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Abstract. Gödel’s incompleteness theorem states that every finitely-presented, consistent, sound
theory which is strong enough to include arithmetic is incomplete. In this paper we present ele-
mentary proofs for three axiomatic variants of Gödel’s incompleteness theorem and we use them
(a) to illustrate the idea that there is more than “complete vs. incomplete”, there are degrees of
incompleteness, and (b) to discuss the implications of incompleteness and computer-assisted proofs
for Hilbert’s Programme. We argue that the impossibility of carrying out Hilbert’s Programme is a
thesisand has a similar status to the Church-Turing thesis.

1. Introduction

By 1930 research in the foundations of mathematics was in full swing. In 1929 Presburger [23] proved
that the arithmetic without multiplication is decidable, in 1930 Gödel proved the completeness of the
first-order logic giving a justification for the logical axioms and inference rules, in 1931 Skolem [24]
showed that the arithmetic without addition and successor is decidable and Herbrand [17] found fini-
tary consistency proofs for interesting fragments of arithmetic. All these results seemed to fit well
with Hilbert’s Programme—designed to safeguard mathematical axiomatic theories by proving their
consistency—except for a new theorem proved by Gödel in 1930.
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Gödel’s incompleteness theorem, announced on 7 October 1930 in Königsberg at the First Inter-
national Conference on the Philosophy of Mathematics (part of the German Mathematical Congress)
was referred to as a landmark of the twentieth century mathematics. It says thatin a consistent, sound,
finitely-specified theory strong enough to formalize arithmetic, there are true, but unprovable statements
(such a statement is calledindependent); so, such a theory isincomplete.

According to Hintikka ([18], p. 4), with the exception of von Neumann, who immediately grasped
Gödel’s line of thought and its importance, in Königsberg incompleteness passed un-noticed. In spite
of being praised, discussed, used (or abused) by many authors, the incompleteness theorem seems, even
after so many years since its discovery, stranger than most mathematical theorems.

In this paper we prove in an elementary way three axiomatic variants of Gödel’s incompleteness
theorem. We first use these results to illustrate the idea that there is more than “complete vs. incom-
plete”, there are degrees of incompleteness. We emphasize that ultimately a mathematical theory or,
more generally, a system of logic, is simply amethod of mechanically listing the theorems (logically true
sentences). Gödel’s theoremdoes not prove that there are any true butabsolutelyunprovable sentences:
it shows that not all true arithmetical sentences can be provedmechanically. The method of mechanical
listing (proving) is essential: it can be a method obtained by a group of mathematicians, a standard PC
or a PC augmented with a source generating truly random numbers. Secondly, we address the following
questions: Is incompleteness “invariant” in some way with respect to the listing method? Has incom-
pleteness (especially when powerful computer-assisted methods of listing are available) any bearing on
Hilbert’s Programme? We argue that the impossibility of carrying out Hilbert’s Programme is athesis
and has a similar status to the Church-Turing thesis.

2. Prerequisites

The first-order language of arithmetic includes the following elements:+ (addition),× (product),0
(zero),s (successor),= (equality),¬,∧,∨ (propositional connectives)∀,∃ (quantifiers),(, ) (parenthe-
ses),′ (prime symbol), and the symbolx. The variables of the language are expressionsx, x′, x′′, x′′′, . . .
built up from the symbolsx and′. The symbols denotes the successor function. Variables are assumed
to have values in the set of non-negative integers which can be generated as follows:0,1 = s(0),2 =
s(1) = s(s(0)), . . ., so eachn ∈ IN is mirrored byn. Sometimes variables will be abbreviated by single
letters:x1, x2, y, z, etc. Formulas are built up in the natural way. For example,∀x∃x′(x′ = s(x)) is a
true formula,∀x∃x′(x = s(x′)) is a false formula. All variables appearing in the above formulas are
quantified—they are bound. In the formula∃x′(s(x) + x′ = x′′), denoted, say byϕ(x, x′′), the variable
x′ is bound, but the variablesx, x′′ are not—they are free. The truth value of the formulaϕ(x, x′′) de-
pends upon the truth values of free variables: intuitively,ϕ(0,1) is true, butϕ(1,0) is false. Asentence
is a formula with no free variables; hence, a sentence is either true or false. Ifϕ(x) is a formula contain-
ing only the free variablex, then for eachn ∈ IN, ϕ(n) is aninstanceof ϕ(x), that is a sentence; hence,
ϕ(n) is either true or false.

According to Tarski (see [21], p. 364), thetruth of a sentenceϕ, in writing, IN |= ϕ, is inductively
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defined as follows:

IN |= n + m = p ⇔ m+ n = p

IN |= n×m = p ⇔ m · n = p

IN |= ¬ψ ⇔ not(IN |= ψ)
IN |= ψ0 ∧ ψ1 ⇔ IN |= ψ0 andIN |= ψ1

IN |= ψ0 ∨ ψ1 ⇔ IN |= ψ0 or IN |= ψ1

IN |= ∃xψ(x) ⇔ for somen, IN |= ψ(n)
IN |= ∀xψ(x) ⇔ for all n, IN |= ψ(n)

The first-order language of arithmetic is quite powerful; for example, Goldbach’s conjecture or Rie-
mann’s hypothesis can be formalized in this language.

An axiomatic theoryconsists of a formal language plus a system of axioms and inference rules.
Presburger arithmeticis the first-order theory of the natural numbers with axioms for successor and
addition. Concepts such as divisibility or prime number cannot be formalized in Presburger arithmetic.
There is an algorithm which decides, for any given statement in Presburger arithmetic, whether it is
true or not; the theory is consistent and complete, cf. [23].Robinson arithmeticis a first-order theory
of the natural numbers with addition and multiplication; it contains seven axioms, called the theory
Q, relating the successor function, addition and multiplication. Robinson arithmetic cannot prove the
formula∀x(¬(x = s(x))), cf. [8], p. 183–184.Peano arithmeticis a stronger theory: it consists in
adding every instance of the first-order schema of induction to the theoryQ.

The essence of all theories is the fact that theorems can be enumerated by some kind of machines. In
the classical cases, from the propositional or predicate calculi to Peano arithmetic, theorems are enumer-
ated by Turing machines, they arecomputably enumerable. For more details see [1, 8, 26]. But, there
are more powerful machines!

We assume that the reader has some familiarity with computability theory and (self-delimiting) Tur-
ing machines processing binary strings (see, for example, [2]). Let us fixX = {0, 1}; byX∗ we denote
the set of finite strings (words) onX. The length of the stringw is denoted by|w|. The computation of a
Turing machineT on a stringw may or may not halt; if it stops, then it produces a (unique) string denoted
byT (w); if it doesn’t stop, then it produces no output. Theprogram set(domain) of the Turing machineT
is the setPROGT = {x ∈ X∗ : T halts onx}. All Turing machines will beself-delimitingin the sense
that their program sets are prefix-free; a self-delimiting Turing machine will be shortly calledmachine. A
partial functionϕ from strings to strings is calledpartial computable(abbreviated p.c.) if there is a ma-
chineT such that: a)PROGT = dom (ϕ), and b)T (x) = ϕ(x), for eachx ∈ PROGT . Theprogram-
size complexityof the stringx ∈ X∗ (relatively toT ) is HT (x) = min

{
|y| : y ∈ X∗, T (y) = x

}
,

whereminO/ = ∞. The Invariance Theorem states that we can effectively construct a machineU
(calleduniversal) such that for every machineT there exists a constantε > 0 such that for allx ∈ X∗,
HU (x) ≤ HT (x) + ε. Clearly,U simulates every machineT . In what follows we will fixU and put
H = HU .

A p.c. functionϕ such thatdom (ϕ) = X∗ is calledcomputable. A set of strings iscomputableif
its characteristic function is computable. A set of strings iscomputably enumerable(abbreviated c.e.)
if it is the program set of a Turing machine. Every computable set is c.e., but the converse implication
is not true: for example,PROGU is c.e. and not computable, hence its complement is not c.e. The set
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{x ∈ X∗ : H(x) ≤ |x| − t} is c.e. and not computable, for eacht ∈ IN; its complement is not only not
c.e., it contains no infinite c.e. set (such a set is calledimmune).

Let Y ⊂ X∗. An oracleY –machine is a machine “endowed” with the ability to decide the mem-
bership in its “oracle” set of stringsY . In this paper we will be interested in machines working with the
oracle setK = PROGU . Deciding the membership inK is equivalent with solving the Halting Prob-
lem. Intuitively, a computation executed by aK–oracle machine is a normal computation which has the
additional power to use the answers to finitely many questions of the form “Isw in K”? Most concepts
and results in the theory of computability relativize to oracle machines, in particular toK–machines.
The analogues of computable and c.e. sets areK–computable andK–c.e. sets. Obviously,K–machines
are more powerful than machines, asK is not computable. The results on program-size complexity
described above relativize as well toK–machines.

There is a very strong relation between c.e. sets and a class of formulas which can be expressed in the
language of arithmetic. A formulaϕ in the language of first-order arithmetic is called∆0 if ϕ contains
only bound variables. A formulaϕ(x1, . . . , xk) in the language of arithmetic is calledΣ1 if it is of the
form (∃x1 . . .∃xk)ψ, whereψ is a∆0 formula. The negation of aΣ1 formula is called aΠ1 formula.
Similarly, Σn andΠn formulas can be constructed. The Representation Theorem states that a relation
R ⊂ INk is c.e. iff there (effectively) exists aΣ1 formulaϕ(x1, . . . , xk) such that for alln1, . . . , nk ∈ IN:
(n1, . . . , nk) ∈ R ⇔ IN |= ϕ(n1, . . . ,nk).

We consider the following bijection between non-negative integers and strings onX: 0 7→ λ, 1 7→
0, 2 7→ 1, 3 7→ 00, 4 7→ 01, 5 7→ 10, 6 7→ 11, . . . The image ofn, denotedbin(n), is the
binary representation of the numbern + 1 without the leading 1. The length ofbin(n) is roughly
equal tolog2(n). So, for computability issues we will not differentiate between strings and non-negative
integers: ifv = bin(n), then the stringv is identified with the naturaln. In particular,X∗ |= ϕ
means thatϕ is true when interpreted on strings. The Representation Theorem is true for strings: a
relationR ⊂ (X∗)k is c.e. iff there (effectively) exists aΣ1 formulaϕ(x1, . . . , xk) such that for all
v1, . . . , vk ∈ X∗: (v1, . . . , vk) ∈ R ⇔ X∗ |= ϕ(v1, . . . ,vk).

3. Degrees of Incompleteness

Consider an axiomatic theoryA. We will not be concerned with any details regarding the axioms or
inference rules of the axiomatic theoryA; the onlysyntactical propertywe will use is thatthe set of
theorems proved inA is c.e. Hence, in what follows we will work with a c.e. setTA ⊂ X∗ and assume
that TA is the set of G̈odel numbers of theorems proved inA. The “natural” way to enumerate the
theorems of a theoryA is via their proofs, so a theorem may appear infinitely many times inTA. This
method, pioneered by G̈odel, is calledGödel numbering; the elements ofTA are the G̈odel numbers of
the theorems inA.

To achieve generality, our study will concernaxiomatic theoriesA proving (among other facts)
properties of non-negative integers; in fact, we will focus our attention exactly on the theorems of the
theory which establish properties of non-negative integers. We will say that such a theorycontains the
first-order arithmetic. Robinson arithmetic or Peano arithmetic are examples. We note that if the set of
theorems ofA is c.e., then the subset of theorems ofA establishing sentences of the first-order language
of arithmetic is also c.e. Hence, we will work with the c.e. setTArith ⊂ TA of Gödel numbers of
theorems establishing sentences expressed in the first-order language of arithmetic. Aninterpretationof
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TArith is a computable functionı mappingTArith into the set of sentences of arithmetic. Ifw ∈ TArith

andϕ = ı(w), thenw is the G̈odel number ofϕ.
We can ask now: Can we find an axiomatic theoryA capable of proving all true first-order arithmeti-

cal sentences? To relate the theorems proved inA and the sentences of arithmetic we will not work with
global properties of the theoryA, but only with those properties pertaining to non-negative integers: (a)
the pair(A, ı) is (arithmetically) soundif for everyw ∈ TArith, ı(w) is true, that is,A proves only true
first-order arithmetical sentences, (b) the pair(A, ı) is (arithmetically) completeif every true sentenceϕ
is provable inA, i.e., there exists aw ∈ TArith such thatı(w) = ϕ, (c) the pair(A, ı) is (arithmetically)
consistentif there is no first-order sentenceϕ and there are nov, w ∈ X∗ such thatı(v) = ϕ, ı(w) = ¬ϕ,
that is,A does not prove both a sentence and its negation. Note that (a) and (b) are semantical properties,
while (c) is syntactical; for more details see [18], p. 16.

In the above definitions we talked about “true” sentences; the way we define/express them directly
influences the degree of rigour of our results. Tarski’s method of defining truth makes use of the “in-
tuitive” meaning of arithmetic, hence it is only a step toward formalisation. This fact was discussed
in detail by G̈odel [14], when he distinguished between true mathematical propositions (objective) and
demonstrable mathematical propositions (subjective).

In what follows we will work with an axiomatic theoryA (whose set of theorems is c.e.) and a fixed
interpretationı; for brevity, sometime we will refer to the pair(A, ı) asA.

Theorem 3.1. (G̈odel Incompleteness Theorem: First Variant)
For every consistent, c.e. and sound axiomatic theory(A, ı) containing the first-order arithmetic there
effectively exist aΣ1 formulaϕ(x) (containing a unique free variablex) and a stringw ∈ X∗ such that
ı(v) 6∈ {ϕ(w),¬ϕ(w)}, for eachv ∈ X∗.

Proof:
Use the Representation Theorem for the c.e. setK to effectively construct aΣ1 formulaϕ(x) in the
language of first-order arithmetic such that for everyw ∈ X∗ we have:w ∈ K ⇔ X∗ |= ϕ(w).
Assume by absurdity that for everyw ∈ X∗ there existsv ∈ X∗ (which depends uponw) such that
ı(v) = ϕ(w) or ı(v) = ¬ϕ(w). We construct now an enumeration procedure for the complement ofK,
an impossibility because this would imply the computability ofK. The procedure is the following: for
eachw ∈ X∗ we start enumerating all stringsv ∈ X∗ till we obtain ı(v) = ϕ(w) or ı(v) = ¬ϕ(w) (a
decidable test) and list thosew’s for which ı(v) = ¬ϕ(w). In this way we obtain all the elements of the
complement ofK and only them. Indeed, ifw is listed, thenı(v) = ¬ϕ(w) for somev, so because of
soundness,X∗ |= ¬ϕ(w), so by the Representation Theoremw 6∈ K. Conversely, ifw 6∈ K, then it is
impossible to find av such thatı(v) = ¬ϕ(w), sow is enumerated in the list. ut

Comment The above proof rests on abroken symmetry: the class of formulas is closed under the
negation, but the class of c.e. sets is not closed under complement. Note that the theorem does not say
anything about the truth of the formulaϕ(w): it simply proves that the theoryA cannot proveϕ(w) and
¬ϕ(w).

Corollary 3.1. For every consistent, c.e. and sound axiomatic theory(A, ı) containing the first-order
arithmetic there effectively exists aΠ1 formulaψ(x) (containing a unique free variablex) such that for
somew ∈ X∗, X∗ |= ψ(w), but ı(v) 6= ψ(w), for eachv ∈ X∗. In other words, each consistent, c.e.
and sound axiomatic theory containing the first-order arithmetic is incomplete.
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Proof:
Takeψ(x) = ¬ϕ(x), whereϕ is theΣ1 formula in Theorem 3.1. ut

Corollary 3.2. The set of all true sentences expressible in the first-order language of arithmetic is not
c.e.

Comment The theoryA cannot proveall true sentencesψ(s), but the proof presented does not rule
out the possibility thatA proves infinitely many true sentencesψ(s). Reason: the complement of the set
K is not c.e., but it contains infinite c.e. subsets. There is, however, anotherΠ1 formula, containing a
unique free variable, such thatA cannot prove more than finitely many true instances of it.

Theorem 3.2. (G̈odel Incompleteness Theorem: Second Variant)
For every consistent, c.e. and sound axiomatic theory(A, ı) containing the first-order arithmetic there
effectively exists aΠ1 formulaψ(x) (containing a unique free variablex) such that the set{w ∈ X∗ :
X∗ |= ψ(w), ı(v) = ψ(w), for somev ∈ X∗} is finite.

Proof:
instead of a c.e. and non-Use the Representation Theorem for the c.e. set{x ∈ X∗ : H(x) ≤ |x|−t}, for
any fixedt ≥ 0: there effectively exists aΣ1 formulaϕ(x) such that for everyu ∈ X∗: H(u) ≤ |u|−t ⇔
X∗ |= ϕ(u). TheΠ1 formulaψ(x) = ¬ϕ(x) satisfies the equivalence:H(u) > |u|− t ⇔ X∗ |= ψ(u).
Assume that the setı(TArith) contains all true arithmetical sentences. Using consistency, the computable
function ı and the formulaψ we can enumerate all theoremsw corresponding to true sentences of the
form ψ(w) to produce an enumeration of the immune set{w ∈ X∗ : H(w) > |w| − t}: this is a
contradiction. Hence,TArith cannot contain more than finitely many true instances ofψ. ut

Comment Solovay [27] has proved that for every consistent, c.e. and sound axiomatic theoryA
containing the first-order arithmetic there effectively exists aΠ2 formulaϕ(x, y) (containing two free
variablesx, y) such thatA cannot prove any true instance of it.

Assume now that the theorems of the axiomatic theory are generated by a more powerful machine,
for example, one which is capable of accessing an oracle solving the Halting Problem. This scenario
is motivated by the recent advent of computer-assisted proofs (see, for example, [4]) and the interest in
unconventional architectures capable of trespassing the Turing barrier (a Turing machine supplemented
with a quantum source of random bits is an example, see [3]). Will such a theory be capable of proving
all true first-order properties of non-negative integers?

To answer this question we will work with aK–c.e. axiomatic theory, i.e., a theory whose theorems
forms aK–c.e. set. Again, the interpretation will be a computable functionı from aK–c.e. set into the
set of sentences of first-order arithmetic.

Theorem 3.3. (G̈odel Incompleteness Theorem: Third Variant)
For every consistent,K–c.e. and sound axiomatic theory(A, ı) containing the first-order arithmetic there
effectively exists aΠ2 formulaϕ(x) (containing a unique free variablex) such that the set{w ∈ X∗ :
X∗ |= ϕ(w), ı(v) = ϕ(w), for somev ∈ X∗} is finite.

Proof:
This proof is just a relativized form of the proof of Theorem 3.2, where we use Post Theorem (see [6],
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p. 220) for the relativized program-size complexityHK and we note that the complement of theK–c.e.
set{w ∈ X∗ : HK(w) ≤ |w| − t} is K–immune, i.e., it is infinite and contains noK–c.e. infinite
subset. ut

Comment The axiomatic theory in Theorem 3.3 proves all true instances of everyΠ1 formula, but
fails to prove true instances of someΠ2 formulas. Of course, by relativization, similar results can be
proved at every level of the Arithmetical Hierarchy.

4. Consistency and Hilbert’s Programme

For Gödel [11] the problem of giving a foundation of mathematics (understood as “the totality of the
methods of proof actually used by mathematicians”) falls into two parts, the first to reduce the methods
“to a minimum number of axioms and primitive rules of inference, which have to be stated as precisely
as possible”, and then, the second, “a justification in some sense or other has to be sought for these
axioms, i.e., a theoretical foundation of the fact that they lead to results agreeing with each other and
with empirical facts”. The first question was considered to be satisfactorily solved by the “formalization
of mathematics in the simple theory of types”. However, for the second problem, “. . . it must be said
that the situation is extremely unsatisfactory”. The pure syntactical part, in which mathematics is a game
with symbols, seems acceptable, but serious problems start to appear as soon as meaning is attached to
symbols.

Thirty years after, G̈odel’s view (see [14], p. 379) was that Hilbert’s formalism was a curious
hermaphroditic attempt to reconcile the philosophical spirit of (his) time and the true nature of math-
ematics. On one hand, it is recognised that the truth of axioms cannot be justified, hence the meaning
of any consequence deriving from them is only hypothetical, and, on the other hand, “one clung to the
belief” that a mathematical proof provides a secure grounding for the statement it proves and “every
precisely formulated yes–no question in mathematics must have a clear-cut answer”. The aim is to prove
that, in the mathematical game, of two sentencesψ and¬ψ, exactly one can always be derived. This
is the important property ofconsistency: if it is impossible to derive bothψ and¬ψ, then the math-
ematical question expressed byψ can have a clear-cut answer. The question of consistency is purely
combinatorial, so one might hope to establish it byunobjectionable methods.

Hilbert’s 1920 programme proposed that the consistency of more complicated theories, such as real
analysis, could be proven in terms of simpler theories, and, ultimately, the consistency of all of mathemat-
ics could be reduced to basic arithmetic. In other words, we first build an axiomatic theoryA covering
the entire mathematics, and secondly, we use Peano arithmetic to prove the consistency ofA. Hilbert
requested that the method of proving consistency had to befinitary.

As noted by G̈odel, the first stage was accomplished; Gödel himself was an important contributor.
However, according to G̈odel’s second incompleteness theorem,Peano arithmetic cannot be used to
prove its own consistency, so it certainly cannot be used to prove the consistency of anything stronger.
Does it mean that there is no hope of carrying out Hilbert’s programme? Many authors acknowledge that
Gödel’s second incompleteness theorem, by itself, cannot refute Hilbert’s Programme (see, for example,
[20, 7, 18]). An important issue is the generality of the notion of formal system used in Gödel’s incom-
pleteness theorem. But, even working with a general, axiomatic definition of a formal system (as we
did in the previous section) does not give full guarantee because the very generality of such a definition
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would be questionable. In this sense, the impossibility of carrying out Hilbert’s Programme is athesis
and has a similar status to the Church-Turing thesis.

Well before G̈odel, Poincaŕe [22] (volume 2, chapter 4) warned against justifying the induction prin-
ciple by means of the induction principle, a principle building Peano arithmetic. Gödel himself had
subtle variations in interpreting the above argumentation. In [11] he seems to agree. In [12] he ex-
plicitely states that his second incompleteness theorem does not contradict Hilbert’s formalistic point of
view as “it is conceivable that there exist finitary proofs thatcannotbe expressed in the formalism . . . ”;
this point seems not to square well with “Hilbertian combination of materialism and aspects of classical
mathematics thus proves to be impossible” (see [15] p. 381). Finally, in [16] we read: “there are . . .
no conclusivecombinatorialconsistency proofs (such as Hilbert expected to give)” with the important
additional notes: “it does not follow from my theorems that there are noconvincingconsistency proofs
for the usual mathematical formalisms” and “the concept of a combinatorial proof, although intuitively
clear, has not yet been precisely defined”.

There are subtle problems related to specific axiomatisations of arithmetic. For example, it is possible
to prove the consistency of Robinson arithmetic in Peano arithmetic but not in itself, see [1], Chapter 16.
More interestingly, the set theoryZF can prove the sentence asserting the consistency of Peano arith-
metic (translated into the language of sets); the original formula cannot be proved in Peano arithmetic.
We have an example of a sentence asserting some property of natural numbers which can be proved in
ZF , but not in Peano arithmetic. The arithmetic expressed in terms of sets is stronger than first-order
arithmetic, which is stronger than Robinson arithmetic. Presburger arithmetic is complete; Robinson and
Peano arithmetics are not because they are too powerful. In 1936 Gentzen proved the consistency of
Peano arithmetic assuming all principles of induction “at once” (for all well-orderings); see [19],§79.
Does this proof qualify as “unobjectionable”?

All consistency and completeness theorems (as for propositional or predicate calculi) are not proved
within those calculi, but from “outside”. A consistency proof “from inside” may not be really credi-
ble (like police giving a non-corruption certificate for itself). So, perhaps, the second incompleteness
theorem is not a negative result, not a limit, but apositiveresult! Every axiomatic theory is open to
extensions. This view seems to match well with Gödel’s [15] “the truth lies in the middle” (he accepts
the idea of mathematics as a theory of truth, which is complete in the sense that “every precisely formu-
lated yes–no question in mathematics must have a clear-cut answer”, but rejects the idea that the basis of
mathematics truths is embedded in the axioms) and with Chaitin’s [5] observation that all real systems
are dynamical, vary in time: “Why mathematics has to be static, fixed once for all?”, “How come that in
spite of incompleteness, mathematicians are making so much progress?”

Are there any “solutions”? G̈odel [13] was optimistic: “But there remains the hope that in the fu-
ture one may find other and more satisfatory methods of construction beyond the limits of the system A
[capturing finitist methods], which may enable us to found classical arithmetic and analysis on them.”
Later on, G̈odel [15], inspired by Husserl’s phenomenology, suggested that an alternative to securing
the mathematical game of symbols is “cultivating (deepening) knowledge of the abstract concepts them-
selves which lead to the setting up of these mechanical systems”. Reverse mathematics—concerned
with the minimal axioms needed to prove a particular theorem—is another solution; see [25]. “Partial
completeness” was suggested by Hintikka [18], p. 26: one does not need full completeness to carry
out Hilbert’s Programme, only completeness as far as the consequences of the specific theory one wants
to justify are concerned. This can be achieved, for example, via “practical consistency”: prove, for a
given very largeN , that there is no sentences of length less thanN such that the theory proves boths
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and¬s. In this direction, provability with the help of a Turing machine supplemented with a quantum
source of random bits may offer at least an empirical confirmation. But there is more. If our “computing
device” might solve the Halting Problem, or even the Halting Problem for programs up to a fixed, large
length (measured in bits)—an open question for the combination “Turing machine supplemented with a
quantum source of random bits” (see [3])—then, we might have a “computational” alternative: simply
compute the finite set of provable sentences (which are all halting programs) and check consistency.
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