
CDMTCS
Research
Report
Series

What Is the Value of
Taxicab(6)?
An Update

Cristian S. Calude1,
Elena Calude2,
Michael J. Dinneen1

1University of Auckland, NZ,
2Massey University at Albany, NZ

CDMTCS-261
April 2005

Centre for Discrete Mathematics and
Theoretical Computer Science

What Is the Value of Taxicab(6)?
An Update

Cristian S. Calude
Department of Computer Science, University of Auckland, New Zealand

Email: cristian@cs.auckland.ac.nz

Elena Calude
Institute of Information Sciences, Massey University at Albany, New Zealand

Email: e.calude@massey.ac.nz

Michael J. Dinneen
Department of Computer Science, University of Auckland, New Zealand

Email: mjd@cs.auckland.ac.nz

April 29, 2005

Abstract

The famous story of the number 1729, the smallest integer which can be ex-
pressed as the sum of two positive cubes in two different ways, motivated the
introduction of Taxicab Numbers. The smallest number expressible as the sum of
two cubes in n different ways is called Taxicab(n). So, Taxicab(2) = 1729. Further
on, Taxicab(5) = 48988659276962496. Computing Taxicab(n) is challenging and
interesting, both from mathematical and programming points of view.

The exact value of Taxicab(6) is not known; in view of the results obtained
by Bernstein [1] and Rathbun [14] it follows that Taxicab(6) is in the interval
[1018, 24153319581254312065344]. In [5] we proved that with probability greater
than 99%, Taxicab(6) = 24153319581254312065344.

In this note we improve the method used in [5] in two ways: we use (1) a larger,
and (2) a better quality random sampling, namely, a sample of 562,500 quantum
random integers drawn from the above mentioned interval using Quantis, [10]. As a
result, we prove that the above value for Taxicab(6) is true with probability greater
than 99.8%.

Keywords: Taxicab Numbers, Quantum random integer, sampling

AMS Subject Classification: 11-04, 62D05, 68Q30

1 Taxicab Numbers

The smallest number expressible as the sum of two cubes in n different ways is called the
Taxicab Number of order n, Taxicab(n). Hardy and Wright ([9]; Theorem 412) proved
that Taxicab(n) exists for every positive integer n, but the proof is of little use in finding
the number.

The first two Taxicab Numbers are Taxicab(1) = 2 = 13 + 13 and Taxicab(2) =
1729 = 13+123 = 93+103, the Hardy-Ramanujan Number. In 1957, Leech [12] computed
Taxicab(3) = 87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143, in 1991 Rosenstiel,
Dardis, and Rosenstiel [15] (see also Butler’s program [2]) showed that Taxicab(4) =
6963472309248 = 24213+190833 = 54363+189483 = 102003+180723 = 133223+166303,
in 1997 Wilson [17] discovered Taxicab(5) = 48988659276962496 = 387873 + 3657573 =
1078393 + 3627533 = 2052923 + 3429523 = 2214243 + 3365883 = 2315183 + 3319543 and
in 1998 Bernstein (see [1]) verified that Taxicab(6) ≥ 1018, and in 2002 Rathbun [14]
has found a six-way sum of cubes:

Taxicab(6) ≤ 24153319581254312065344 = 289062063 + 5821623

= 288948033 + 30641733

= 286574873 + 85192813

= 270932083 + 162180683

= 265904523 + 174924963

= 262243663 + 182899223.

In 2003 we proved (see [5]) that with probability greater than 99%, Taxicab(6) =
24153319581254312065344; the method used a sample of 22,500 pseudo-random inte-
gers in the interval [1018, 24153319581254312065344) produced by Mathematica.

2 The Sampling Method

There are various approaches to the computation of Taxicab(n), such as [18, 13, 16, 19, 1].
The main idea is to use an efficient codification and a “computational structure” that
supports insertion of new elements and removal of the smallest element (somethimes
referred to as “priority queues”). None of these approaches seem to work for the calcu-
lation of Taxicab(6). So, in what follows we are going to use the sampling approach (see
[6]) described in [5]. Naturally, the result will not be exact, but the error will be less
than 0.02%.

Here is the method used in [5]. Given a finite population of size N , we will estimate
3 proportions associated with 3 binary random variables, Pi = P (Xi = 1) , i = 1, 2, 3,
using a quantum random sample of size n. Each estimate should be correct within
±c% in the sense that, if the sample shows pi to be Pi, the percentage for the whole
population is “sure” to lie between pi − c% and pi + c% (with “accuracy within c%”).
As we cannot guarantee an accuracy within c%, we accept a probability α (0.0027 in our
case) of getting “an unlucky sample” (which is in error by more than the desired c%).

2

The process of random generation of the sample is equivalent with sampling with
replacement (generated units are independent, repetitions are possible), according to a
Binomial scheme. If (u1, . . . , un) are generated items, we denote by mi the number of
items for which Xi(u) = 1, i = 1, 2, 3. Then, the estimates of Pi are pi = mi

n
, i = 1, 2, 3.

For a large value of n (n > 100), one can use the normal approximation for pi, that is,

pi is approximately normal distributed N
(
Pi,

Pi(1−Pi)
n

)
.

In order to estimate the value of n, we start from the simultaneous conditions

Pr
(
|pi − Pi| ≥ z1−α

2

√
V ar (pi)

)
= α, i = 1, 2, 3,

where z1−α
2

is the (1− α
2
)–quantile of the N (0, 1) distribution, and z0.99865 ≈ 3 (see, for

instance, [8], Table II).

Accordingly, we will have

z1−α
2

√
Pi (1− Pi)

n
= c, i = 1, 2, 3,

hence, the sample size is

n̂ = max

z2
1−α

2
Pi (1− Pi)

c2
, i = 1, 2, 3

 .

The value of n̂ depends on the unknown proportions Pi. As we don’t have any knowledge
regarding Pi, we will choose the “critical” value P = 50% (which maximizes the product
P (1− P)). Hence, the “safest” estimation of the sample size is n̂ = (z2

1−α
2
· 2500) · c−2.

For our level of significance α = 0.0027, one gets z1−α
2

= 3. For an accuracy within
c = 0.02%, n̂ = 562, 500, which is the size of the sample investigated by our program.
(To get an accuracy of 0.01% we need to test a sample of size 2,250,000.)

3 Program, Quantum Random Sample and Conclu-

sion

We ran our program (presented in [5]) on a sample of 562,500 quantum random integers
in the interval [1018, 24153319581254312065344) and we found no number satisfying the
required condition, consequently, with probability greater than 99.8%, Taxicab(6) =
24153319581254312065344.

Obviously, the accuracy of the sampling method depends upon the “quality of the
randomness” of the sample (see [7] for pitfalls in using traditional pseudo-random number
generation techniques). The sampling used in this simulation was produced with the
quantum random generator Quantis, [10].

Quantis is a physical random number generator based on an elementary quantum op-
tics process. Photons are sent one by one onto a semi-transparent mirror and detected;
the exclusive events (reflection vs. transmission) produce the quantum random bits “0”

3

and “1”. The operation of Quantis is continuously monitored to ensure immediate detec-
tion of a failure and disabling of the quantum random bit stream. Quantum randomness
passes all statistical testes for randomness, see [10]. No algorithm can produce infinitely
many quantum random bits; see more in [4].

Using a supply of quantum random bits from this device, we elected to use our
own procedure to generate integers within a range [low, high]. The Quantis software
library [11] provides such a method. But, on a closer inspection of the source code,
we decided the following simple algorithm is better because it avoids floating point
operations for rounding. We embed the interval [low, high] into [low, low + 256N],
where N = dlog256(high− low)e+ 1. The algorithm extracts quantum random bits with
quantis.readByte(), generates quantum random integers in the range of [low, low +
256N], and skips integers larger than high to get quantum random integers in the interval
[low, high].

In our case, low = 1018, high = 24153319581254312065344, hence N = 10. A quan-
tum random integer in the interval [1018, 1018 +25610] lies in the interval [low,high] with
probability p ≈ 0.0199. The geometric distribution can be used to model the number
of quantum integers we need to generate in the larger interval to obtain one quantum
random integer in [low, high]: we consider the probability p that the generated integer is
in the interval [low, high], so 1− p is the probability that the generated integer is in the
interval (high, 1018 + 25610]; in the first case the integer is accepted while in the second
case the integer is discarded. The expected value for the number of generated quantum
random integers to hit the target [low, high] is

∑∞
n=1 n(1− p)n−1p = 1/p ≈ 50.0542, that

is, about 50.

The following program generates an infinite sequence of quantum random integers in
the interval [low, high]. Naturally, the program was stopped when we reached our target
of 562,500 quantum random integers.

Function RandomInteger(Integer low, Integer high)
Integer rnum = 0
repeat for dlog256(high− low)e+ 1 steps

rnum = rnum ∗ 256 + quantis.readByte()

end
if rnum ≤ high− low return low + rnum
else return RandomInteger(low, high)

end

The correctness of the program follows from the following two results (see [3]): (a)
if x1x2 · · ·xn · · · is a binary (algorithmic) random sequence, then for every k ≥ 1 the
sequence over the alphabet {0, 1}k, (x1x2 · · ·xk)(xk+1xk+2 · · ·x2k)(x2k+1x2k+2 · · ·x3k) · · ·
is also (algorithmic) random, (b) if x1x2 · · ·xn · · · is an (algorithmic) random sequence
over the alphabet A ∪ {a} (here A is an alphabet with at least two elements), then
consistently deleting all occurrences of a in the sequence we obtain a sequence over A
which is still (algorithmic) random.1

1In our case A has 25610 + 1 elements.

4

When doing our reinvestigation for Taxicab(6), we divided a sample of 562,500 quan-
tum random integers into 10 pieces and ran our program concurrently on different com-
puters2 (which consisted of two Mac OSX G5s and four Linux Intel CPU boxes, some
computers having multiple processors). The overall computation time took about 3
weeks, with some jobs finishing in about 2 weeks. Both our source code and the actual
quantum random integers we used are available for downloading at [21].

Acknowledgment

We thank P. Dance and R. Burrowes for assistance with the Quantis generator. We
thank the anonymous referee for useful comments which improved the presentation.

References

[1] D. J. Bernstein. Enumerating solutions to p(a)+ q(b) = r(c)+ s(d), Mathematics of
Computation 70, 233 (2000), 389–394.

[2] B. Butler. C Program for Ramanujan Quadruples, http://www.durangobill.

com/Rama4.html, 30 May 2001.

[3] C. S. Calude. Information and Randomness: An Algorithmic Perspective, 2nd Edi-
tion, Revised and Extended, Springer-Verlag, Berlin, 2002.

[4] C. S. Calude. Algorithmic randomness, quantum physics, and incompleteness, in
M. Margenstern (ed.). Proceedings of the Conference “Machines, Computations and
Universality” (MCU’2004), Lectures Notes in Comput. Sci. 3354, Springer, Berlin,
2005, 1–17.

[5] C. S. Calude, Elena Calude, M. J. Dinneen. What is the value of Taxicab(6)?, J.
UCS 9, 10 (2003), 1196–1203.

[6] W. G. Cochran. Sampling Techniques, John Wiley, New York, 1977 (third edition).

[7] D. E. Eastlake 3rd, S. Crocker, J. Schiller, Randomness Recommendations for Se-
curity, RFC 1750, December 1994, 30 pp.

[8] A. Hald. Statistical Tables and Formulas, John Wiley, New York, 1965.

[9] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, London, 1954, 3rd edition.

[10] http://www.idquantique.com/qrng.html.

[11] http://www.idquantique.com/files/quantislibrary.pdf.

2Our program runs on any platform that can use the GMP library to represent arbitrarily large
integers [20].

5

[12] J. Leech. Some solutions of Diophantine equations, Proc. Cambridge Phil. Soc. 53
(1957), 778–780.

[13] I. Peterson. Taxicab Numbers, Science News Online, http://www.science

news.org/20020727/mathtrek.asp.

[14] R. L. Rathbun. Sixth Taxicab Number?, http://listserv.nodak.edu/scripts/
wa.exe?A2=ind0207&L=nmbrthry&P=R530, July 16, 2002.

[15] E. Rosenstiel, J. A. Dardis, C. R. Rosenstiel. The four least solutions in distinct
positive integers of the Diophantine equation s = x3 + y3 = z3 + w3 = u3 + v3 =
m3 + n3, Bull. Inst. Math. Appl. 27 (1991), 155–157.

[16] W. Schneider. Taxicab Numbers, http://www.wschnei.de/number-theory/

taxicab-numbers.html, 3 February 2003.

[17] D. W. Wilson. The fifth Taxicab Number is 48 988 659 276 962 496, J. In-
teger Seq. 2 (1999), Article 99.1.9, 1, http://www.research.att.com/~njas/

sequences/JIS/wilson10.html.

[18] Sequence A011541, On-Line Encyclopedia of Integer Sequences, http://www.resea
rch.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A011541.

[19] The Taxicab Problem, http://euler.free.fr/taxicab.htm.

[20] The GNU GMP library, http://www.swox.com/gmp/.

[21] ftp://ftp.cs.auckland.ac.nz/pub/research/CDMTCS/taxicab/.

6

