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From an operational point of view, the so-called nonlocal quantum correlations giving rise to

violations of Bell-type inequalities amount to the fact that certain joint events occur with greater

or smaller frequencies than can possibly be expected from classical, local realistic models. Two

detectors at different locations register pairs of particles or particle properties more frequently or

infrequently as can be explained by the usual classical assumption such as value definiteness.

With the rise of quantum algorithms and quantum information theory [1], the emphasis shifted

to the communication cost and to the quantum communication complexity related to those quan-

tum correlations. The question of the expense of obtaining quantum-type correlations from classi-

cal systems was stimulated by quantum [2] and classical [3–6] teleportation. In a recent Letter [7],

Toner and Bacon, based on Refs. [4, 8], argue that classical systems could mimic quantum sys-

tems by reproducing the cosine law for correlation functions with the exchange of just one bit of

classical information. (Classical noiseless correlation functions are linear.) They also raise the

question whether or not their protocol is an indication of a deep structure in quantum correlations.

In what follows this question will be answered to the negative by enumerating a protocol which

yields stronger-than-quantum correlations with the exchange of a single classical bit.

Consider two correlated and spatially separated classical subsystems sharing common di-

rections λ̂i , i = 1, . . . which are chosen independently of each other and are distributed uni-

formly. All parametersλ̂i are assumed to be identical on each one of the two subsystems.

There are two measurement directions ˆa and b̂ of two dichotomic observables with values “-

1” and “1” at two spatially separated locations. The measurement direction ˆa at “Alice’s lo-

cation” is unknown to an observer “Bob” measuringb̂ andvice versa. A two-particle correla-

tion functionE(θ) with θ = cos−1(â · b̂) is defined by the summation of the product outcomes

O(â)i ,O(b̂)i ∈ −1,1 in the ith experiment, divided by the numberN of experiments for largeN;

i.e.,E(θ) = (1/N)∑N
i=1O(â)iO(b̂)i .

We begin with a discussion of nonadaptive, memoryless protocols which could give rise to

stronger-than-quantum correlations with the exchange of a single bit per experiment. Thereby,

planar configurations will be considered. The protocols are similar to the one discussed by Toner

and Bacon [7], but require only a single shareλ̂, and an additional direction̂∆(δ), which is

obtained by rotatinĝλ clockwise around the origin by an angleδ which is a constant shift for

all experiments. That is, supposeλ stands for the angle characterizingλ̂ in polar coordinates,

then ∆̂(δ) = (cos(λ + δ),sin(λ + δ)) stands for the unit vector at angleλ + δ. The bit com-

municated by Alice is given byc(δ) = sgn(â · λ̂)sgn(â · ∆̂(δ)). Bob’s observable is defined by
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β(δ) = sgn[b̂ · (λ̂+c(δ)∆̂(δ))]. This protocol reduces to Toner and Bacon’s protocol if∆̂ and thus

δ is chosen uniformly and randomly over the entire circle.

The strongest correlations are obtained forδ = π/2; i.e., in the case where the two directions

λ̂ and∆̂(π/2) = λ̂⊥ are orthogonal and the information obtained byc(π/2) is about the location

of â within two opposite quadrants. The effective shift in the parameter directionλ̂± λ̂⊥ yields a

correlation function of the form

E
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To obtain a better understanding for the shift mechanism, in Fig. 1 a configuration is drawn which,

without the shiftλ̂−→ λ̂− λ̂⊥, sgn(b̂ · λ̂) would have contributed the factor−1. The shift results

in a positive contribution sgn[b̂ · (λ̂− λ̂⊥)] to the expectation value. This shift mechanism always

yield the strongest correlation±1 as long as the angleθ between ˆa andb̂ is not greater thanπ/4

or smaller than 3π/4.
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FIG. 1: Demonstration of the shift mechanism. Concentric circles represent the measurement directions ˆa

andb̂ (outer circle), as well aŝλ andλ̂⊥ (inner circle) and their associated projective sign regions. The four

measurement regions spanned by ˆa andb̂ are indicated by “±1,” respectively. Positive and negative octants

spanned bŷλ and λ̂⊥ are indiated in the inner circle by “±,” respectively. In this configuration, the shift

λ̂−→ λ̂− λ̂⊥ pusheŝλ into a positive region.
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FIG. 2: Classical and stronger-than-quantum correlation functions obtained through the exchange of a single

bit in the memoryless regime for values ofδ ∈ {0, π
10,

π
5 , 3π

10,
2π
5 , π

2} between 0 (straigt line) andπ/2 [cf.

Eq (1)].

For general 0≤ δ≤ π/2, Fig. 2 depicts numerical evaluations which fit the correlation function

E(θ,δ) =



−1 for 0≤ θ≤ δ
2,

−1+ 2
π(θ− δ

2) for δ
2 < θ≤ 1

2(π−δ),

−2(1− 2
πθ) for 1

2(π−δ) < θ≤ 1
2(π+δ),

1+ 2
π(θ−π+ δ

2) for 1
2(π+δ) < θ≤ π− δ

2,

1 for π− δ
2 < θ≤ π.

(2)

Its domains are depicted in Fig. 3. For all nonzeroδ, E(θ,δ) correlates stronger than quantized

systems for some values ofθ. Forδ = π/2, the Clauser-Horne-Shimony-Holt (CHSH) inequality

|E(â, b̂)+ E(â, b̂′)+ E(â′, b̂)−E(â′, b̂′)| ≤ 2 for â(π), â′(3π/4), b̂(0), b̂′(π/4) is violated by 3, a

larger value than the Tsirelson bound for quantum violations 2
√

2. This is due to the fact that,

phenomenologically, the strategy allows for certain joint events to occur with greater or smaller

frequencies as can possibly be expected from quantum entangled state measurements. Forδ = 0,

the classical linear correlation functionE(θ) = 2θ/π−1 is recovered, as can be expected.

The average over all 0≤ δ≤ π/2 yields a very similar, but not identical behaviour as the quan-

tum cosine correlation function. More precisely, assume two independent, uniformly distributed

shareŝλ1 andλ̂2, and a single communicated bitH(c(λ̂1, λ̂2)) with c(λ̂1, λ̂2) = sgn(â · λ̂1)sgn(â ·
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FIG. 3: Domains of the correlation functionE(θ,δ) of Eq. (2).

λ̂2) per measurement of sgn(â· λ̂1)sgn[b̂· (λ̂2−cλ̂1)]. The associated correlation function is

E(θ) = 1
(2π)2

R
dλ̂1dλ̂2 sgn(â· λ̂1)sgn[b̂· (λ̂2−cλ̂1)]

= 1
2π2

R
dλ̂1 sgn(â· λ̂1)

R
dλ̂2 sgn[b̂· (λ̂2− λ̂1)].

(3)

The elemination ofc at the cost of the prefactor 2 on the right hand side of Eq. (3) is achieved

by using the symmetries of the outcomes under the exchangeλ̂1←→ −λ̂1 and λ̂2←→ −λ̂2 as

outlined in Ref. [7]. Note that, although the correlation functionE(θ) is nonlocal (Bob’s output

depends onc, which contains ˆa), after some recasting, despite the prefactor of 2 which accounts for

nonlocality, it appears to be perfectly local, since it is the product of two sign functions containing

merelyâ and (separately)̂b, respectively. (The two parametersλ̂1, λ̂2 are common shares.)

The λ̂2 integration can be performed by arrangingb̂ along the positivey-axis(0,1) and by the

parameterization̂λ1 = (sint,cost) and λ̂2 = (sinτ,cosτ). The positive contributions amount to

A+ = 2
R t

0 dτ = 2t; thus the negative contributions areA− = 2π−A+, and the entire integral is

A+−A− = 2t/π−1 = 2cos−1(b̂· λ̂1)/π−1.

For theλ̂1 integration, ˆa is arranged along the positivey-axis (0,1), b̂ along(sinr,cosr), and

λ̂1 along(sinτ,cosτ). Since cos−1(cos(x)) = |x| for −1≤ x≤ 1, one obtains for the correlation

value (4/π2)
R π

0 dτ sgn(cosτ)|τ− r|. After evaluating all cases, thêλ1 integration, for 0≤ θ =
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cos−1(â· b̂)≤ π, yields

E(θ) =
4
π2

[(
θ2− π2

4

)
−2H

(
θ− π

2

)(
θ− π

2

)2
]
, (4)

which is plotted in Fig. 4. An alternative derivation of Eq. (4) is via(2/π)
R π/2
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FIG. 4: The correlationE(θ) of Eq. (4) as a function ofθ = cos−1(â · b̂) for the memoryless exchange of a

single bit per experiment in the planar configuration. Note that, although the shape resembles the quantum

cosine law, the function is piecewise quadratic.

E(θ,δ) from Eq. (2).

Let us next enumerate a protocol requiring memory which, by the exchange of more than one

bit, could give rise to maximal violations [9] of the CHSH inequality. The protocol is based

on locating and communicating information about Alice’s measurement direction ˆa to Bob, who

then rotates his subsystem (or alternatively his measurement direction) so as to obtain the desired

correlation function. It uses a single planar directionλ̂ which could be interpreted as a parameter,

and a binary search algorithm.

The first bitc1 = H[sgn(â · λ̂)] characterizes the location of ˆa within the halfspaces defined by

the subspace orthogonal toλ̂; e.g., whether sgn(â · λ̂) is positive or negative. (H stands for the

Heaviside unit step function.) The second bitc2 = H
(

sgn(â· λ̂)sgn[â· ∆̂(π/2)]
)

characterizes the

location ofâ within two opposite quadrants spanned byλ̂ and the subspace orthogonal toλ̂.
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The third bit of information is about the location of ˆa with respect to the octants formed by

dividing the quadrants used to determine the second bit, and so on. In general, thenth bit

cn = H

(
n−1

∏
i=0

sgn[â· ∆̂((π/2)n)]

)
(5)

stands for an equipartition of the sphere into 2n similar slices, which are associated alternatively

with the two bit values. If the protocol stops after communicating thenth bit, then by convention

â is identified with the direction which is in the middle of the section sorted out by the previous

segments.

The communicated information determines Alice’s measurement direction ˆa for Bob with ar-

bitrary precision. In order to obtain a stronger-than-classical correlation, Bob can use the infor-

mation about the location ˆa by rotating his subsystem to compensates for the difference between

his measurement directionb̂ andâ. In that way, either perfect correlation or perfect anticorrelation

can be obtained, as Bob rotates his subsystem by eitherδ = α− β or δ + π, respectively. This

yields an effective shift of̂λ by the opposite amount.

The number of required initial experiments increases proportional to any specified finite pre-

cision of the correlation function. Yet, any finite sequence of bits contributes little to the entire

correlation functionE if it is part of large sequence ofM +N outcomes in an experiment to deter-

mineE: The relative costM/(M +N) decreases asN increases.

Another, rather obvious, adaptive strategy requiring memory is to communicate Alice’s out-

come to Bob. The individual outcome is just an indication of whether Alice’s measurement direc-

tion is located “above” or below the orthogonal subspace of the directionλ̂, which is shared both

by Alice and Bob. As more bits from differentλ̂ directions are communicated, the direction of ˆa

can be inferred with increasing precision.

When compared to the protocol discussed by Toner and Bacon [7] or to the memoryless pro-

tocoll introduced above, the adaptive protocols share some similarities. Both exchange very

similar information, as can for instance be seen by a comparison betweenc2 above and the bit

c = sgn(â · λ̂1)sgn(â · λ̂2) exchanged in the Toner and Bacon protocol. After the exchange of just

a few bits, the adaptive protocols appear to be more efficient from the communication complexity

point of view. However, these strategies require memory. Operationally, this presents no problem

for Alice and Bob, but if one insist on nonadaptive, single particle strategies, these protocols must

be excluded.

In summary we have found that, as long as adaptive protocols requiring memory at the re-
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ceiver side are allowed, the CHSH inequality can be violated maximally. Furthermore, we have

presented a type of memoryless, nonadaptive protocol giving rise to stronger-than-quantum corre-

lations which does not yield maximal violations of the CHSH inequality but rather violates it by

3, as compared to the quantum Tsirelson bound 2
√

2. We have thus solved a problem posed by

Toner and Bacon, whether the exchange of a single classical bit offers an intriguing glimpse into

the nature of correlations produced in quantum theory by enumerating protocols with stronger-

than-quantum correlation functions at the cost of a single bit. The question still remains open

whether memoryless single bit exchange protocols exist which violate the CHSH inequality max-

imally; i.e., by 4. Another open question is the effect of entangled quantum subsystems.
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[2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Physical Review

Letters70, 1895 (1993), URLhttp://dx.doi.org/10.1103/PhysRevLett.70.1895 .

[3] G. Brassard, R. Cleve, and A. Tapp, Physical Review Letters83, 1874 (1999), URLhttp://dx.

doi.org/10.1103/PhysRevLett.83.1874 .

[4] N. J. Cerf, N. Gisin, and S. Massar, Physical Review Letters84, 2521 (2000), URLhttp://dx.

doi.org/10.1103/PhysRevLett.84.2521 .

[5] N. J. Cerf, N. Gisin, S. Massar, and S. Popescu (2004), quant-ph/0410027, URLhttp://arxiv.

org/abs/quant-ph/0410027 .

[6] N. Brunner, N. Gisin, and V. Scarani (2004), quant-ph/0412109, URLhttp://arxiv.org/abs/

quant-ph/0412109 .

[7] B. F. Toner and D. Bacon, Physical Review Letters91, 187904 (2003), URLhttp://dx.doi.org/

10.1103/PhysRevLett.91.187904 .

[8] K. H. Schatten, Physical Review A48, 103 (1993), URLhttp://dx.doi.org/10.1103/

PhysRevA.48.103 .

[9] G. Krenn and K. Svozil, Foundations of Physics28, 971 (1998).

8


