, W̃ the resulting languages L and
L̃ are one-turn deterministic one-counter languages, simple cases of unambiguous
linear context-free languages [AB97]. Thus they have rational structure generat-
ing functions sL and seL, respectively (see [Ku70]).

Their (unambiguous) product, L · L̃, where we may start with different regular
languages W,W̃ is a two-turn deterministic one-counter language, and has also a
rational structure generating function sL·eL = sL · seL.

For rational structure generating functions sV we have the restriction that
sV(rad V) = ∞ whence sV(t1(V)) = 1.

3.3 Examples
In this section we give our announced examples. Here we consider the follow-
ing cases which might appear for α = dim Lω and α̂ = dim C(Lω), ILα(Lω) and
ILα̂(C(Lω)). The principal possibilities are shown in the figure below. The case
ILα(Lω) = ∞ is excluded by Proposition 4.

We try to derive our examples as simple as possible. Therefore, on the one
hand, we consider only prefix codes L. In this case Eq. 12 and Proposition 15 give
some principal limitations.

On the other hand, in the light of the discussion concluding Section 3.2 we want
our examples to be languages to be simple with respect to their accepting devices
(cf. [AB97]).

In Figures 1 and 2 we list the twelve possible cases for relations between
dim Lω, dim C(Lω), ILdim Lω(Lω) and ILdim C(Lω)(C(Lω)).

What concerns ILdim Lω(Lω) and ILdim C(Lω)(C(Lω)) we distinguish only the cases
of null-measure, finite non-null measure and infinite measure. According to Propo-
sition 4 the case ILdim Lω(Lω) = ∞ is impossible.

In virtue of Proposition 4 we cannot choose regular languages as examples
(except for Case 2). Moreover, Proposition 15.1 shows that, for dim Lω = dim C(Lω)

and prefix codes L, the Case 4 is impossible.
Observe that in Figure 1 we have dim Lω ≥ dim lsL, and in Cases 3, 5 and 6

necessarily α = dim Lω = dim lsL and ILα(lsL) > 0.
In Figure 2 we have always dim Lω = α < α̂ = dim lsL.
The construction of our ten examples follows a general line. We let X consist of

the four letters a, b, d and d̃, and we arrange our examples according to increasing
complexity. All examples, except for Example 9, have f(n) = γ · n with γ ∈ {2, 3, 4}.
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fixed point Lω attractor C(Lω) Example
1. ILα(Lω) = 0 ILα(C(Lω)) = 0 Example 2
2. ILα(Lω) > 0 ILα(C(Lω)) = ILα(Lω) Proposition 4
3. ILα(Lω) = 0 0 < ILα(C(Lω)) < ∞ Example 9
4. ILα(Lω) > 0 ILα(Lω) < ILα(C(Lω)) < ∞ impossible
5. ILα(Lω) = 0 ILα(C(Lω)) = ∞ Example 6
6. ILα(Lω) > 0 ILα(C(Lω)) = ∞ Example 3

Figure 1: Measures of fixed point and attractor when α = dim Lω = dim C(Lω)

fixed point Lω attractor C(Lω) Example
7. ILα(Lω) = 0 ILα̂(C(Lω)) = 0 Example 11
8. ILα(Lω) > 0 ILα̂(C(Lω)) = 0 Example 10
9. ILα(Lω) = 0 0 < ILα̂(C(Lω)) < ∞ Example 72

10. ILα(Lω) > 0 0 < ILα̂(C(Lω)) < ∞ Example 4
11. ILα(Lω) = 0 ILα̂(C(Lω)) = ∞ Example 8
12. ILα(Lω) > 0 ILα̂(C(Lω)) = ∞ Example 5

Figure 2: Measures of fixed point and attractor when dim Lω = α < α̂ = dim C(Lω)

In the first seven examples we use the languages W(1) := {a, b}∗ \ {e}, W(2) :=

({a, b} · a)∗ \ {e} and W(3) := {a, b}∗ · d̃ · {a, b}∗ with lsW(1) = {a, b}ω, lsW(2) =

({a, b} · a)ω, lsW(3) = {a, b}ω ∪ {a, b}∗ · d̃ · {a, b}ω and the parameters:

sW(1)(t) = 2t
1−2t

, t1(W
(1)) = 1

4
and IL1

2
(lsW(1)) = 1

sW(2)(t) = 2t2

1−2t2 , t1(W
(2)) = 1

2
and IL1

4
(lsW(2)) = 1

sW(3)(t) = t
(1−2t)2 , t1(W

(3)) = 1
4

and IL1
2
(lsW(3)) = ∞

(see [MS94, Example B])

The first four examples are one-turn deterministic one-counter languages.

Example 2 Set W2 := W(1), γ2 := 4 and use the construction of Eq. (15).
Lemma 16 shows t1(L2) = 1√

2
> rad W2 = 1

2
. Since lsL2 = {d̃}ω, we have

ILα(C(Lω
2 )) = ILα(Lω

2 ), for α = − log4 t1(L2) = 1
4
, and Corollary 22 yields ILα(Lω

2 ) = 0.
❏

In Examples 3, 4 and 5 we use the construction of Eq. (13) and Corollary 20 to show
that ILα(Lω) > 0. Observe that the construction of Eq. (13) yields lsL = lsW.

2For Case 9, an example of a language generated by a simple context-free grammar was given
in Example 6.3 of [St93].
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Example 3 We set W3 := W(1) and γ3 := 2. Then α = dim Lω
3 = − log4 t1(L3) = 1

2

and sL3
(t1(L3)) = 1. Now, Proposition 15 implies ILα(C(Lω

3 )) = ∞. ❏

Example 4 We use W4 := W(1) and γ4 := 4. Then α = dim Lω
4 = 1

4
, α̂ = dim lsL4 =

1
2
, sL4

(4−α̂) = sW4
( 1

16
) = 1

7
and, finally, ILα(C(Lω

4 )) = 7
6
. ❏

Example 5 Set W5 := W(3) and γ5 := 4. This yields α = dim Lω
5 = − log4 t1(L5) = 1

4

and α̂ = dim lsL5 = 1
2

and ILα̂(lsL5) = ∞ (cf. Example B of [MS94]). ❏

The next three examples and Example 11 are products of languages L ′
i and L̃i

constructed according to Eqs. (13) and (15), respectively. Then we can use Theo-
rem 14 to show that ILα((L ′

i · L̃i)
ω) = 0. Since ls L̃i = {d̃}ω, we have ILα ′(ls (L ′

i · L̃i)) =

ILα ′(lsL ′
i) for α ′ > 0.

Example 6 Define L ′
6 using Eq. (13) and the parameters W ′

6 := W(2) and γ ′ := 2.
This yields t1(L

′
6) = 1√

2
and α = dim L ′ω

6 = 1
4
. Now L̃6 := L2 has also dim L̃ω

6 = 1
4

and, consequently, IL1
4
((L ′

6 · L̃6)
ω) = 0.

Finally, ILα(ls (L ′
6 · L̃6)) = ILα(lsL ′

6) = 1 and sL ′
6
(4−α) = seL6

(4−α) = 1 yield
ILα(C((L ′

6 · L̃6)
ω)) = ∞. ❏

Example 7 Here we use L ′
7 := L4 and L̃ ′

7 := L2 and argue in the same way as in
the preceding example.

Example 8 This example uses the language L ′
8 := L5 and concatenates it with

L̃8 := L2. ❏

Because of ILα(Lω) = 0 and ∞ > ILα(lsL) > 0 Item 3 requires sL(rad L) < 1. This is
not possible with languages having a rational structure generating function.

Example 9 Set W := {a, b, d̃}∗ \ {e} and f(n) := n + 2d
√

ne. Then sL(t) =∑∞
i=1 3ntn+2d

√
ne.

Since limn→∞ f(n)
n

= 1, in virtue of Lemma 16, we have rad L = rad W = 1/3.
Thus we obtain sL(rad L) =

∑∞
i=1(

1
3
)2d

√
ne = 5

32
< 13, and consequently 0 = ILα(Lω) <

ILα(C(Lω)) = 32
27

< ∞ for α := dim Lω = dim lsL = log4 3. ❏

In view of α < α̂ and ILα̂(C(Lω
i )) = 0 the final two examples require ILα̂(lsL) =

0. Following Lemma 4.3 of [St93] W cannot be a regular language.

Example 10 Let F := {a, b} ·
∏∞

i=0({a, b}2
i−1 · a) and set W10 := A(F) \ {e}. Then

sW(n) = 2n−blog2 nc for n > 0.

3This follows from the identity
∑∞

n=1 td
√

n e =
∑∞

i=1(2i − 1) · ti = t+t2

(1−t)2 .
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Since F is closed in (Xω, ρ) and sA(F/w)(n) = sA(F/v)(n) whenever w, v ∈ A(F) and
|w| = |v|, Theorem 4 of [St89] shows that dim F = lim inf

n→∞ log4 sA(F)(n)

n
= 1

2
. Moreover,

it is easy to calculate that IL1/2(F) = 0.
Choose γ10 = 3 and use the construction of Eq. (13). Then lsL10 = F,

−ln(1 − 2t3) =
∑∞

i=1
(2t3)n

n
< sL10

(t) < 2 ·
∑∞

i=1
(2t3)n

n
− 2t3

= −2(ln(1 − 2t3) + t3)

for 0 < t ≤ 1
3√

2
, and we obtain sL10

( 1
3√

4
) < 1 < sL10

( 1
3√

3
) < ∞. Therefore, t1(L10) < 1

3√
3
,

sL10
(t1(L10)) = 1 and α = dim Lω

10 = − log t1(L10) < 1
2
. Although we do not know the

exact value of α = dim Lω
10, this allows us to show ILα(Lω) > 0 using Corollary 19

in the following way:
From the preceding considerations we know that the hypotheses

sL10
(t1(L10)) = 1 and sW10

(t1(L10)
3) < sW10

(1
3
) <

∑∞
i=1(

2
3
)i < ∞ of Corollary 19 are

satisfied.
Now, the funktion g : IN → IN with g(n) = n satisfies the remaining assumption

t1(L10)
2n · g(n) < (1

3
)2n · n ≤ 1, for all n ∈ IN. Hence ILα(Lω) > 0. ❏

Example 11 Let L ′
11 := L10 and let L̃11 be constructed according to Eq. (15) with

W̃11 := W10 and γ̃11 := γ10 = 3.
Arguing in the same way as in Examples 2 and 6 we calculate that Corollary 22

is applicable and obtain α = dim(L ′
11 · L̃11)

ω < α̂ = 1
2
, and ILα((L ′

11 · L̃11)
ω) = 0 as

well as ILα̂(C((L ′
11 · L̃11)

ω)) = ILα̂(C(L ′ω
11 )) = 0 . ❏
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