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Abstract. Godel's incompleteness theorem states that every finitely-presented, consistent, sound
theory which is strong enough to include arithmetic is incomplete. In this paper we present ele-
mentary proofs for three axiomatic variants opdel's incompleteness theorem and we use them

(a) to illustrate the idea that there is more than “complete vs. incomplete”, there are degrees of
incompleteness, and (b) to discuss the implications of incompleteness and computer-assisted proofs
for Hilbert's Programme. We argue that the impossibility of carrying out Hilbert's Programme is a
thesisand has a similar status to the Church-Turing thesis.

1. Introduction

By 1930 research in the foundations of mathematics was in full swing. In 1929 Presburger [23] proved
that the arithmetic without multiplication is decidable, in 1930d@l proved the completeness of the
first-order logic giving a justification for the logical axioms and inference rules, in 1931 Skolem [24]
showed that the arithmetic without addition and successor is decidable and Herbrand [17] found fini-
tary consistency proofs for interesting fragments of arithmetic. All these results seemed to fit well
with Hilbert's Programme—designed to safeguard mathematical axiomatic theories by proving their
consistency—except for a new theorem proved ligl€ in 1930.
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Godel's incompleteness theorem, announced on 7 October 1930riiggberg at the First Inter-
national Conference on the Philosophy of Mathematics (part of the German Mathematical Congress)
was referred to as a landmark of the twentieth century mathematics. It says ghebnsistent, sound,
finitely-specified theory strong enough to formalize arithmetic, there are true, but unprovable statements
(such a statement is call@lependent so, such a theory imcomplete

According to Hintikka ([18], p. 4), with the exception of von Neumann, who immediately grasped
Godel's line of thought and its importance, irbKigsberg incompleteness passed un-noticed. In spite
of being praised, discussed, used (or abused) by many authors, the incompleteness theorem seems, even
after so many years since its discovery, stranger than most mathematical theorems.

In this paper we prove in an elementary way three axiomatic variantdéks incompleteness
theorem. We first use these results to illustrate the idea that there is more than “complete vs. incom-
plete”, there are degrees of incompleteness. We emphasize that ultimately a mathematical theory or,
more generally, a system of logic, is simplynethod of mechanically listing the theorems (logically true
sentences)Godel’s theorendoes not prove that there are any true hlnsolutelyunprovable sentences
it shows that not all true arithmetical sentences can be provehanically The method of mechanical
listing (proving) is essential: it can be a method obtained by a group of mathematicians, a standard PC
or a PC augmented with a source generating truly random numbers. Secondly, we address the following
guestions: Is incompleteness “invariant” in some way with respect to the listing method? Has incom-
pleteness (especially when powerful computer-assisted methods of listing are available) any bearing on
Hilbert's Programme? We argue that the impossibility of carrying out Hilbert's Programmthésis
and has a similar status to the Church-Turing thesis.

2. Prerequisites

The first-order language of arithmetic includes the following elementgaddition), x (product),0
(zero), s (successor)= (equality),—, A, V (propositional connectives), 3 (quantifiers),(, ) (parenthe-
ses), (prime symbol), and the symbsl The variables of the language are expressions, z”, 2", . . .

built up from the symbols: and’. The symbols denotes the successor function. Variables are assumed
to have values in the set of non-negative integers which can be generated as follaws:s(0),2 =

s(1) = s(s(0)),. .., so eacn € IN is mirrored byn. Sometimes variables will be abbreviated by single
letters: x1, xo, y, 2, etc. Formulas are built up in the natural way. For examylelr’ (2’ = s(z)) is a

true formula,Yz32'(z = s(2')) is a false formula. All variables appearing in the above formulas are
quantified—they are bound. In the formdla’(s(x) + 2’ = 2”), denoted, say by(z, 2”), the variable

2’ is bound, but the variables =" are not—they are free. The truth value of the formyla, ") de-
pends upon the truth values of free variables: intuitively), 1) is true, butp(1, 0) is false. Asentence

is a formula with no free variables; hence, a sentence is either true or fajse:)lis a formula contain-

ing only the free variable, then for eactn € IN, p(n) is aninstanceof ¢(z), that is a sentence; hence,
©(n) is either true or false.

According to Tarski (see [21], p. 364), theith of a sentencey, in writing, IN = ¢, is inductively



C.S. Calude, S. Rudeanu/Proving as a Computable Procedure 3

defined as follows:

NEn+m=p & m+n=p
NEnxm=p & m-n=p
NE-¢ & not(N )
NEYAYy; < INEyandN E ¢y
NEYVY)y < INEyorNE Y,
IN = Jz¢p(x) < for somen, IN = ¢(n)
IN =Vay(z) < foralln, N = (n)

The first-order language of arithmetic is quite powerful; for example, Goldbach’s conjecture or Rie-
mann’s hypothesis can be formalized in this language.

An axiomatic theoryconsists of a formal language plus a system of axioms and inference rules.
Presburger arithmetids the first-order theory of the natural numbers with axioms for successor and
addition. Concepts such as divisibility or prime number cannot be formalized in Presburger arithmetic.
There is an algorithm which decides, for any given statement in Presburger arithmetic, whether it is
true or not; the theory is consistent and complete, cf. [Bjbinson arithmetids a first-order theory
of the natural numbers with addition and multiplication; it contains seven axioms, called the theory
Q, relating the successor function, addition and multiplication. Robinson arithmetic cannot prove the
formulavVz(—(z = s(z))), cf. [8], p. 183-184.Peano arithmetids a stronger theory: it consists in
adding every instance of the first-order schema of induction to the tkigory

The essence of all theories is the fact that theorems can be enumerated by some kind of miachines
the classical cases, from the propositional or predicate calculi to Peano arithmetic, theorems are enumer-
ated by Turing machines, they atemputably enumerahld=or more details see [1, 8, 26]. But, there
are more powerful machines!

We assume that the reader has some familiarity with computability theory and (self-delimiting) Tur-
ing machines processing binary strings (see, for example, [2]). Let U fx{0, 1}; by X* we denote
the set of finite strings (words) oki. The length of the string is denoted byw|. The computation of a
Turing machinél’ on a stringw may or may not halt; if it stops, then it produces a (unique) string denoted
by T'(w); if it doesn’t stop, then it produces no output. Tiregram se{domain) of the Turing machin&
is the setPROGr = {x € X* : T halts onz}. All Turing machines will beself-delimitingin the sense
that their program sets are prefix-free; a self-delimiting Turing machine will be shortly cadiehine A
partial functiony from strings to strings is callgpartial computablgabbreviated p.c.) if there is a ma-
chineT such that: aP ROGr = dom (), and b)T'(z) = ¢(x), for each: € PROG . Theprogram-
size complexityf the stringz € X* (relatively toT) is Hy(z) = min {|y| : y € X*, T(y) = =},
wheremin ) = oo. The Invariance Theorem states that we can effectively construct a mac¢hine
(calleduniversal) such that for every machirig there exists a constant> 0 such that for allz € X*,

Hy(z) < Hp(z) + . Clearly,U simulates every maching. In what follows we will fix U and put
H = Hy.

A p.c. functiony such thatdom (¢) = X* is calledcomputable A set of strings iomputabléf
its characteristic function is computable. A set of stringsdmputably enumerabl@bbreviated c.e.)
if it is the program set of a Turing machine. Every computable set is c.e., but the converse implication
is not true: for exampleP ROGy; is c.e. and not computable, hence its complement is not c.e. The set
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{r € X*: H(z) < |z| — t} is c.e. and not computable, for eack IN; its complement is not only not
c.e., it contains no infinite c.e. set (such a set is caittf@dung.

LetY C X*. An oracle Y—machine is a machine “endowed” with the ability to decide the mem-
bership in its “oracle” set of stringg. In this paper we will be interested in machines working with the
oracle set = PROGy. Deciding the membership i is equivalent with solving the Halting Prob-
lem. Intuitively, a computation executed bya-oracle machine is a normal computation which has the
additional power to use the answers to finitely many questions of the form tisK™? Most concepts
and results in the theory of computability relativize to oracle machines, in particuld—toachines.

The analogues of computable and c.e. setdsareomputable and—c.e. sets. Obviously{—machines
are more powerful than machines, Asis not computable. The results on program-size complexity
described above relativize as well&-machines.

There is a very strong relation between c.e. sets and a class of formulas which can be expressed in the
language of arithmetic. A formula in the language of first-order arithmetic is call&g if ¢ contains
only bound variables. A formula(z1, ..., zx) in the language of arithmetic is callég if it is of the
form (3z; ... 3xk)y, wherey is aA formula. The negation of &; formula is called d1; formula.
Similarly, ¥,, andII,, formulas can be constructed. The Representation Theorem states that a relation
R c IN¥is c.e. iff there (effectively) exists ¥, formulag(zy, ..., z;) suchthatforalh,, ... n; € IN:
(ni,...,ng) € R & N = ¢(ng,...,ng).

We consider the following bijection between non-negative integers and strings on— A, 1 —

0,2 — 1,3 — 00,4 — 01,5 — 10,6 — 11,... The image ofn, denotedbin(n), is the
binary representation of the number+ 1 without the leading 1. The length @in(n) is roughly

equal tolog,(n). So, for computability issues we will not differentiate between strings and non-negative
integers: ifv = bin(n), then the string is identified with the naturak. In particular, X* = ¢
means thaty is true when interpreted on strings. The Representation Theorem is true for strings: a
relation R c (X*)* is c.e. iff there (effectively) exists &, formula¢(z1, ..., ;) such that for all
V1.0 € X5 (V1,0 ,08) ER & XF = @(ve, ..., VE).

3. Degrees of Incompleteness

Consider an axiomatic theort. We will not be concerned with any details regarding the axioms or
inference rules of the axiomatic thead;, the onlysyntactical propertywe will use is thatthe set of
theorems proved il is c.e. Hence, in what follows we will work with a c.e. séy C X* and assume
that T4 is the set of Gdel numbers of theorems proved .t The “natural” way to enumerate the
theorems of a theoryl is via their proofs, so a theorem may appear infinitely many timés4inThis
method, pioneered bydglel, is calledGodel numberingthe elements of 4 are the Gdel numbers of
the theorems itA.

To achieve generality, our study will conceaxiomatic theoriesA proving (among other facts)
properties of non-negative integeiis fact, we will focus our attention exactly on the theorems of the
theory which establish properties of nhon-negative integers. We will say that such a toatajns the
first-order arithmetic Robinson arithmetic or Peano arithmetic are examples. We note that if the set of
theorems of4 is c.e., then the subset of theoremsbéstablishing sentences of the first-order language
of arithmetic is also c.e. Hence, we will work with the c.e. %&t.;;;, € T4 of Gdodel numbers of
theorems establishing sentences expressed in the first-order language of arithmetierpgketationof
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T arith IS @ computable functionmappingT'a..;+;, iNto the set of sentences of arithmeticadfe Ty,i1p
andy = (w), thenw is the Gddel number ofp.

We can ask now: Can we find an axiomatic thedrgapable of proving all true first-order arithmeti-
cal sentences? To relate the theorems provedlamd the sentences of arithmetic we will not work with
global properties of the theooyt, but only with those properties pertaining to non-negative integers: (a)
the pair(.A, 1) is (arithmetically) soundf for every w € T4, 1(w) is true, that is,4 proves only true
first-order arithmetical sentences, (b) the galr ) is (arithmetically) completé every true sentence
is provable inA, i.e., there exists @ € T4, such that(w) = ¢, (c) the pair( A, 2) is (arithmetically)
consistentf there is no first-order sentengeand there are no, w € X* such that(v) = ¢, 1(w) = -,
that is,.4 does not prove both a sentence and its negation. Note that (a) and (b) are semantical properties,
while (c) is syntactical; for more details see [18], p. 16.

In the above definitions we talked about “true” sentences; the way we define/express them directly
influences the degree of rigour of our results. Tarski’'s method of defining truth makes use of the “in-
tuitive” meaning of arithmetic, hence it is only a step toward formalisation. This fact was discussed
in detail by Gdel [14], when he distinguished between true mathematical propositions (objective) and
demonstrable mathematical propositions (subjective).

In what follows we will work with an axiomatic theoryl (whose set of theorems is c.e.) and a fixed
interpretatior; for brevity, sometime we will refer to the pai, :) as.A.

Theorem 3.1. (Gdel Incompleteness Theorem: First Variant)

For every consistent, c.e. and sound axiomatic thégry) containing the first-order arithmetic there
effectively exist a; formulay(z) (containing a unique free variabtg and a stringv € X™* such that
1(v) € {p(w), ~p(w)}, for eachv € X*.

Proof:

Use the Representation Theorem for the c.e./Sdb effectively construct &; formula ¢(z) in the
language of first-order arithmetic such that for everye X* we have:w € K < X* = ¢(w).
Assume by absurdity that for evety € X* there existey € X* (which depends upom) such that
1(v) = p(w) ore(v) = —p(w). We construct now an enumeration procedure for the compleméxit of
an impossibility because this would imply the computability?6f The procedure is the following: for
eachw € X* we start enumerating all stringse X* till we obtainz(v) = ¢(w) or:(v) = —p(w) (a
decidable test) and list thoses for which:(v) = = (w). In this way we obtain all the elements of the
complement of” and only them. Indeed, ib is listed, then(v) = —p(w) for somewv, so because of
soundnessX™* | —p(w), so by the Representation TheoremZ K. Conversely, ifw ¢ K, then itis
impossible to find @ such that(v) = —¢(w), sow is enumerated in the list. 0

Comment The above proof rests ontaoken symmetrythe class of formulas is closed under the
negation, but the class of c.e. sets is not closed under complement. Note that the theorem does not say
anything about the truth of the formulgw): it simply proves that the theogt cannot provex(w) and

—p(w).

Corollary 3.1. For every consistent, c.e. and sound axiomatic thégry:) containing the first-order
arithmetic there effectively existsI&; formula (z) (containing a unique free variahtg such that for
somew € X*, X* = ¢(w), bute(v) # ¢p(w), for eachv € X*. In other words, each consistent, c.e.
and sound axiomatic theory containing the first-order arithmetic is incomplete.
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Proof:
Takey(z) = —p(z), whereyp is theX; formula in Theorem 3.1. 0

Corollary 3.2. The set of all true sentences expressible in the first-order language of arithmetic is not
c.e.

Comment The theoryA cannot provall true sentenceg(s), but the proof presented does not rule
out the possibility thatd proves infinitely many true sentenceés). Reason: the complement of the set
K is not c.e., but it contains infinite c.e. subsets. There is, however, afddthfermula, containing a
unigue free variable, such thdtcannot prove more than finitely many true instances of it.

Theorem 3.2. (@del Incompleteness Theorem: Second Variant)

For every consistent, c.e. and sound axiomatic thégkry) containing the first-order arithmetic there
effectively exists d1; formula(x) (containing a unique free variablg such that the sefw € X* :
X* E¢(w),(v) = (w), for somev € X*} is finite.

Proof:

instead of a c.e. and non-Use the Representation Theorem for the §e.séf* : H(z) < |z|—t}, for

any fixedt > 0: there effectively exists 8, formulap(x) such that forevery € X*: H(u) < |u|—t <

X* | p(u). Thell; formulay(z) = —¢(x) satisfies the equivalencéf (u) > |u| —t < X* = ¢(u).
Assume that the setT'4,-;;1,) contains all true arithmetical sentences. Using consistency, the computable
function: and the formula) we can enumerate all theoremascorresponding to true sentences of the
form ¢)(w) to produce an enumeration of the immune et ¢ X* : H(w) > |w| — t}: thisis a
contradiction. Hencel 4,.;;», cannot contain more than finitely many true instancesg.of O

Comment Solovay [27] has proved that for every consistent, c.e. and sound axiomatic tdeory
containing the first-order arithmetic there effectively exisidxaformula ¢ (z,y) (containing two free
variablesr, i) such that4 cannot prove any true instance of it.

Assume now that the theorems of the axiomatic theory are generated by a more powerful machine,
for example, one which is capable of accessing an oracle solving the Halting Problem. This scenario
is motivated by the recent advent of computer-assisted proofs (see, for example, [4]) and the interest in
unconventional architectures capable of trespassing the Turing barrier (a Turing machine supplemented
with a quantum source of random bits is an example, see [3]). Will such a theory be capable of proving
all true first-order properties of non-negative integers?

To answer this question we will work with E—c.e. axiomatic theory, i.e., a theory whose theorems
forms aK—c.e. set. Again, the interpretation will be a computable functivom a K—c.e. set into the
set of sentences of first-order arithmetic.

Theorem 3.3. (Gdel Incompleteness Theorem: Third Variant)

For every consistenf{—c.e. and sound axiomatic theduy, 2) containing the first-order arithmetic there
effectively exists dl» formulay(z) (containing a unique free variabig such that the seftw € X* :
X* = p(w),1(v) = ¢(w), for somev € X*} is finite.

Proof:
This proof is just a relativized form of the proof of Theorem 3.2, where we use Post Theorem (see [6],
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p. 220) for the relativized program-size complexty* and we note that the complement of tiiec.e.
set{w € X* : HX(w) < |w| — t} is K—immune, i.e., it is infinite and contains dé—c.e. infinite
subset. 0

Comment The axiomatic theory in Theorem 3.3 proves all true instances of éveifprmula, but
fails to prove true instances of somk formulas. Of course, by relativization, similar results can be
proved at every level of the Arithmetical Hierarchy.

4. Consistency and Hilbert's Programme

For Godel [11] the problem of giving a foundation of mathematics (understood as “the totality of the
methods of proof actually used by mathematicians”) falls into two parts, the first to reduce the methods
“to a minimum number of axioms and primitive rules of inference, which have to be stated as precisely
as possible”, and then, the second, “a justification in some sense or other has to be sought for these
axioms, i.e., a theoretical foundation of the fact that they lead to results agreeing with each other and
with empirical facts”. The first question was considered to be satisfactorily solved by the “formalization
of mathematics in the simple theory of types”. However, for the second problem, “... it must be said
that the situation is extremely unsatisfactory”. The pure syntactical part, in which mathematics is a game
with symbols, seems acceptable, but serious problems start to appear as soon as meaning is attached to
symbols.

Thirty years after, @del's view (see [14], p. 379) was that Hilbert's formalism was a curious
hermaphroditic attempt to reconcile the philosophical spirit of (his) time and the true nature of math-
ematics. On one hand, it is recognised that the truth of axioms cannot be justified, hence the meaning
of any consequence deriving from them is only hypothetical, and, on the other hand, “one clung to the
belief” that a mathematical proof provides a secure grounding for the statement it proves and “every
precisely formulated yes—no question in mathematics must have a clear-cut answer”. The aim is to prove
that, in the mathematical game, of two sentengemnd —, exactly one can always be derived. This
is the important property ofonsistency if it is impossible to derive both) and —, then the math-
ematical question expressed Bycan have a clear-cut answer. The question of consistency is purely
combinatorial, so one might hope to establish itumpbjectionable methods

Hilbert's 1920 programme proposed that the consistency of more complicated theories, such as real
analysis, could be proven in terms of simpler theories, and, ultimately, the consistency of all of mathemat-
ics could be reduced to basic arithmetic. In other words, we first build an axiomatic tdecwyering
the entire mathematics, and secondly, we use Peano arithmetic to prove the consisténdyilbirt
requested that the method of proving consistency had fmibary.

As noted by @del, the first stage was accomplishedjd@l himself was an important contributor.
However, according to &lel’s second incompleteness theord?aano arithmetic cannot be used to
prove its own consistencygo it certainly cannot be used to prove the consistency of anything stronger.
Does it mean that there is no hope of carrying out Hilbert’s programme? Many authors acknowledge that
Godel’s second incompleteness theorem, by itself, cannot refute Hilbert's Programme (see, for example,
[20, 7, 18]). An important issue is the generality of the notion of formal system useddelG incom-
pleteness theorem. But, even working with a general, axiomatic definition of a formal system (as we
did in the previous section) does not give full guarantee because the very generality of such a definition
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would be questionable. In this sense, the impossibility of carrying out Hilbert's Programnibésia
and has a similar status to the Church-Turing thesis.

Well before Gdel, Poincak [22] (volume 2, chapter 4) warned against justifying the induction prin-
ciple by means of the induction principle, a principle building Peano arithmetiadelGhimself had
subtle variations in interpreting the above argumentation. In [11] he seems to agree. In [12] he ex-
plicitely states that his second incompleteness theorem does not contradict Hilbert's formalistic point of
view as “it is conceivable that there exist finitary proofs tbatnotbe expressed in the formalism ...”;
this point seems not to square well with “Hilbertian combination of materialism and aspects of classical
mathematics thus proves to be impossible” (see [15] p. 381). Finally, in [16] we read: “there are ...
no conclusivecombinatorialconsistency proofs (such as Hilbert expected to give)” with the important
additional notes: “it does not follow from my theorems that there areamvincingconsistency proofs
for the usual mathematical formalisms” and “the concept of a combinatorial proof, although intuitively
clear, has not yet been precisely defined”.

There are subtle problems related to specific axiomatisations of arithmetic. For example, it is possible
to prove the consistency of Robinson arithmetic in Peano arithmetic but not in itself, see [1], Chapter 16.
More interestingly, the set theoyF' can prove the sentence asserting the consistency of Peano arith-
metic (translated into the language of sets); the original formula cannot be proved in Peano arithmetic.
We have an example of a sentence asserting some property of natural numbers which can be proved in
ZF, but not in Peano arithmetic. The arithmetic expressed in terms of sets is stronger than first-order
arithmetic, which is stronger than Robinson arithmetic. Presburger arithmetic is complete; Robinson and
Peano arithmetics are not because they are too powerful. In 1936 Gentzen proved the consistency of
Peano arithmetic assuming all principles of induction “at once” (for all well-orderings); sees[1®],
Does this proof qualify as “unobjectionable”?

All consistency and completeness theorems (as for propositional or predicate calculi) are not proved
within those calculi, but from “outside”. A consistency proof “from inside” may not be really credi-
ble (like police giving a non-corruption certificate for itself). So, perhaps, the second incompleteness
theorem is not a negative result, not a limit, bup@sitiveresult! Every axiomatic theory is open to
extensions. This view seems to match well withdel's [15] “the truth lies in the middle” (he accepts
the idea of mathematics as a theory of truth, which is complete in the sense that “every precisely formu-
lated yes—no question in mathematics must have a clear-cut answer”, but rejects the idea that the basis of
mathematics truths is embedded in the axioms) and with Chaitin’s [5] observation that all real systems
are dynamical, vary in time: “Why mathematics has to be static, fixed once for all?”, “How come that in
spite of incompleteness, mathematicians are making so much progress?”

Are there any “solutions”? &del [13] was optimistic: “But there remains the hope that in the fu-
ture one may find other and more satisfatory methods of construction beyond the limits of the system A
[capturing finitist methods], which may enable us to found classical arithmetic and analysis on them.”
Later on, G®del [15], inspired by Husserl's phenomenology, suggested that an alternative to securing
the mathematical game of symbols is “cultivating (deepening) knowledge of the abstract concepts them-
selves which lead to the setting up of these mechanical systems”. Reverse mathematics—concerned
with the minimal axioms needed to prove a particular theorem—is another solution; see [25]. “Partial
completeness” was suggested by Hintikka [18], p. 26: one does not need full completeness to carry
out Hilbert's Programme, only completeness as far as the consequences of the specific theory one wants
to justify are concerned. This can be achieved, for example, via “practical consistency”: prove, for a
given very largeN, that there is no senteneeof length less thaV such that the theory proves both
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and—s. In this direction, provability with the help of a Turing machine supplemented with a quantum
source of random bits may offer at least an empirical confirmation. But there is more. If our “computing
device” might solve the Halting Problem, or even the Halting Problem for programs up to a fixed, large
length (measured in bits)—an open question for the combination “Turing machine supplemented with a
guantum source of random bits” (see [3])—then, we might have a “computational” alternative: simply
compute the finite set of provable sentences (which are all halting programs) and check consistency.
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