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Abstract

We study properties of O(k–Vertex Cover) which denotes all forbidden graphs
(as minors) to the family of graphs with vertex cover at most k, k ≥ 0. Our main
result is to give a tight vertex bound of O(k–Vertex Cover), and then confirm
a conjecture made by Liu Xiong that “The cycle C2k+1 is the only (and largest)
connected obstruction for k–Vertex Cover with 2k +1 vertices”. We also find two
iterative methods to generate graphs in O((k + 1)–Vertex Cover) from any graph
in O(k–Vertex Cover).

1 Introduction

A common practice in graph theory is to characterize a family of graphs (which may be
of infinite size) by providing a finite set of minimal graphs that are not in the family.
For example, planar graphs are famously known to be characterized by the two forbidden
graphs K3,3 and K5, known as Kuratowski’s Theorem. The obstruction set for planarity
thus consists of these two graphs. In this paper we present some new properties about the
obstructions to the families of graphs that have a vertex cover of size at most k, k ≥ 0.

For the remainder of this section we formally define the graph families k–Vertex Cover,
where k is an upper bound on the vertex cover size, and what it means to characterize
them by a set of obstructions. In Section 2, we prove a conjecture that the cycle C2k+1

is the only and largest connected obstruction for k–Vertex Cover, along with a nice
theorem relating the maximum degree to the order of the obstructions. In Section 3, we
investigate two nice simple techniques for generating a large subset of the obstructions for
(k + 1)–Vertex Cover from the set of obstructions for k–Vertex Cover. Finally, we
end the paper with some concluding remarks.
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1.1 Preliminaries

The graph families of interest in this paper are based on the following classic problem.

Problem 1. Vertex Cover
Input: Graph G = (V, E) and a non-negative integer k ≤ |V |.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k such that V ′ contains at least one vertex
from every edge in E ?

A set V ′ in the above problem is called a vertex cover for the graph G. If for any vertex
cover V ′′ for the graph G, |V ′| ≤ |V ′′| always holds, then V ′ is called a minimum vertex
cover of G (see example: Figure 1). Note, for a given G, there may be more than one
minimum vertex cover.

Figure 1: A graph G with a minimum vertex cover in black.

A partial order is a reflexive, transitive and antisymmetric binary relation. A graph H
is a minor of a graph G, denoted H ≤m G, if a graph isomorphic to H can be obtained
from G by a (possibly empty) sequence of operations chosen from:

1. delete an isolated vertex (i.e., vertex with degree equals zero)

2. delete an edge, or

3. contract an edge (i.e., superpose two vertices connected with an edge and remove any
multiple edges or loops that form).

The minor order is the set of finite graphs ordered by ≤m and is easily seen to be a
partial order. A family F of graphs is a lower ideal, under a partial order ≤p, if whenever
a graph G ∈ F implies that H ∈ F for any H ≤p G (i.e., a lower ideal F is a set closed
downward under ≤p). An obstruction G (often called a forbidden minor) for a lower ideal
F is a minor-order minimal graph not in F (i.e., G /∈ F and for all H, H <m G implies
H ∈ F).
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The Graph Minor Theorem of Robertson and Seymour [RS85] states that any set
of graphs is a well-partial order under the minor order. A partial order ≤p over a set
S = {s1, s2, . . .} is a well-partial order if (1) there always exists some i < j such that
sj ≤p si for any enumeration of S and (2) S does not have any infinite descending chains.
In other words, S does not contain any infinite set of non-comparable elements. Thus, a
complete set of obstructions describes a finite characterization for any minor-order lower
ideal F . We will soon justify a claim that the special graph family k–Vertex Cover is
also finitely characterizable within the subgraph partial order (which is not a well-partial
order, in general).

1.2 Frequently used notation

For the following paper we use the following graph notation.

E(G) All edges of a graph G.

V (G) All vertices of a graph G.

N(u) All the vertex neighbors of vertex u in a specified graph.

G[Vx] An induced subgraph (Vx, Ex) of G = (V, E), where Vx ⊆ V and Ex = {(u, v) |
(u, v) ∈ E and u, v ∈ Vx} ⊆ E.

E(v) All incident edges of vertex v in a specified graph.

V C(G) A non-negative integer |V ′|, where V ′ denotes a minimum vertex cover of
graph G.

k–Vertex Cover The family of graphs that have a vertex cover of size at most k.

O(k–Vertex Cover) All obstructions of k–Vertex Cover, where integer k ≥ 0.

O Denotes an arbitrary (connected or disconnected) graph in O(k–Vertex Cover).

Oc Denotes a connected graph in O(k–Vertex Cover).

Od Denotes a disconnected graph in O(k–Vertex Cover).

1.3 A framework for characterizing vertex cover families

It is easy to see that k–Vertex Cover is a lower ideal in the minor order (e.g. Lemma 1
of [CD94]). In [DX02], Dinneen and Xiong built a computational model to generate the
whole set of connected graphs in O(k–Vertex Cover), which is based on these steps:
(1) Bound the search space of graphs within a reasonable interval for order. (2) For each
fixed order, generate graphs with all possible combinations of edges, and then find efficient
properties to eliminate the graphs that are not in O(k–Vertex Cover). (3) Decide if the
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remaining graphs are obstructions. To bound the search space, they set up an (exact) upper
bound of 2k + 1 on the order of each connected obstruction Oc of O(k–Vertex Cover)
(see Theorem 10 of [DX02] or the refined version in Appendix A of this paper). For reader’s
convenience, we mention that all connected graphs of O(k–Vertex Cover) (k ≤ 6) are
listed in the appendices of [CD94] and [DX02] (also see [DL04]).

However, from a practical point of view, the search space for all possible combination of
edges still grows exponentially even if we have set up an upper bound on the order of graphs
in O(k–Vertex Cover). In the worst case, when the order increases up to 2k + 1, the
search space size when considering all possible combination of edges peaks but it seems that
only one connected graph of that order is in O(k–Vertex Cover). The original intention
of this paper is to prove this conjecture: The cycle C2k+1 is the only (and largest) connected
obstruction with 2k+1 vertices in O(k–Vertex Cover), as given in [DX02, X00]. During
the proof, we find a tighter vertex bound of graphs in O(k–Vertex Cover) when also
considering the maximum degree of the graphs.

With respect to the definition of a minor, Dinneen and Xiong proved a simplified pro-
cedure for detecting an obstruction of k–Vertex Cover to be the following: A graph
G = (V, E) is in O(k–Vertex Cover) if and only if (a) for all v ∈ V , degree(v) 6= 0.
(i.e., no isolated vertices); (b) V C(G) = k + 1 and V C(G \ {e}) = k, for all e ∈ E
(see Theorem 4 of [DX02]). They argued that if G \ {e} ∈ k–Vertex Cover for all
e ∈ E(G), then any single edge contraction of G is also in k–Vertex Cover. Hence,
we can omit operation 3 of minor: “contract an edge”; the remaining two operations:
“delete an isolated vertex” and “delete an edge” are sufficient and necessary for defining
O(k–Vertex Cover). For this reason, we call condition (a) and (b) to be a our “definition
of an obstruction for k–Vertex Cover” when discussed later in this paper.

Note: Condition (a) was mistakenly omitted in the statement of Theorem 4 of [DX02]
since the context of discussion should have been restricted to connected graphs.

Likewise here in this paper, we focus on studying all connected vertex cover obstructions,
because any disconnected obstruction Od of k–Vertex Cover is a union of connected ob-
structions for vertex cover families with smaller values of k. Recall (k − 1)–Vertex Cover

⊂ k–Vertex Cover for all k > 1 implies a hierarchy of graph families. More accurately,

for a given Od, with s > 1 connected components, it is easy to see that Od =
s⋃

j=1

Gj,

where each Gj is a connected obstruction for pj–Vertex Cover with pj = V C(Gj) − 1.
Furthermore, we conclude that

k + 1 = V C(Od) =

s∑

j=1

(pj + 1) = s +

s∑

j=1

pj .

Thus 1 < s ≤ k +1 and 0 ≤ p1, p2, . . . , ps < k, which limits the number of components and
gives us a process to enumerate all disconnected obstructions for k–Vertex Cover if we
know all the connected obstructions for k’–Vertex Cover, k′ < k.
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1.4 Checking membership in O(k–Vertex Cover)

For any graph G without isolated vertices, a general algorithm to decide if graph G is
in O(k–Vertex Cover) is listed in Figure 2. The graph membership algorithm GA(G)
returns true if and only if V C(G) ≤ k. Obviously, if a graph G is an obstruction, as decided
by procedure IsObstruction then

V C(G) > k and for each edge e ∈ E(G), V C(G \ {e}) ≤ k. (1)

Condition (1) is equivalent to condition (b) of our definition of an obstruction for the
family k–Vertex Cover. The reasons why we define GA(G) to be a boolean value of
V C(G) ≤ k rather than V C(G) = k are: Firstly, from programming point of view, the
running time of deciding V C(G) ≤ k may be shorter than deciding V C(G) = k; Secondly,
from theoretical point of view, sometimes condition (1) makes a proof of existence easier
(see Section 3: Extension Method 1), because the weaker condition V C(G) ≤ k does not
ask for a constructive proof of a minimum vertex cover while condition V C(G) = k usually
does.

Now, we explain that condition (1) is equivalent to condition (b) of our definition of
an obstruction for k–Vertex Cover. Obviously, this definition of an obstruction for
k–Vertex Cover satisfies condition (1); For any graph G satisfies condition (a) and (1),

let Ṽ(u,v) denotes an arbitrary minimum vertex cover of G \ {(u, v)}, then |Ṽ(u,v)| ≤ k.

It is easy to see u, v /∈ Ṽ(u,v), otherwise Ṽ(u,v) covers G, which contradicts V C(G) > k.

Therefore Ṽ(u,v) ∪ {u} covers G. We get k + 1 ≥ V C(G \ {(u, v)}) + 1 = V C(G) > k,
where the ‘1’ denotes either u or v. That is, V C(G) = k + 1 and for each edge (u, v) ∈
E(G), V C(G \ {(u, v)}) = k. Hence G is in O(k–Vertex Cover).

Procedure IsObstruction (GraphMembershipAlgorithm GA, Graph G)
If GA(G) = true then return false
For each edge e in G do

G′ = G \ {e}
If GA(G′) = false then return false

endFor
return true

end

Figure 2: Procedure IsObstruction for k–Vertex Cover.
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2 Properties of Vertex Cover Obstructions

We now present our first set of results about the k–Vertex Cover obstructions.

2.1 Preliminary remarks

This section presents some analysis about minimum vertex cover and application of the
well-known Hall’s Marriage Theorem, which is given in [Hal35] (also see [CL86]). These
results will contribute to the proof of an upper bound of all connected obstructions later
on. The proof ideas of Statements 2–4 are mainly extracted from Theorem 10 of [DX02].

Statement 2 For a graph G = (V, E) with no isolated vertices, let V1 denote a minimum
vertex cover of G, then N(V \ V1) = V1.

Proof. Divide V into two subsets V1 and V2, as indicated in Figure 3, such that V1 is a
minimum vertex cover of G and V2 = V \ V1.

Figure 3: Divide the vertex set of G into two subsets.

There is no edge between any pair of vertices in V2, otherwise V1 is not a vertex cover,
so N(V2) ⊆ V1. Further, each vertex v ∈ V1 has at least one neighbor in V2, otherwise
we move v from V1 to V2, then V1 \ {v} is a vertex cover of G with fewer vertices (this
contradicts the assumption: V1 is a minimum vertex cover of G). So N(V2) ⊇ V1. Therefore
N(V2) = V1. 2

Statement 3 For a graph G = (V, E) with no isolated vertices, let V1 denote a minimum
vertex cover of G, if there exists a subset S ⊆ V2 = V \ V1 such that |N(S)| < |S|, then we
can always find:

1. A minimal subset V3, V3 ⊆ S such that |N(V3)| < |V3| and for all T ⊂ V3, |N(T )| ≥
|T |.1

1In mathematical terminology, the critical limit V3 must exist.
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2. The set V3 also satisfies |N(V3)| = |V3| − 1 and for any v ∈ V3, N(V3 \ {v}) = N(V3).

Proof. (1). If V1 is a minimum vertex cover of G, then N(V2) ⊆ V1 (mentioned in proof
of Statement 2). Because any v ∈ V , |N(v)| ≥ |{v}| = 1, we can always find a V3 which
satisfies Statement 3(1) by exhausting all possible combination during growing any single
vertex v in S up to the whole vertex set of S (see Figure 4).

Procedure MinSubset(Vertices S, Graph G)
For i = 2 to |S|

For any i vertices in S
Define them to be V3

If |N(V3)| < |V3| then return V3

endFor
endFor

end

Figure 4: Find the minimum subset V3 of Statement 3(1).

Note, the returned V3 of the procedure MinSubset is minimum, because any subset V ′

of S in order of k (< |V3|) must satisfy |N(V ′)| ≥ |V ′| (i.e., condition ‘If’ is always false
while i ≤ k. ). In worst case, V3 = S.

(2). According to Statement 3(1), we delete any vertex v ∈ V3, leaving V ′
3 = V3 \ {v},

then any subset T ⊆ V ′
3 satisfies |N(T )| ≥ |T |. Let T = V ′

3 , then |V3| − 1 = |V ′
3 | ≤

|N(V ′
3)| ≤ |N(V3)| < |V3|. Therefore |N(V3)| = |N(V ′

3)| = |V3| − 1. 2

A matching in a bipartite graph is a set of independent edges with no common end
points.
Recall Hall’s Marriage Theorem [Hal35]: A bipartite graph B = (X1, X2, E) has a
matching of cardinality |X1| if and only if for each subset A ⊆ X1, |N(A)| ≥ |A|.

Statement 4 In a connected obstruction Oc, let V1 denote a minimum vertex cover, then
for each S ⊆ V2 = V \ V1, |N(S)| ≥ |S|.

Proof. We prove by way of contradiction. Assume there exists a subset S ⊆ V2 such that
|N(S)| < |S|, from Statement 3, we know:

1. There exists a minimal subset V3, V3 ⊆ S ⊆ V2 such that |N(V3)| < |V3| and for all
T ⊂ V3, |N(T )| ≥ |T |.

2. Such V3 satisfies |N(V3)| = |V3| − 1 and for any v ∈ V3, N(V3 \ {v}) = N(V3).

Define V ′
3 = V3 \ {v}, V4 = N(V ′

3) (refer to Figure 5). By applying Hall’s Marriage The-
orem, there is a matching of cardinality |V ′

3 | in the induced bipartite subgraph G1 =
(V ′

3 , N(V ′
3), EG1

) in Oc. Define D1 = O[ V ′
3 ∪ V4 ]. Obviously, G1 ⊆ D1, because there

might be edges among V4. Then V C(D1) ≥ |V ′
3 | = |V3|−1 = |N(V3)| = |N(V ′

3)| = |V4| (see
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Statement 3(2)). Moreover, there are no edges among V3 ⊆ V2 (as mentioned in Statement
2), we get V C(D1) ≤ |V4|. Therefore,

V C(D1) = |V4|. (2)

Let V5 = V2 \ V ′
3 and V6 = V1 \ V4. Then Figure 3 can be further divided as indicated

in Figure 5.

Figure 5: Divide the vertex set of O into four subsets.

Because Oc is a connected graph, some edges must exist between V4 and V6 or between
V4 and V5. Let us delete all edges between V4 and V5 and all edges between V4 and V6.
Then, D1 and D2 = O[ V5 ∪ V6 ] are two isolated connected components in the resulting
graph.

Consider the graph D2. Obviously, V C(D2) ≤ |V6|.

(i) V C(D2) < |V6|. Since all deleted edges are also covered by V4, V4 together with a
minimum vertex cover of D2 must cover all edges of Oc. Thus from (2), we get
V C(Oc) = |V4|+ V C(D2) < |V4|+ |V6| = k + 1. This contradicts our definition of an
obstruction.

(ii) V C(D2) = |V6|. Even if those edges between D1 and D2 were deleted, the rest graph
still needs V C(D1 ∪ D2) = |V4| + |V6| = k + 1 vertices to cover (see (2)). This also
contradicts our definition of an obstruction.

Therefore, the assumption is incorrect, which means for all S ⊆ V2, |N(S)| ≥ |S|. 2

2.2 Vertex bound for an obstruction of O(k–Vertex Cover)

As was proved in Theorem 4 of [DX02], the operation of ‘contracting edge(s)’ can be omitted
for the purpose of checking membership of O(k–Vertex Cover). Now, we modify proce-
dure IsObstruction (see Figure 2) to produce an obstruction O ∈ O(k–Vertex Cover)
from any graph G, with V C(G) ≥ k + 1, only by deleting edges and isolated vertices of G.
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Lemma 5 For any graph G with V C(G) ≥ k + 1, there always exists an obstruction
F ∈ O(k–Vertex Cover) such that F ⊆ G (i.e., F is a subgraph of G).

Proof. Figure 6 lists a procedure that construct an obstruction for k–Vertex Cover

by a proper input graph G. As mentioned in Section 1, GA(G) returns true if and only
if V C(G) ≤ k. That is, in Figure 6, the first ‘If’ decides whether V C(G) ≤ k while the
second ‘If’ decides whether V C(G′) > k.

Graph Procedure Generate O (GraphMembershipAlgorithm GA, Graph G)
Delete all isolated vertices from G.
If GA(G) = true then return φ
For each edge e in G do

G′ = G \ {e}
If GA(G′) = false then

return G = Generate O(GA, G′)
endif

endFor
return G

end

Figure 6: Procedure to generate an obstruction for k–Vertex Cover.

Comparing Figure 2 with Figure 6, we replace ‘return’ with a recursively call Generate O

after the second ‘If’. Because the input G′ for the next recursion has already satisfied
GA(G′) = false, the first ‘If’ will be always false in any later recursion.

Now let us go through the procedure Generate O. First, we input a graph G that satisfies
V C(G) ≥ k + 1.

(i) If G is an obstruction for k–Vertex Cover, then from condition (1) (see Section 1), we
know V C(G) > k (i.e., the first ‘If’ is false) and for each edge e ∈ E(G), V C(G \ {e}) ≤ k
(i.e., the second ‘If’ is always false). Hence the original G is returned.

(ii) If G is not an obstruction for k–Vertex Cover, then after delete all isolated vertices
from G, IsObstruction(GA, G) returns false. That is, there must exists an edge e ∈ E(G)
such that V C(G′) > k where G′ = G \ {e} (see Figure 2). Note, first ‘If’ is false, because
V C(G) ≥ k + 1. Recursively call Generate O(GA, G′) leads to deleting a sequence of
edge(s) of original G and always keep G with no isolated vertices until any edge e of G
satisfies V C(G \ {e}) ≤ k.

Finally, the innermost returned G is a desired subgraph F of original input G and
also an obstruction of k–Vertex Cover, since it has already passed the same test as
procedure IsObstruction. 2
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From Lemma 5, it is easy to see that the family of graphs k–Vertex Cover can be
described by a complete set of forbidden subgraphs.

Corollary 6 A graph G ∈ k–Vertex Cover if and only if for any obstruction O, O * G
(i.e., O is not a subgraph of G).

Proof. If there exists an O such that O ⊆ G, then V C(G) ≥ V C(O) = k + 1 (contradicts
G ∈ k–Vertex Cover). On the other hand, if for any O, O * G, then from Lemma 5
we know V C(G) < k + 1. 2

In the remaining part of this section we present some properties of O(k–Vertex Cover)
and facts about a minimum vertex cover of any obstruction O. Through a partition pro-
cedure (see Definition 11 and Lemma 12) of an obstruction O, we assemble all known
statements and lemmas to prove one of the main results of this paper: a more useful upper
bound on the order of any connected obstruction for k–Vertex Cover, which appears
later as Theorem 13.

Lemma 7 Given any edge (u, v) ∈ E(O), for any minimum vertex cover V ′ of O\{(u, v)},
u /∈ V ′ and v 6∈ V ′.

Proof. If not, the vertices of V ′ can cover the edges of O, which contradicts our definition
of an obstruction. 2

Lemma 8 [(extension of [DX02] Lemma 6) Cattell-Dinneen]
For any given obstruction O and two arbitrary different vertices u1, u2 ∈ O, N(u2) 6⊆ N(u1).

Proof. We prove this by contradiction. Suppose there exists u1 and u2 in O such that

N(u2) ⊆ N(u1). (3)

Without loss of generality, let degree(u1) = j and degree(u2) = i with j ≥ i. See Figure 7.

Define: E ′ =
i⋃

t=1

{(u1, vt) ∪ (u2, vt)}.

Now we delete one edge (u1, vt) for any fixed t ∈ {1, 2 . . . i}. From Lemma 7, we
know {v1, v2, . . . vt−1,vt+1,. . . vi, u2} must be contained in any minimum vertex cover V ′ of
O \ {(u1,vt)} for covering all edges of E ′ \ {(u1,vt)}. Hence

1. If |V ′| ≤ k, then we define Ṽ = {vt} ∪ V ′ \ {u2}. Ṽ is vertex cover of O and |Ṽ | ≤ k,
which implies V C(O) ≤ k (contradicts our definition of an obstruction).

2. If |V ′| ≥ k + 1, then V C(O \ {(u1, vt)}) = |V ′| ≥ k + 1 which also contradicts our
definition of an obstruction.

Therefore, the assumption (3) is incorrect and Lemma 8 must hold. 2
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Figure 7: The set of neighbors N(u1) = {v1,v2, . . . vj} and N(u2) = {v1,v2, . . . vi}.

Lemma 9 For any edge (v, w) ∈ E(O) of an obstruction O
(1) There exists a minimum vertex cover V1 of O, such that N(v) ∪ N(w) \ {v} ⊆ V1.
(2) There exists a minimum vertex cover V ′

1 of O, such that N(w) ∪ N(v) \ {w} ⊆ V ′
1 .

Proof. Without loss of generality, suppose degree(v) = m, degree(w) = n (see Figure

8). Defined N(v) =
m⋃

j=1

{wj}, where wt is marked as w for some 1 ≤ t ≤ m; N(w) =

{v} ∪
n−1⋃
i=1

{ui} (Note, some of ui, wj might be of superposition in O).

. . .

. . .

v

w

w1 w2 wm

u1 u2
un−1

. . .

wj

Figure 8: Edge (w, v) and all neighbors of vertices w and v.

Delete edge (v, w). According to Lemma 7, we know: in order to cover all edges
(v, wj) (where j = 1,2 . . . , t − 1,t + 1, . . .m) and (w, ui) (where i = 1, . . . n − 1), for any
minimum vertex cover V ′ of O \ (v, w), {N(v) \ {w}} ∪ {N(w) \ {v}} ⊆ V ′. Thus, from
our definition of an obstruction, we know V1 = V ′ ∪ {w} is a minimum vertex cover of O
(i.e., N(v) ∪ N(w) \ {v} ⊆ V1).

Likewise, V ′
1 = V ′ ∪ {v} is also a minimum vertex cover of the same O (i.e., N(v) ∪

N(w) \ {w} ⊆ V ′
1). 2
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Corollary 10 For any edge (v, w′) ∈ E(Oc) of a connected obstruction (for k ≥ 1), there
exists a minimum vertex cover V ′′

1 of Oc, such that {v, w′} ⊆ V ′′
1 .

Proof. According to our definition of an obstruction, any Oc for k ≥ 1 contains at least 3
vertices. We know each Oc is a biconnected graph (Lemma 5 of [DX02]). Hence for each
vertex v ∈ Oc, degree(v) ≥ 2. Otherwise, if there exists an v ∈ Oc such that degree(v) = 1,
then the single neighbor u of v is a cut-vertex.

Arbitrary pick wj ∈ N(v) \ {w′} as labeled in Figure 8. Then according to Lemma 9(2)
with w = wj, we know {v, w′} ⊆ V ′′

1 is a desired minimum vertex cover of Oc. 2

As described in Section 1, an arbitrary obstruction O is either a connected obstruction
for k–Vertex Cover or the union of more than one connected obstructions for other
families k′–Vertex Cover, 0 ≤ k′ < k. Thus, for any given O, Corollary 10 holds for all
edges in O \ H, where H represents the union of all K2 components in O. Recall that for
the excluded case k = 0 of the corollary, O(0–Vertex Cover) = {K2}.

Now we use the following procedure to partition an arbitrary obstruction O step-by-step
so as to find a deeper insight into the structure of O.

Definition 11 Vertex Cover Delete Procedure (VCDP) for graph G

Suppose Ṽ = {u1, u2, . . . , uk+1} is a minimum vertex cover of graph G.

Define G1 = G
For i = 1 to k + 1

1. delete ui together with all associated edges E(ui) in Gi

2. delete any isolated vertices in Gi \ E(ui)
3. define the resulting graph as Gi+1

endFor

For G = O, we get |Ṽ | = k+1, Gi 6= φ (i = 1, 2, . . . k + 1) and Gk+2 = φ. The following
figure illustrates the V CDP procedure for an Oc ∈ O(3–Vertex Cover). We name each
iteration of the For loop, a Vertex Cover Delete (VCD) step.

Lemma 12 At each step of the Vertex Cover Delete Procedure for an obstruction O ∈
O(k–Vertex Cover),
(1) V C(Gj+1) = k − j + 1, where j ∈ {0, 1, . . . k}.
(2) There exists F ∈ O((k − i + 1)–Vertex Cover) such that F ⊆ Gi, where i ∈ {1, 2,
. . . k + 1}.

Proof. (1) Because Ṽ is a minimum vertex cover with |Ṽ | = k + 1 of G1 = O, the set

Ṽ \ {u1, u2, . . . , uj} is a vertex cover of Gj+1. So V C(Gj+1) ≤ k + 1 − j.
If there exists a vertex cover V ′ with |V ′| = V C(Gj+1) < k + 1 − j. Then the set

V ′ ∪{u1, u2, . . . , uj} is a vertex cover of G1, which contains |V ′|+ j(< k +1) vertices. This
contradicts our assumption that G1 ∈ O(k–Vertex Cover).
(2) From Lemma 12(1), let i = j +1, we know V C(Gi) = k− (i− 1)+1 = k− i+2, where
i ∈ {1, 2, . . . k + 1}. Then from Lemma 5, we know Lemma 12(2) is correct. 2
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Figure 9: Each step of V CDP for an obstruction Oc of 3–Vertex Cover.

Now we will discuss the first main result of this paper. We will prove an upper bound on
the order for all connected obstructions, and then give a vertex bound for all obstructions.

Theorem 13 For any connected obstruction Oc ∈ O(k–Vertex Cover), |Oc| ≤ 2k −
degree(v1) + 3 for all v1 ∈ V (Oc).

Proof. Without loss of generality, for a given Oc and an arbitrary vertex v1 ∈ V (Oc),
V C(Oc) = k+1 and Lemma 9(1) holds for v1 (i.e., let v1 denote v and pick any w ∈ N(v1) for
Lemma 9). Then V (Oc) can be split into two subset V1 and V2, as indicated in Figure 10(a),
such that V1 is a minimum vertex cover of size k + 1, v1 ∈ V2, N(v1) ⊆ V1 and V2 = V \V1.
Obviously no edge exists between any pair of vertices in V2, otherwise V1 is not a vertex
cover.

Each vertex in V1 has at least one vertex in V2 as its neighbor. (4)

Otherwise it can be moved from V1 to V2. Namely, this vertex is not needed in the minimum
vertex cover set.

Figure 10: (a) N(V2) = V1 and N(v1) ⊆ V1, v1 ∈ V2. (b) Illustration of (5).
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From Lemma 8, we know for all u ∈ {N(N(v1)) \ {v1}} ∩ V2 (i.e., vertices in V2 \ {v1}
that are incident on N(v1)), N(u) 6⊆ N(v1). That is, there does not exist a vertex in
V2 \ {v1} whose neighbors are a subset of N(v1). Therefore, as illustrated in Figure 10(b):

For all p ∈ V2 \ {v1}, there exists q ∈ V1 \ N(v1), such that (p, q) ∈ E(Oc). (5)

We use the Vertex Cover Delete Procedure for this Oc to delete N(v1) in sequence. Then
the remaining part is G|N(v1)|+1 (see Definition 11).

From (5), we know no vertex in V2 \ {v1} becomes isolated vertex and has been deleted
by these VCD steps; Likewise, from (4), we know no vertex in V1\N(v1) has been deleted by
these VCD steps, because for each vertex of V1 \N(v1), there exists at least one neighbor in
V2\{v1}. Hence N(v1)∪{v1}∪V (G|N(v1)|+1) = V (Oc) and V (G|N(v1)|+1)∩(N(v1)∪{v1}) = φ,
where V (G|N(v1)|+1) = {V1 \ N(v1)} ∪ {V2 \ {v1}} (refer to Figure 10(b)).

Assume |G|N(v1)|+1| ≤ 2(k−|N(v1)|+1), then |Oc| ≤ |N(v1)|+1+(2k−2|N(v1)|+2) =
2k − |N(v1)| + 3. Because degree(v1) = |N(v1)|, this theorem would be proven.

Figure 11: Decompose Oc by VCD steps. The dashed lines represent the scope of sets while
real lines represent edges.

Now, let us prove the assumption:

|G|N(v1)|+1| ≤ 2(k − |N(v1)| + 1) (6)

To avoid confusion, we define Nei(H) to be all neighbors of set H ⊆ V (G|N(v1)|+1)
within the graph G|N(v1)|+1 and let N(H) denote all neighbors of set H ⊆ V (Oc) within Oc

as usual.
Any subset S of V2 \ {v1} in G|N(v1)|+1 can be classified into two categories:
Case 1: Any vertex v ∈ S, v /∈ N(N(v1)) (i.e., no vertex in S is a neighbor of N(v1)).

14



So N(S)∪S ⊆ G|N(v1)|+1 and N(S) = Nei(S). From Statement 4, we know |N(S)| ≥ |S|
in Oc. Hence |Nei(S)| ≥ |S| in graph G|N(v1)|+1.

Case 2: There exists a vertex v ∈ S, such that v ∈ N(N(v1)).
We will prove that |Nei(S)| ≥ |S| must hold in G|N(v1)|+1 as well.
Prove by contradiction: From Lemma 12(1), we know V C(G|N(v1)|+1) = k−|N(v1)|+1.

Hence V1 \ N(v1) is a minimum vertex cover of G|N(v1)|+1. According to VCDP, each Gi

does not contain isolated vertices. From Statement 2, we know

Nei(V2 \ {v1}) = V1 \ N(v1). (7)

From Statement 3(1), we know that for a minimum vertex cover V1\N(v1) of G|N(v1)|+1,
if there exists a subset S ⊆ V2 \ {v1} such that |Nei(S)| < |S|, then in G|N(v1)|+1

there exists a minimal V3, V3 ⊆ S, such that |Nei(V3)| < |V3|

and for all T ⊂ V3, |Nei(T )| ≥ |T | (see Figure 11) (8)

Obviously, there must exists an u ∈ V3 such that u ∈ N(N(v1)) (u may or may not be
v, because v is not necessarily included in any critical limit V3). Otherwise, if for all u ∈ V3,
u /∈ N(N(v1)), then for such V3, |Nei(V3)| < |V3| of (8) which contradicts the above result
of Case 1. Thus we can define a vertex w in N(v1) ∩ N(u) (see Figure 11).

Define V ′
3 = V3 \ {u}. From (8) and Hall’s Marriage Theorem, we know in G|N(v1)|+1

there is a matching of cardinality |V ′
3 | = |V3| − 1 in the induced bipartite subgraph D =

[V ′
3 ∪ Nei(V ′

3)].
From Statement 3(2), for the graph G|N(v1)|+1, |Nei(V3)| = |Nei(V ′

3)| = |V3| − 1. Note
N(v1)∪N(V3) = N(v1)∪Nei(V3), because Nei(V3) ⊂ N(V3) ⊆ N(v1)∪Nei(V3). Hence, in
Oc, if we delete set A = N(v1)∪N(V3) ⊆ V1 and all associated edges, the remaining graph
is GA

|N(v1)∪N(V3)|+1 = GA
|N(v1)|+|Nei(V3)|+1 = GA

|N(v1)|+|V3|
(see Figure 11), where superscript A

specifies the subset of a minimum vertex cover deleted by VCD steps.
On the other hand, from Lemma 9(1), we know that for the defined w (see Figure 11),

there exists a minimum vertex cover V ′
1 of Oc, such that {u}∪N(v1) ⊆ N(v1)∪N(w)\{v1} ⊆

V ′
1 .

We delete partial minimum vertex cover B = N(v1) ∪ {u} in Oc by VCD steps, the
remaining graph is GB

|N(v1)|+2 ⊂ G|N(v1)|+1 (see Figure 11). For any minimum vertex cover

of GB
|N(v1)|+2, in order to cover the matching of cardinality |V3| − 1 within D(⊆ GB

|N(v1)|+2),

at least |V3| − 1 vertices are needed inevitably.
Further, we delete the |V3| − 1 vertices C = {c1, c2, . . . c|V3|−1}, which is a subset of a

minimum vertex cover of GB
|N(v1)|+2, where ci is picked from the end points of ith inde-

pendent edge of the matching. The resulting graph is GB∪C
|N(v1)|+|V3|+1(⊇ GA

|N(v1)|+|V3|
), where

GB∪C
|N(v1)|+|V3|+1 = GA

|N(v1)|+|V3|
if ci ∈ V1 holds for all i = 1, 2 . . . , |V3| − 1. Note deleting any

vertices in V3 will not affect GA
|N(v1)|+|V3|

, because N(V3)∩V (GA
|N(v1)|+|V3|

) = φ (see definition

of A).
However, according to Lemma 12(1), we know V C(GB∪C

|N(v1)|+|V3|+1) < V C(GA
|N(v1)|+|V3|

).

When GB∪C
|N(v1)|+|V3|+1 ⊃ GA

|N(v1)|+|V3|
holds, the contradiction appears that the bigger graph
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has a smaller minimum vertex cover. When GB∪C
|N(v1)|+|V3|+1 = GA

|N(v1)|+|V3|
holds; there is a

contradiction on the definition of a minimum vertex cover.
Therefore, in graph G|N(v1)|+1, any subset S ⊆ V2 \ {v1} of Case 2, |Nei(S)| ≥ |S|.
When we synthesize Case 1 and Case 2, we conclude that any subset S of V2 \ {v1} in

G|N(v1)|+1, |Nei(S)| ≥ |S|. Particularly, let S = V2 \ {v1}, from (7), we get

|V2 \ {v1}| ≤ |V1 \ N(v1)| = k + 1 − |N(v1)| .

Therefore, the above (6) holds due to

|G|N(v1)|+1| = |V2 \ {v1}| + |V1 \ N(v1)| ≤ 2(k + 1 − |N(v1)|)

2

Note Theorem 10 of [DX02] (i.e., |Oc| ≤ 2k+1) is a special case of Theorem 13, because
for any v ∈ Oc of O(k–Vertex Cover) with k ≥ 1, we have degree(v) ≥ 2 (see proof of
Corollary 10).

As mentioned in Section 1, any disconnected obstruction Od is a union of connected

obstructions for smaller values of k: Od =
s⋃

j=1

Gj, where pj = V C(Gi)−1 and
s∑

j=1

(pj +1) =

k + 1. So |Od| =
s∑

j=1

|Gj|

≤
s∑

j=1

(2pj − degree(vj) + 3)

= 2(k + 1) +
s∑

j=1

(1 − degree(vj)), where vj ∈ V (Gj)

≤ 2k + 2 + 1 − degree(v1), (note for any vj ∈ V (Gj), degree(vj) ≥ 1)
= 2k + 3 − degree(v1).

We can name any connected component of Od to be the first connected obstruction G1.
Thus, we get an uniform vertex bound for any O ∈ O(k–Vertex Cover),

|O| ≤ 2k − degree(vs) + 3 for all vs ∈ V (O). (9)

The upper bound for all O ∈ O(k–Vertex Cover) is

|O| ≤ 2k − max
vs∈V (O)

{degree(vs)} + 3. (10)

Corollary 14 If there exists a vertex vs ∈ V (O) with degree(vs)=k, then |O| = k + 3.

Proof. From (9), we know for such an obstruction O, |O| ≤ 2k − k + 3 = k + 3.
It is proved in Lemma 8 of [DX02] that for any obstruction O, |O| ≥ k+2 and |Oc| = k+2

if and only if Oc is Kk+2 (i.e., a complete graph with k + 2 vertices). Moreover, any
disconnected Od ∈ O(k–Vertex Cover) with k + 2 vertices must be a subgraph of
connected obstruction Kk+2, which is a contradiction. So for any Od, |Od| > k + 2. Thus
Lemma 8 of [DX02] can be stated as following:

For any obstruction O, |O| ≥ k + 2 and |O| = k + 2 if and only if O is Kk+2 (11)

So |O| = k + 3, if there exists vs ∈ V (O) with degree(vs)=k. 2

16



Obviously from (11), we also know that in an obstruction O, if there is a vertex
whose degree equals k, then k must be the maximum degree of this obstruction. From
(10), (11) and Corollary 14, we set up an upper bound and lower bound for all O ∈
O(k–Vertex Cover):

{
k + 3 ≤ |O| ≤ 2k − maxDegree(O) + 3, if maxDegree(O) ≤ k
O = Kk+2, if maxDegree(O) = k + 1

2.3 The cycle conjecture confirmed

Theorem 13 also leads to another nice result which was first proposed as Conjecture 12
of [DX02]. The main idea of the following proof is to filter the redundant constructional
possibilities by Theorem 13.

Theorem 15 The cycle C2k+1 is the only (and largest) connected obstruction for the graph
family k–Vertex Cover, where k ≥ 1.

Proof. We have to prove two things:

(1) C2k+1 is in O(k–Vertex Cover).
Because each vertex v ∈ V (C2k+1) is of degree 2, and k vertices in C2k+1 can cover at

most 2k edges, there is still one edge uncovered. Hence V C(C2k+1) = k + 1.
We mark vertices of C2k+1, as v1,v2, . . . v2k+1 in sequence, then {v1, v2, v4, v6, . . . , v2k} is

a minimum vertex cover of C2k+1. For each edge e ∈ E(C2k+1), the graph C2k+1 \ {e} is
isomorphic to a path P2k+1. We need at least k vertices to cover the 2k edges of P2k+1.
Hence V C(P2k+1) = k.

Thus, from our definition of an obstruction, we know C2k+1 ∈ O(k–Vertex Cover).

(2) C2k+1 is the only and largest connected obstruction with 2k + 1 vertices.
From Theorem 10 of [DX02] (i.e., |Oc| ≤ 2k+1), we know C2k+1 is the largest connected

obstruction of k–Vertex Cover.
Now, we prove C2k+1 is the only one with 2k + 1 vertices.
Theorem 13 states that for all v ∈ V (Oc), |Oc| ≤ 2k − max{degree(v)} + 3. This

implies: if max{degree(v)} ≥ 3, then |Oc| ≤ 2k. Hence, for all Oc, if |Oc| = 2k + 1, then
for all v ∈ Oc, degree(v) ≤ 2. Note for all v ∈ V (Oc) with k ≥ 1, degree(v) ≥ 2 since Oc

is biconnected. Then we know that for any connected graph G ∈ O(k–Vertex Cover),
if |G| = 2k + 1, then

For all v ∈ V (G), degree(v) = 2 (12)

Using breadth-first search to traverse all vertices of the connected graph G we see that
G must be a cycle. Hence C2k+1 is the unique connected graph with 2k + 1 vertices that
satisfies (12). Recall all connected graph G ∈ O(k–Vertex Cover) with 2k + 1 vertices
must satisfy (12). Thus C2k+1 is the only connected obstruction with 2k + 1 vertices. 2
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3 Generating Obstructions of k–Vertex Cover

In this section, we introduce two methods, namely Extension Method 1 and Extension
Method 2, which generate a graph in O((k + 1)–Vertex Cover) by transforming any
graph in O(k–Vertex Cover) in constant time.

Definition 16 L transformation
For a graph G, replacing any single edge of G with a path of length 3 (see Figure 12), and
keep the remaining part of G be unchanged. Let L(G) denote the resulting graph.

Extension Method 1.
For any connected obstruction Oc for k–Vertex Cover, (k ≥ 1), the graph L(Oc) ∈

O((k + 1)–Vertex Cover).

Explanation:
Obviously, L transformation is transitive. In other words, applying the L transformation on
Oc t times, the resulting graph is in O((k + t)–Vertex Cover). If the L transformation
is applied on symmetric edges of an Oc, then the resulting graphs are isomorphism.

v1 v3 v4 v2v1 v2

⇒

Figure 12: An edge (v1, v2) of G before the L transformation and then afterwords.

Proof. Referring to Definition 16, we pick an edge from a given Oc and name it (v1, v2).
Obviously Oc \ {(v1, v2)} = L(Oc) \ {(v1, v3), (v3, v4), (v4, v2), v3, v4} for two new vertices v3

and v4.
According to our definition of an obstruction there exists a minimum vertex cover V ′

with |V ′| = k of Oc \ {(v1, v2)}, such that v1, v2 /∈ V ′ (see Lemma 7); There exists a
minimum vertex cover V ′′ with |V ′′| = k + 1 of Oc, such that v1, v2 ∈ V ′′ (see Corollary
10). Any minimum vertex cover V ′′′ with |V ′′′| = k of Oc \ {e} (where e 6= (v1, v2)) must
be in one of three different cases: (1) v1 ∈ V ′′′, v2 /∈ V ′′′ (2) v1 /∈ V ′′′, v2 ∈ V ′′′ (3)
v1 ∈ V ′′′, v2 ∈ V ′′′. Note: To cover edge (v1, v2) of O \ {e}, at least one of {v1, v2} must be
in V ′′′.

Now we prove L(Oc) ∈ O((k + 1)–Vertex Cover).

1. V C(L(Oc)) ≤ k + 2, because V ′ ∪ {v3, v4} cover the edges of L(Oc) (see Figure 12).

Suppose, there is a set Ṽ of k + 1 (or less) vertices to cover E(L(Oc)). In order to
cover (v3, v4) of L(Oc):
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(a) Both v3 and v4 are in Ṽ :

The remaining k − 1 (or less) vertices Ṽ \ {v3, v4} cover the edges of L(Oc) \
{(v1, v3), (v3, v4), (v4, v2)} = Oc \ {(v1, v2)}∪ {v3}∪ {v4} ⊃ Oc \ {(v1, v2)}, which
contradicts V C(Oc \ {(v1, v2)}) = k.

(b) Only one of {v3, v4} is in Ṽ (generally assume it is v3):

The remaining vertices Ṽ \ {v3} cover the edges of L(Oc) \ {(v1, v3), (v3, v4)}.

Because v4 /∈ Ṽ , in order to cover (v4, v2), we know v2 ∈ Ṽ . Therefore, these k

(or less) vertices Ṽ \ {v3} cover E(Oc), which contradicts V C(Oc) = k + 1.

Thus V C(L(Oc)) = k + 2.

2. Delete any edge e in E(L(Oc)).

e = (v1, v3): V C(L(Oc) \ {e}) ≤ k + 1, because V ′ ∪ {v4} covers E(L(Oc)) \ {e};

e = (v4, v2): V C(L(Oc) \ {e}) ≤ k + 1, because V ′ ∪ {v3} covers E(L(Oc)) \ {e};

e = (v3, v4): V C(L(Oc) \ {e}) ≤ k + 1, because V ′′ covers E(L(Oc)) \ {e};

e 6= {(v1, v3), (v3, v4), (v4, v2)}: According to above 3 different cases of possible min-
imum vertex cover V ′′′ of Oc \ {e}, we construct a vertex cover for L(Oc) \ {e}
where: (1) V ′′′ ∪{v4} covers E(L(Oc)) \ {e}. (2) V ′′′ ∪{v3} covers E(L(Oc)) \
{e}. (3) V ′′′ ∪ {v3} covers E(L(Oc)) \ {e}.

Hence V C(L(Oc) \ {e}) ≤ k + 1 in all cases.

Obviously, there is no isolated vertices involved in the L transformation. Referring to an
equivalent form of condition (b) (i.e., condition (1)) of our definition of an obstruction for
k–Vertex Cover in Section 1, we conclude L(Oc) ∈ O((k + 1)–Vertex Cover). 2

Extension Method 2
For any obstruction O = (V, E) for k–Vertex Cover, the constructed graph G =

(V ′, E ′) where V ′ = V ∪ {v′} (a new vertex v′ /∈ V ) and E ′ = E ∪ {(v, v′)} ∪ {(v′, u) | u ∈
N(v)} for any v ∈ V is in O((k + 1)–Vertex Cover) (see Figure 13).

Proof. We prove this in terms of our definition of an obstruction.

(1) V C(G) = k + 2

Any minimum vertex cover Ṽ of O can not cover all edges adjacent to v′ in G, namely
E(v′). Otherwise, in order to cover E(v′) = {(v, v′)∪ {(u, v′) | u ∈ N(v)} in G, both v and

N(v) must be contained in a certain minimum vertex cover Ṽ of O. Therefore, k vertices

Ṽ \ {v} cover O, which is a contradiction. From Lemma 9(1), there exists a minimum
vertex cover V1 of O, such that N(v) ⊆ V1 and v /∈ V1. So k + 2 vertices {v′} ∪ V1 is a
vertex cover of G (i.e., V C(G) ≤ k + 2). Now we prove V C(G) > k + 1 by contradiction.

Suppose there exist k + 1 (or less) vertices U to cover the edges of G:
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v′

v

u1

u2

u4

u3

O ∈ O(k − Vertex Cover)

Figure 13: Illustrating Extension Method 2.

1. If v′ /∈ U then {v} ∪ N(v) ⊆ U . So k (or less) vertices U \ {v} cover E(O), which
contradicts V C(O) = k + 1.

2. If v′ ∈ U then the remaining k (or less) vertices U \ {v ′} cover E(O), which also
contradicts our definition of an obstruction for k–Vertex Cover.

Therefore, V C(G) = k + 2.

(2) For any e ∈ E ′, V C(G \ {e}) = k + 1

1. e ∈ E(v′): For any u ∈ N(v), from Lemma 7, we know there exists a minimum
vertex cover V ′ of O \ {(u, v)} with u, v /∈ V ′, so N(v) \ {u} ⊆ V ′ for covering each
edge that incident to v in O \ {(u, v)}. If e = (v′, u), V ′ ∪ {v} is a minimum vertex
cover of O, which also covers E(G) \ {e}. Similarly, if e = (v ′, v), V ′ ∪ {u} is a
minimum vertex cover of O, which also covers E(G) \ {e}. So, V C(G \ {e}) ≤ k + 1.
Because O ⊆ G \ {e}, V C(G \ {e}) ≥ V C(O) = k + 1. Hence V C(G \ {e}) = k + 1.

2. e ∈ E (i.e., any edge of O): For any minimum vertex cover Ṽ1 of O \ {e}, the k + 1

vertices {v′} ∪ Ṽ1 cover G \ {e}. Hence V C(G \ {e}) ≤ k + 1. One the other hand,
O\{e} ⊆ G\{e}. Hence V C(G\{e}) ≥ V C(O\{e}) = k. Further, V C(G\{e}) 6= k.

Otherwise, suppose e = (v1, v2) and Ṽ ′′ with |Ṽ ′′| = k covers the edges of G \ {e},

then k + 1 vertices {v1} ∪ Ṽ ′′ cover G. (Contradicts the above analysis results: (1)
V C(G) = k + 2). Hence V C(G \ {e}) = k + 1.

There is no isolated vertices involved in Extension Method 2. Therefore, we conclude
G ∈ O((k + 1)–Vertex Cover). 2
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From the small cases of O(k–Vertex Cover) that have been found (i.e. k ≤ 6) we see
that most of the connected obstructions are obtained by using one of these two extension
methods. In fact, for k = 6 only 15% (28/188) of the connected obstructions are not found
this way. A natural question comes up if one can find a sufficient set of extension methods to
find all O(k–Vertex Cover), whenever we have all the obstructions for smaller families
in the vertex cover hierarchy. A starting question is the following.

Question: Given any connected obstruction Oc ∈ O((k + 1)–Vertex Cover), is there
always an O′

c ∈ O(k–Vertex Cover) obtained from Oc by applying a sequence of edge
contractions?

Unfortunately, the answer to this question is “No”. This means that extension meth-
ods that only expand edges (like Extension Methods 1 and 2) could not generate all of
O(k–Vertex Cover) from the set O((k − 1)–Vertex Cover). Any further extension
methods must consist of more sophisticated operations of adding edges and vertices.

Counterexample: Let Oc be the graph displayed in Figure 14(a), which is an obstruction
in O(5–Vertex Cover). However, after contracting any edges of it, the resulting graph
will not be in O(4–Vertex Cover).

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1 = v2

Figure 14: (a) An O ∈ O(5–Vertex Cover) and (b) after contracting edge (v1, v2).

Proof. Analysis by way of symmetry. All cases of contracting edges can be classified into
three categories as following:
(1) Contract one edge.

1. Contracting edge (v1, v2), we get the graph in Figure 14(b). This graph is not
in O(4–Vertex Cover). Otherwise, if we delete edge (v5, v7), from Lemma 7,
N(v5) ∪ N(v7) should be in any minimum vertex cover of resulting graph. But,
there are 5 vertices, which contradicts our definition of O′

c being an obstruction of
4–Vertex Cover.
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2. Contract edge (v1, v3). Similar analysis (i.e., delete edge (v4, v6)) will show that the
resulting graph is not a member of O(4–Vertex Cover) either.

(2) Contract any two edges e1 and e2.
All resulting graphs are of order 6, because each contraction reduces the order by one.

However, the contract edge operations will not change the degrees of the vertices that are
not involved. Thus, it must not be K6, which is the only obstruction of 4–Vertex Cover

of order 6. We know none of them is in O(4–Vertex Cover), because all of them would
be proper subgraphs of K6.
(3) If we contract more than two edges, then the order of the resulting graph is strictly less
than 6. Again all of them are proper subgraphs of K6, so they are not in O(4–Vertex Cover)
as well. 2

We end this section by mentioning that, using these two extension methods, we have
computed a new lower bound on the size of O(7–Vertex Cover): there are at least 1503
connected obstructions to go along with the exact count of 320 of disconnected obstructions.

4 Conclusion

In this paper our main contributions are the following: (1) we confirmed a conjecture
that there is an unique largest connected obstruction for each k–Vertex Cover, (2)
established that the minor-order obstructions for k–Vertex Cover can be equivalently
viewed as a finite set of forbidden subgraphs, and (3) presented two simple iterative methods
for producing many obstructions for k–Vertex Cover.

In our quest to understand the properties of the vertex cover obstructions we have
also discovered several areas to continue the study. First, can we exploit our new vertex
bound (based on maximum degree) for obstructions of k–Vertex Cover (e.g. is the
case for k = 7 now approachable)? Secondly, it would be nice to extend the number of
available extension methods to generate more (if not all) obstructions within the vertex
cover hierarchy of graph families. A final area of research, is to see if we can better
characterize k–Vertex Cover (or other graph families) by obstructions with respect to
other graph partial orders.
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A Appendix

In Theorem 10 of [DX02], Dinneen and Xiong set up an upper bound of all connected obstructions for
k–Vertex Cover: Any Oc = (V, E) contains at most 2k + 1 vertices. Here, for the benefit of the reader,
we give a more refined proof.

Proof. Let V1 denote a minimum vertex cover of an Oc and V2 = V \ V1, from Statement 2, we know
N(V2) = V1 (see Figure 3). From our definition of an obstruction, we know |V1| = |V C(Oc)| = k + 1.

From Statement 4, we know for all S ⊆ V2, |N(S)| ≥ |S|. In particular, let S = V2, then |V2| ≤
|N(V2)| = |V1| = k + 1.

Suppose |V2| = k + 1, by applying Hall’s Marriage Theorem, there is a matching of cardinality k + 1 in
the induced bipartite subgraph of Oc. To cover these k + 1 independent edges, a vertex cover of size k + 1
is necessary.

As Oc is a connected graph, there must exist other edges in Oc except these k + 1 independent edges.
If those edges are deleted, to cover the resulting graph, we still need at least k + 1 vertices. Therefore
|V2| 6= k + 1. So |V2| ≤ k, then |V | = |V1| + |V2| ≤ k + 1 + k = 2k + 1. 2

In [DX02], the possible defect in the proof of this theorem is for when considering the alternative case
for |V | > 2k+2. In that case it is possible that the minimum subset V3 satisfying Statement 3(1) is exactly
V2. To fix that problem, we need to further divide V3 to be V ′

3
∪ {v} so that V5 contains at least one

vertex v.
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