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GENERALIZED NUMBER DERIVATIVES

MICHAEL STAY

Abstract. We generalize the concept of a number derivative, and examine
one particular instance of a deformed number derivative for finite field ele-
ments. We find that the derivative is linear when the deformation is a Frobe-
nius map and go on to examine some of its basic properties.

1. Introduction

The so-called “number derivative” seems to have been invented independently at
least three times [3, 1, 4]. Here we present a generalization of the number derivative
that applies to nearly anything one might reasonably call a number. Afterwards,
we examine the case of a specific number derivative on finite fields and some of its
basic properties.

We generalize the concept of a number derivative to the following algorithm;
in order to illustrate each step, we will present the corresponding step from the
standard number derivative, denoted N , and our number derivative, denoted S.

(1) Choose a parameterized canonical form. In the case of N , this consists of
representing each integer as a product of prime powers; the parameters are
the primes. In the case of S, we choose a generator θ of the finite field
GF(pk) and express each finite field element as θn. Here, the parameter is
θ.

(2) Convert this canonical form into a function. The algorithm N takes each

prime power pki

i to a function xki

i (yi) = yki

i . The algorithm S replaces θn

with the function xn(y) = yn.
(3) Differentiate the function with respect to the parameters. The algorithm N

computes D(f) = (
∑

i
∂

∂xi
)(f). The algorithm S computes the s-derivative

Ds(f).
(4) Evaluate the derivative at some function of the parameters, typically the

identity function. The algorithm N computes D(f)|yi=pi
. The algorithm

S computes Ds(f)|y=θ.

The notation we use below requires some care. Multiplication is denoted by a
dot [·] or by concatenation of symbols: x · x2 = xx2 = x3. xn is a function:

xn(y) = yn,

so x(y) = y is the identity function and x0(y) = 1 for all y. Parentheses, when
preceded by a function or operator, denote composition or application, respectively:

x2(xn) = (xn)2 = x2n.
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Application is left associative:

f(g)(h) = (f(g))(h),

and takes precedence over multiplication:

gh(f) 6= g(f) · h(f).

2. Exponential quantum calculus

We begin with the operator Ms(f) = f(xs). The s-differential is then ds = Ms−x

and the s-derivative is

Ds(f) =
ds(f)

ds(x)
.

The s-derivative of an element xn(θ) is

Ds(x
n)(θ) =

Ms(x
n) − xn

Ms(x) − x
(θ) =

xns − xn

xs − x
(θ) = ([n]xn−1)(θ),

where

[n] ≡
x(s−1)n − x0

xs−1 − x0
.

The s-deformation has many similarities to the q-deformation that results in
the quantum calculus [2]. To get the s-deformation from the q-deformation, one
replaces the constant q by the function xs−1. Since this is the same transformation
we chose to use in the second step of the algorithm S, both derivatives give rise to
the same number derivative.

Since the notation is somewhat simpler for the q-derivative, we will adopt it
through most of the paper. The operator Mq = Ms:

Ms(f) = f(xs) = f(xs−1x) = f(qx) = Mq(f).

The q-differential is dq = Mq − x and the q-derivative is

Dq(f) =
dq(f)

dq(x)
.

The q-derivative of an element xn(θ) is

Dq(x
n)(θ) =

Mq(x
n) − xn

Mq(x) − x
(θ) =

qnxn − xn

qx − x
(θ) = ([n]xn−1)(θ),

where

[n] ≡
qn − q0

q1 − q0
.

Also, in the portions of the paper directly concerning the algorithm S, we will
usually omit the final application of the functions to θ.

3. Identities

For what functions q = xs−1, if any, is this number derivative linear? Let
θa + θb = θc. Then

Dq(x
c)(θ) =

xsc − xc

xs − x
(θ) =

(θa + θb)s − θc

θs − θ
.

On the other hand,

(Dq(x
a) + Dq(x

b))(θ) =
xas + xbs − (xa + xb)

xs − x
(θ) =

θas + θbs − θc

θs − θ
,
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so we want the cross terms in the binomial (θa + θb)s to be zero modulo p. This
only occurs when s is a power of p, so the derivative is linear iff Ms is a Frobenius
map. In the rest of the paper, we will only consider q = xs−1 of this form.

The derivation of the product rule is the same as that for the q-derivative:

Dq(fg) =
Mq(fg) − fg

Mqx − x

=
Mq(f)Mq(g) − Mq(g)f + Mq(g)f − fg

Mq(x) − x

= Mq(g)
Mq(f) − f

Mq(x) − x
+ f

Mq(g) − g

Mq(x) − x

= Mq(g)Dq(f) + fDq(g) (1)

= gDq(f) + Mq(f)Dq(g), (2)

where (2) follows by symmetry.
The same is true for the quotient rule. Since by (1),

Dq(f) = Dq(g
f

g
)

= Mq(g)Dq(
f

g
) +

f

g
Dq(g),

we have

Dq(
f

g
) =

gDq(f) − fDq(g)

gMq(g)
(3)

=
Mq(g)Dq(f) − Mq(f)Dq(g)

gMq(g)
(4)

where (4) follows from (2) instead.
Note that while there is not a general chain rule for the standard q-derivative,

we can use the fact that every element is of the form xn(θ) to find one for this
derivative:

Dq(g(xn)) =
Mq(g(xn)) − g(xn)

Mq(x) − x
·
Mq(x

n) − xn

Mq(xn) − xn

=
Mq(g(xn)) − g(xn)

Mq(xn) − xn
·
Mq(x

n) − xn

Mq(x) − x

=
Mq(g(xn)) − g(xn)

Mq(x(xn)) − x(xn)
· Dq(x

n)

= Dq(g)(xn) · Dq(x
n)

While the product and quotient rules (1)-(4) are the same as those typically given

[2], this rule differs: since q is the function xpj
−1 instead of a constant, we evaluate

it at xn rather than take the qn-derivative of g in the first term.
Finally, the q-numbers [n] satisfy

[n + 1] = q0 + q[n] and [n + 1] − [n] = qn.
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4. Constants

Under what conditions does

dq(x
n) = 0? (5)

We have

Mq(x
n) − xn = 0

which implies

qnxn = xn

and

qn = xn(pj
−1) = x0 = 1

if n 6= −∞. Therefore, Dqx
n = 0 if (pk − 1)|n(pj − 1). We call elements satisfying

(5) “constants.”
Constants behave as one might expect. Adding a constant obviously does not

change the derivative; multiplying by a constant m scales the derivative by the
same amount:

Dq(mf) = fDq(m) + Mq(m)Dq(f)

= f · 0 + mDq(f)

= mDq(f)

5. The exponential function exp

Consider the equation Dqx
e = xe. Then

Dqx
e = [e]xe−1 = xe

[e]x−1 = x0

xes − x0

xs − x
= x0

xes = xs − x + 1 (6)

so if θs − θ +1 is generated by θs then the equation will hold for at least one e. We
may then define the function exp = xe; there is no reason to prefer one solution
over another.

We use exp to illustrate a subtlety of the chain rule. One might conclude that
Dq(expm) = [m]xme+m−1:

Dqx
me = Dq(x

e(xm))

= Dq(x
e)(xm) · Dq(x

m)

= xe(xm) · [m]xm−1 (7)

= xme · [m]xm−1

= [m]xme+m−1

but (7) does not follow. It is only when applied directly to θ that Dqx
e = xe. Here,

Dqx
e is applied to the function xm and then to θ.
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The true equation may be found by examining the derivatives of the first few
powers of exp:

Dq(exp2) = Dq(x
2e)

= Dq(x
e · xe)

= xeDq(x
e) + Mq(x

e)Dq(x
e)

= x2e + qex2e

= (q0(xe) + q1(xe)) · (xe)2

= ([2]x2)(xe)

Dq(exp3) = Dq(x
3e)

= Dq(x
e · x2e)

= x2eDq(x
e) + Mq(x

e)Dq(x
2e)

= x3e + qe · (q0 + qe)x3e

= (q0(xe) + q1(xe) + q2(xe))(xe)3

= ([3]x3)(xe)

The pattern is immedately clear: Dq(expm) = ([m]xm)(exp), as one would hope.

We can now prove the result by induction. Assume that Dq(exp(m−1)) is of the
form ([m − 1]xm−1)(exp). Then

Dq(expm) = Dq(x
me)

= Dq(x
ex(m−1)e)

= x(m−1)eDq(x
e) + Mq(x

e)Dq(x
(m−1)e)

= xme + qexe · ([m − 1]xm−1)(xe)

= ((q0 + q[m − 1])xm)(xe)

= ([m]xm)(xe)

= ([m]xm)(exp).

6. Commutation

As with the standard q-derivative, [Dq , x·] = Mq:

[Dq , x·](f) = Dq(xf) − xDq(f)

= fDq(x) + Mq(x)Dq(f) − xDq(f)

= f + qxDq(f) − xDq(f)

= f + dq(x)Dq(f)

= (x + dq(x)Dq)(f)

= (x + dq(x)
dq

dq(x)
)(f)

= (x + dq)(f)

= Mq(f)
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If we define the q-commutator [f, g]q ≡ fg − Mq(g)f , then we find that

[Dq, x·]q(f) = Dq(xf) − Mq(x)Dq(f)

= fDq(x) + Mq(x)Dq(f) − Mq(x)Dq(f)

= f.

We can define a Hamiltonian operator via the anticommutator H = {Dq, x·} to
get

Hf = Dq(xf) + xDq(f)

= fDq(x) + qxDq(f) + xDq(f)

= f + [2]xDq(f),

so the “energy” of a finite field element xn(θ) is

Hxn = xn + [2]xDq(x
n)

= (1 + [2][n])xn

= (1 + (1 + q)[n])xn

= (1 + [n] + q[n])xn

= ([n + 1] + [n])xn

7. q-Antiderivative

The q-derivative of a finite field element is an element itself. If we add the
constant 1, the derivative does not change, so at most half of the elements have
antiderivatives. If an element has an antiderivative, then it is unique up to an
additive constant: suppose f has two antiderivatives F1 and F2. Then let φ =
F1 − F2. Now Dq(φ) = 0; but any function for which that holds true is a constant
by definition.

The integral operator
∫

q
(dq ·) is the Moore-Penrose inverse of Dq . Thus the

equation Dq(F ) = f has a solution iff f = Dq(
∫

q
(fdq))).

8. Higher derivatives

Because [n] is a function of x, there are correction terms on the higher derivatives.
For instance,

D2
q(x

n) = Dq(Dq(x
n))

= Dq([n]xn−1)

= [n]Dq(x
n−1) + Mq(x

n−1)Dq([n])

= [n][n − 1]xn−2 + (qx)n−1Dq([n])

It is these extra terms that give rise to trigonometric-like functions. We’ve
already seen exp; there are others like sinh and cosh with larger periods.

There will be a subspace, however, for which iterated derivatives eventually yield
zero. This subspace always includes the vectors {x, 1}, and may include more.

We can define an inner product in this subspace. Let Jq =
∫

q
(dq ·) and without

loss of generality, let n ≥ m. Then

< Jn
q , Jm

q >=< 1, Dn
q Jm

q >= δn,m.
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The function exp is an eigenvector of Dq, so it is orthogonal to the subspace:

< Jn
q , exp >=< 1, Dn

q exp >=< 1, exp >= exp .

Other trigonometric functions are defined by the period with which they repeat.
sinh, for example, is an eigenvector of D2

q , and a similar identity holds.

9. Examples

We consider the field GF(24) with the field polynomial x4−x−1. There are three
possible values q may take: x1, x3, and x7. Each gives rise to different structures.

n θn Dx(θn) Dx3(θn) Dx7(θn)

−∞ 0000 0000 0000 0000
0 0001 0000 0000 0000
1 0010 0001 0001 0001
4 0011 0001 0001 0001
2 0100 0110 0001 0111
9 0101 0110 0001 0111
5 0110 0111 0000 0110
11 0111 0111 0000 0110
3 1000 1111 0111 0101
15 1001 1111 0111 0101
10 1010 1110 0110 0100
7 1011 1110 0110 0100
6 1100 1001 0110 0010
13 1101 1001 0110 0010
12 1110 1000 0111 0011
14 1111 1000 0111 0011

9.1. q = x. We have constants 0, 1. “Trig” functions include θ11 = 0111 = exp,
θ14 = 1111 = sinh, and θ3 = 1000 = cosh. The names we’ve chosen are fairly
arbitrary; they are only meant to reflect the period with which the derivative returns
to itself. θ has no antiderivative, so we have an inner product acting on the subspace
{1, x} of the space {1, x, exp, sinh}.

9.2. q = x3
. Nonzero constants are θ0 = 1, θ5 = 0110, and θ10 = 0111, the cube

roots of 1. There are no trig functions. A basis for the space is {1, x}.

9.3. q = x7
. We have the constants 0, 1 and the trig function exp. In this case,

Jqθ = θ6, so we have the inner product on a three-dimensional subspace {1, x, x6},
while the complete basis is {1, x, x6, exp}.

References

[1] Cohen, G.L, and D. E. Iannucci, Derived sequences. Journal of Integer Sequences 6. 2003.
[2] Kac, Victor and Pokman Cheung, Quantum Calculus. Springer-Verlag. 2002.
[3] Kurokawa, Nobushige, Hiroyuki Ochiai and Masato Wakayama, Absolute derivations and

zeta functions. Documenta Mathematica Extra Volume Kato. 2003. pp 565-584.
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