
CDMTCS
Research
Report
Series

Computing with Cells and Atoms:
After Five Years

C. S. Calude1 and G. Păun2,3

1University of Auckland, New Zealand
2Institute of Mathematics of the Romanian
Academy, Romania

3Sevilla University, Spain

CDMTCS-246
August 2004

Centre for Discrete Mathematics and
Theoretical Computer Science

Computing with Cells and Atoms:
After Five Years

Cristian S. Calude
Department of Computer Science

The University of Auckland
Private Bag 92019, Auckland, New Zealand

Email: cristian@cs.auckland.ac.nz

Gheorghe Păun
Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania
george.paun@imar.ro

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Sevilla University
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

gpaun@us.es

Abstract

This is the text added to the Russian edition of our book Computing with
Cells and Atoms (Taylor & Francis Publishers, London, 2001) to be published
by Pushchino Publishing House. The translation was done by Professor Victor
Vladimirovich Ivanov and Professor Robert Polozov.

This new chapter was written for the Russian edition. The whole field of unconven-
tional models of computation has grown enormously in the past five years and there
is no way to be able to give here even a glimpse of this evolution. To give just one
example, the recent booklet titled “Biologically Motivated Computing and Bioinfor-
matics” lists on 35 pages only books and journals published by Springer-Verlag (see

springeronline.com) in this area. It is far from being complete; two examples of jour-
nals, Kluwer Journal of Natural Computing and the new stream Natural Computing of
Elsevier journal Theoretical Computer Science. Probably the best way to keep in touch
with all recent news is to watch a couple of specialized websites. For DNA comput-
ing http://www.iturls.com/English/TechHotspot/TH DNA.asp is a good start. Just
days before finalizing this chapter we learnt that quantum computing is a significant
step closer to becoming a reality today with new research published in the journal Na-
ture (22 July 2004, 430, 431–435). Three groups of scientists from IBM, UCLA and
the Netherlands, have reported the detection of a single electron spin. What does this
mean for quantum computing? According to Professor Eli Yablonovitch, the director of
UCLA’s Center for Nanoscience Innovation for Defense, co-author of the paper, “With
100 transistors, each containing one of these electrons, you could have the implicit in-
formation storage that corresponds to all of the hard disks made in the world this year,
multiplied by the number of years the universe has been around”. And, of course, there
is no good reason to stop to 100 transistors. . .

So, instead of trying in vain to update the content of the whole book we decided to
present some recent results in which the authors of the book have been actively involved,
namely in membrane computing and trespassing the Turing barrier.

6.1 Membrane Computing

Membrane computing was initiated in the fall of 1998, when the technical report version
of the paper [57]1 was circulated on web. Thus, the present book was written at about one
year after that. In the meantime, the area has simply flourished. At the middle of July
2004, the web page http://psystems.disco.unimib.it, maintained in Milano, Italy,
under the auspices of European Molecular Computing Consortium (EMCC), contained
a bibliography of more than 450 papers, with more than one dozen of collective volumes
and one dozen of PhD theses devoted to membrane computing. In 2002 a comprehensive
monograph was published by Springer-Verlag, [58]. In February 2003, the Institute for
Scientific Information (ISI) has mentioned [57] as a “fast breaking paper” in computer
science (see http://esi-topics.com, February 2003); in October 2003, the domain
itself was qualified by ISI as “emergent research front in computer science”, with the
paper [56] mentioned as a “citation leader” in membrane computing.

Consequently, “updating” the first edition of the present book with the current state
of the art in membrane computing is simply impossible, as the needed space would be
too large. Thus, what we want to do here is to leave the reader having an idea about
the directions of research in this area, mentioning only a few relevant notions introduced
and results obtained after the publication of the English edition of the present book. We

1The references point to the separate bibliography given at the end of this section.

2

also want to give some bibliographical guidelines to the reader interested in approaching
membrane computing – starting with the web address mentioned above, where one can
find both the current bibliography of the domain and a series of downloadable papers. In
particular, in the page there are available all pre-proceedings volumes of the Workshops
on Membrane Computing (the first three editions were organized in Curtea de Argeş,
Romania, in 2000, 2001, 2002; the fourth edition was held in Tarragona, Spain, in 2003,
the fifth one in Milano, Italy, in 2004, while the sixth one will be held in Vienna, Austria,
in July 2005); one can also find in the page the volumes of the Brainstorming Weeks on
Membrane Computing (Tarragona 2003, Sevilla 2004).

Some of the most important directions on which membrane computing was developed
in the last five years are the following (of course, the list is not exhaustive):

1. improving existing results (especially concerning the size of systems able of uni-
versal computations);

2. introducing new classes of P systems, in general, in the attempt to capture further
biological features, thus getting closer to the biological reality which has inspired
the area; the most important class of this kind is that of symport/antiport systems,
introduced in [56];

3. considering not only generative computing devices, but also recognizing devices
(automata-like P systems);

4. passing from cell-like systems, with the membranes hierarchically arranged (in the
nodes of a tree), to tissue-like systems, with the membranes placed in the nodes
of an arbitrary graph;

5. very active investigations in the computational complexity direction, with two
main topics of interest: the complexity of problems related to P systems (mem-
bership, reachability, etc), and solving computationally hard problems (typically,
NP-complete, but also PSPACE problems) in a feasible time (polynomial, often
even linear) time by means of P systems able to generate an exponential working
space in a linear time by means of bio-inspired operations (such as cell division,
membrane creation, or string replication);

6. implementations/simulations on the electronic computer, on clusters or on net-
works of computers, or on a dedicated hardware; such programs are both of a
didactic interest (in particular, for checking the evolution of given systems) and
for applications;

7. applications of membrane computing, in biology, computer graphics, linguistics,
computer science, management; most of these applications are preliminary, under
current research, but they support the belief that membrane computing can be
a useful framework for approaching a large number of problems (in particular,

3

related to the modelling and the simulation of the living cell, one of the challenges
for the bio-informatics – see, e.g., [43], [82]);

8. attempts to use non-crisp mathematics in the study of P systems, mainly proba-
bilistic and fuzzy sets tools, but also rough sets tools;

9. attempts to have dynamic systems approaches, focusing not on the results of com-
putations, but on the evolution itself of a system; related investigations are those
concerning P systems with a dynamic structure of membranes, or, in the case of
tissue-like P systems, with dynamic communication channels among cells;

10. “advanced” topics, such as reversibility, conservativity (of energy), possibilities to
compute beyond the Turing barrier, etc.

In what follows, we briefly discuss each of these ten topics, at an informal level, mainly
offering bibliographical hints about the progresses reported in the last five years. Details
can be found in the monograph [58] (in its turn, covering only the developments in
membrane computing until the spring of 2002) and, mainly, in the web page mentioned
above. Recent surveys of the domain can be found, e.g., in [59], [49], [61], [60].

6.1.1 Technical Improvements

The classification of evolution rules in cooperative, catalytic (as a particular case of
cooperative rules), and non-cooperative raises the natural question about the power
of systems using rules of a specific type. Systems with general cooperative rules are
easily seen to be computationally complete, while systems using non-cooperative rules
can compute only semilinear sets of natural numbers (of vectors of natural numbers)
– Theorem 3.3. By adding further ingredients, such as a priority relation on the sets
of rules from each region (Theorem 3.2), or the possibility to control the permeability
of membranes (by operations δ, τ – Theorem 3.11), we can obtain the universality also
for catalytic systems. Whether catalytic systems without any additional controls on
the rule application are universal or not was for a while an important open problem in
membrane computing.

Surprisingly enough, the answer was positive: P systems with catalytic rules are uni-
versal. The first proof was given in [74], and it was using eight catalysts. The result
was improved several times from the point of view of the number of catalysts; the best
current result says that two catalysts suffice, see [33]. It is still not known whether one
catalyst suffices (the answer is negative for purely catalytic systems [41], those using
only rules of the form ca → cu, where c is a catalyts; note than in general in catalytic
systems one can also use non-cooperative rules, of the form a → u).

4

These results do not make uniniteresting the universality results from Theorems 3.2 and
3.11, because in the proofs of these theorems one uses only one catalyst.

Actually, one can obtain the universality without using catalysts, at the expense of using
other ingredients, such as promoters (objects which should be present) or inhibitors
(objects which should not be present) for rules, or counting the number of copies of
rules in the same way as we count the number of copies of objects (that is, we start
with multisets of rules available in each region; after applying a rule, it is consumed, but
other rules become available). We refer for details to [58].

Such universality results (actually, their proofs) have as a direct consequence the fact that
the number of membranes necessary in order to reach the power of Turing machines is
bounded (the bound is obtained by starting the proofs from a universal device – grammar
or Turing machine; then, the obtained P system is universal, in the sense that it can
simulate any given system after introducing in its initial configuration a “code” of the
particular system; thus, the hierarchy on the number of membranes collapse at the level
of the number of membranes of the universal P system). In this context, an interesting
problem which has remained open for a while was that of finding a class of P systems
for which the number of membranes induces an infinite hierarchy of the generated sets
of numbers. Some answers to this problem were given in [32] and [44], based on classes
of systems of a rather restricted forms; a fully satisfactory answer (based on a “neutral”
and general enough class of systems) was provided in [40], using a class of P systems
where the computation is done by communication only.

6.1.2 Computing by Communication

Communication (the transfer of objects across membranes) plays a central role both in
the functioning of P systems and in the cell functioning. The use of target indications
of the form here, in, out attached to objects and directly introducd by evolution rules
reminds the fact that the cell membranes contain many protein channels which are very
selective, but in biology, in general, the communication is done by “rules” (mechanisms)
different from the evolution (reaction) rules. One of the most interesting ways to pass
chemicals from a compartment of a cell to another compartment, or across the cell
membrane, is by a coupled transport. The process of moving two (or more) objects in
the same direction through a protein channel is called symport, while the process of
moving objects in oposite directions is called antiport. Details can be found in [2].

Mathematically, we can consider object processing rules of the following forms: a sym-
port rule (associated with a membrane i) is of the form (ab, in) or (ab, out), stating that
the objects a and b enter/exit together membrane i, while an antiport rule is of the form
(a, out; b, in), stating that, simultaneously, a exits and b enters membrane i.

5

We can generalize this idea, to using rules of the forms (x, in), (x, out), (x, out; y, in),
where x, y are arbitrary multisets of objects (the size of these multisets is called the
weight of the respective rules). Note that in the case when we use symport or antiport
rules associated with the skin membrane we can send objects out of the system and we
can bring into the system objects from the environment. It is also important to note
that such systems do not create and do not destroy objects, the objects are only moved
across membranes. As a consequence, in order to be able to compute arbitrary numbers,
we need a supply of objects into the environment.

Thus, a P system with symport/antiport rules has the same architecture as a system
with multiset rewriting rules: alphabet of objects, terminal objects, membrane structure,
initial multisets in the regions of the membrane structure, sets of rules associated with
the membranes, possibly an output membrane – with one additional component, the set
of objects present in the environment. If an object is present in the environment at the
beginning of a computation, then it is considered available in arbitrarily many copies
(the environment is inexhaustible). We refer to [56] (where symport/antiport P systems
were introduced) and to [58] for further details.

The functioning of a P system with symport/antiport rules is the same as for systems
with multiset rewriting rules: the transition from a configuration to another configura-
tion is done by applying the rules in a non-deterministic maximally parallel manner, to
the objects available in the regions of the system and in the environment, as requested
by the used rules. When a halting configuration is reached, we get a result, in a specified
output membrane (the environment already contains objects, hence cannot be used for
collecting the result). The set of all such numbers computed by Π is denoted by N(Π).
Of course, we can also consider as a result the vector Ps(Π) of numbers representing the
multiplicity of objects present in the halting configuration in the output membrane of
the system; the family of all such sets of vectors Ps(Π), computed by P systems with at
most m membranes, with symport rules (x, in), (x, out) with |x| ≤ r, and antiport rules
(x, out; y, in) with |x|, |y| ≤ t is denoted by PsOPm(symr, antit), m ≥ 1 and r, t ≥ 0.

Because the class of symport/antiport P systems is central now in membrane computing,

6

we give here an example of such a system. Let

Π = (V, T, µ, w1, w2, E, R1, R2, 2), with

V = {a, b, c, c′, d, e, e′, f, g, Z},
T = {a},
µ = [1[2]2]1,

w1 = ac,

w2 = df,

E = {a, b, c′, e, e′, g, Z},
R1 = {(c, out; Z, in), (ca, out; cbb, in), (ca, out; c′bb, in),

(da, out; Z, in), (c′d, out; e, in), (eb, out; ea, in),

(eb, out; e′a, in), (fb, out; Z, in), (e′f, out; cdf, in),

(e′f, out; g, in)},
R2 = {(d, out; c′, in), (c′, out), (f, out; e′, in), (e′, out),

(df, in), (Z, in), (Z, out), (ga, in), (g, out)}.

(E is the set of objects which appear in the environment in arbitrarily many copies.)
Assume that at some moment we have in the skin region n copies of object a (initially,
n = 1), and one copy of c, and in region 2 we have one copy of d and one copy of f .
If we use the rule (c, out; Z, in) ∈ R1, then Z gets into region 1 from the environment.
In this case the computation will never stop, because of the rules (Z, in), (Z, out) from
R2 which cause Z to oscillate between regions 1 and 2. Thus we have to begin by using
the rule (ca, out; cbb, in) ∈ R1 a number of times. When we replace all copies of a by b,
then we have to use the rule (c, out; Z, in) ∈ R1, and so the computation will not halt,
hence we have to save one a and at some time to use the rule (ca, out; c′bb, in) ∈ R1.
The object c′ must now go to region 2 and send from there the object d, by the rule
(d, out; c′, in) ∈ R2. In the next step, if any copy of a is still present in region 1, then
the rule (da, out; Z, in) ∈ R1 must be used, and thus again the computation will never
stop. If no copy of a is present in region 1, that is, the doubling of n was complete
(the n copies of a were replaced by 2n copies of b), then d will wait one step in the skin
region, as c′ exits region 2, and then by rule (c′d, out; e, in) ∈ R1 the two objects exit
the system together, while e is brought in.

In the same way as c has changed all a to b, the object e will change now all copies of
b into a. When this operation is completed (and only then, since otherwise Z will get
into the system), e is replaced by e′, and e′ will send f out of region 2. The object f
checks whether or not all copies of b were replaced by a, and only in the affirmative case
it exits the system together with e′ and reintroduces the objects c, d, and f ; d and f
enter then region 2, and the whole process can be iterated. In this way, we can double
the number of copies of a as many times as we want, but at least once. At any moment,
instead of the rule (e′f, out; cdf, in) ∈ R1 we can use the rule (e′f, out; g, in) ∈ R1. The

7

object g will carry each copy of a into membrane 2 and when this is completed g gets
stuck in the skin region. Therefore, N(Π) = {2n | n ≥ 1}.

Again somewhat surprisingly, but pleasantly enough from a computability point of view,
computing by communication is universal, P systems with symport/antiport rules can
compute at the level of Turing machines. The currently best results in this respect, in
what concerns the number of membranes and the size of symport and antiport rules are
the following (proofs can be found in [37], [35], [84]).

Theorem 1 PsCE = PsOPm(symr, antit), for (m, r, t) ∈ {(1, 1, 2), (3, 2, 0),
(2, 3, 0), (3, 1, 1)}.

The optimality of these results is not known. In particular, it is an open problem whether
or not also the families PsOPm(symr, antit) with (m, r, t) ∈ {(2, 2, 0), (2, 2, 1)} are equal
to PsCE.

In the case of systems with symport/antiport rules, one can associate a string with a
computation by considering the trace of a specified object – the “traveller” – through
membranes (the sequence of labels of membranes visited by the traveller during a suc-
cessful computation), hence a language is associated with a device working with numbers
as the internal data structure.

The symport/antiport rules can be used also for defining a class of P systems where the
evolution (done through multiset rewriting rules without target indications) is separated
from the communication (which is done through symport/antiport rules) – details can
be found in [19].

6.1.3 P Automata

The systems considered up to now are generative devices, similar to grammars: starting
from an initial configuration (membranes and multisets of objects) we get sequences of
transitions, hence computations; because of the non-determinism, we have branching
possibilities, and that is why we can associate with a system a set of numbers or a set
of strings, hence a language. In computability, dual to grammars we have automata,
devices which recognize/analize strings. A similar strategy has been followed also in
membrane computing, by introducing automata-like P systems ([28]). One considers a
P system of a given type (membranes, rules, multisets of objects), one inputs a given
multiset w in a specified region, and if the computation ever stops, then one says that
w is accepted.

The accepting behavior is still more natural in the case of symport/antiport systems
considered in [34]): just take a symport/antiport P system and consider the sequence

8

of symbols it brings inside from the environment during a halting computation; this
sequence is said to be the string recognized by the computation (if several objects are
taken at the same time, then any permutation of them is allowed).

Several types of P automata were considered: of the types above, with the request to
introduce the string to be analyzed symbol by symbol, at the beginning of the com-
putation, with one-way communication among membranes, with states associated with
regions. A variant, closer to the way a problem is solved, by introducing (a code of)
it in the initial configuration of a system, is to have a system, to introduce in the skin
region a number, in the form of the multiplicity of a specified object (e.g., we introduce
n copies of an object a), and let the system work; if the computation stops, then the
number is accepted/recognized, otherwise the number is rejected.

Of a particular interest are the systems which work in a deterministic way, where at
each step there is possible at most one transition. Such systems are needed when solving
problems, for instance, decidability problems, where we cannot accept branchings, maybe
leading to endless computations because of “wrong” choices of rules to apply, not because
of the fact that the problem has no solution.

There are several universality results for various classes of P automata dealing with
deterministic systems. Currently, it is an open problem whether or not a class of P
automata exists such that the deterministic systems are strictly less powerful than the
non-deterministic systems.

6.1.4 Tissue-Like P Systems

The cells are in most cases living together in complex organizations, in tissues, organs,
organisms, establishing a complex communication net among them. For instance, when
two protein channels from two adjacent cells come in contact (and this is enhanced by
the fluid-mosaic structure/behavior of the membranes), it often happens that the two
proteins establish a common channel, by which a direct communication among the two
cells can be done. Having such a channel enhances the realization of further channels,
and thus a network of direct channels appears, with a specific functionality in inter-
cellular communication (see details in [46]). A rather similar situation appear if we take
into account the organization of neurons in nets, with cells (neurons) establishing direct
communication links among them through synapses – with the restriction now that we
do no longer have the possibility of communication through the environment (one cell
expells some objects and, in the next time unit, another cell can take them from the
environment); it is also natural to suppose that the communication in a neural-like net
is done in a one-way manner.

These observations directly lead to considering a class of P systems which also have a

9

natural mathematical motivation: instead of placing the membranes in a hierarchical
manner, hence in the nodes of a tree, let us place them in the nodes of an arbitrary
graph; such systems were introduced in [50].

Actually, making use of symport/antiport rules for direct communication and for com-
munication with the environment, the communication graph is dynamically defined,
depending on the rules used during a computation.

Specifically, the rules used for communicating among two cells with labels i and j should
specify the targets, hence a symport rule transporting the objects of a multiset x from
i to j has the form (i, x, j). If x is moved from i to j in exchange of objects of y, which
are moved from j to i (this corresponds to an antiport rule), then we have a rule of the
form (i, x/y, j). In all cases, i and j should be different labels. One of i and j can also
be equal to 0, identifying the environment.

Thus, a tissue-like P system is given by specifying the alphabet of objects, the list of
cells, the sets of inter-cell communication rules, and the objects present initially in the
environment; for each cell we have to specify the multiset of objects present in the initial
configuration in the cell, as well as the rules for communication with the environment
(because the targets are specified in the rules, all rules can be given as a global set for
the whole system). The functioning of a tissue-like P system is again governed by the
non-deterministic maximally parallel use of rules, with the result of a computation only
obtained in a halting configuration. As for cell-like P systems, we can use these devices
as generative mechanisms or as recognising mechanisms.

We do not introduce here neural-like P systems – which, actually, do not have a well
established definition. For instance, in [58] there is a chapter devoted to such systems,
with states associated with neurons and with the synapses pre-established; the evolution
rules are rewriting-like, controlled by the states, and the communication is specified by
commands go (meaning “go along any of the evailable synapses, maybe along all of them,
after replication”) and out (a way to send a result into the environment).

Several papers were devoted to tissue-like and to neural-like P systems; we refer to the
Milano web page for details. Recently, a more involved variant of tissue-like P systems
was introduced, under the name of population P systems – see [7].

6.1.5 Trading Space for Time in Solving Hard Problems

In the previous Section 3.9 of the book we have shown how SAT problem can be solved in
linear time by means of P systems with active membranes, using the membrane division
as a basic tool for obtaining an exponential workspace in a linear time. This result was
much improved in the meantime.

10

First, the framework for dealing with related issues was formally better specified, and
complexity classes for membrane computing were defined. An initial step in this direction
was made in [58], then a more general and a more rigorous theory was started by Sevilla
group – see, e.g., [68], [69] and the references therein. Informally speaking, the class
PMCX of problems which can be solved in polynomial time by a class X of P systems
is defined as follows: Take a problem γ, with the size described by a number n. For the
problem γ we construct a family {Πn(γ) | n ≥ 1} of P systems of type X, such that
Πn(γ) solves the instance γ(n) of the problem. The construction should be done in a
uniform way (that is, starting from γ, not from the instance γ(n)), in a polynomial time,
by a Turing machine. Then, each Πn(γ) solves γ(n) in the following way. We introduce
a code of γ(n) in a given region of Πn(γ), in the form of a multiset of objects; the
system proceeds computing and all its computations should stop in a polynomial time
(the system might be non-deterministic, hence branchings are allowed, but all possible
computations stop in a number of steps bounded by a given polynomial), moreover, all
computations send in the last step the same object to the environment. This object
can be one of yes and no, and the object yes is sent out if and only if the instance
γ(n) has a positive answer. One says that the system is confluent, in the sense that all
its computations ends with the same answer, sound (it gives the correct answer to the
problem), and complete (it answers all instances of the problem).

Because in a polynomial time one cannot cheat and solve intractable (e.g., NP-complete)
problems during the construction of the systems Πn(γ) (unless if P = NP), one also
allows a semi-uniform way of constructing the systems, that is, starting from the instance
γ(n) itself and constructing directly Πn(γ) for solving the given instance.

Many problems were treated in this framework, and, worth mentioning, not only de-
cidability problems, having yes/no answers, but also numerical problems, such as the
Knapsack problem, the Subset-Sum problem etc. Details can be found, e.g., in [67], [66].

What is interesting is that in these papers one uses P systems with active membranes
of a restricted type. For instance, the division of non-elementary membranes was never
used (in many cases also the rules for the membrane dissolution are avoided). Another
improvement concerns the number of polarizations used for solving NP-complete prob-
lems: as shown in [4], two polarizations are enough (this is also true for the universality).
It is an intriguing open problem whether or not we can completely get rid of polariza-
tions (of course, without introducing further features, such as label changing, priorities,
etc).

On the other hand, by using division of non-elementary membranes, it was shown that
even PSPACE problems can be solved in a polynomial time; this was shown in [76] for
QSAT, the satisfiability of quantified propositional formulas in the conjunctive normal
form. Also in this context there appears an important open problem: is the division of
non-elementary membranes necessary for covering PSPACE, or division of elementary
membranes suffice?

11

We have menrioned above that membrane division is only one of the ways used in order
to solve hard problems in a feasible time by means of P systems. The other possibilities,
less investigated than membrane division, are membrane creation and string replication.
Like membrane division, membrane creation is used in systems working with symbol-
objects; string replication is used for string-object systems, which process the strings by
rewriting. Specifically, new membranes are created by rules of the form a → [hv]h (a
membrane with label h is created, starting from an object a; inside the new membrane
we place the objects specified by the multiset v – while the set of rules acting in this
membrane is indicated by the label h). In turn, the string replication rules are of the
form a → u1||u2; when rewriting a string xay by such a rule we get two strings, xu1y
and xu2y.

For both these possibilities of creating working space it was shown that NP-complete
problems (typically, SAT and HPP – the Hamiltonian Path Problem) can be solved in
polynomial tyme. We refer to [58] for details and references.

6.1.6 Implementations

Up to now there is no attempt to implement P systems in a lab, on a bio-ware. Actually,
it is not clear which is the most realistic strategy, to follow the model of other areas of
natural computing, such as genetic algorithms (more general, evolutionary computing)
and neural computing, and to have implementations on the electronic computer, or to
imitate the ambition of DNA computing (in general, molecular computing) and to go
to laboratory, trying to have a new type of hardware, based on biochemistry. It is also
possible that none of these directions will be successful, and then membrane computing
can remain an intellectual aventure, with other types of applications rathen than directly
in computer science, in providing new types of hardware or new types of algorithms.
Anyway, there are numerous attempts to implement – actually, to simulate – P systems
on the existing computers. (Because the P systems are inherently parallel and, in many
variants, they also exhibit an intrinsic non-determinism, while the existing computers
are basically sequential, we cannot speak of a real implementation when dealing with
software products aiming to simulate P systems on electronic computers.) However,
there are probably more than two dozens of P systems simulators, some of them simpler,
some of them more sophisticated (for instance, providing graphical interfaces, or the
possibility to follow several parameters during the evolution of the system). References
can be found in the membrane computing web page, where also some programs are freely
available. Such programs are not only non-trivial programming exercises, but they have
also a didactic or scientific value; some of them were used in checking proofs, where
given P systems were simulated during a large number of steps in search of possible
unforessen evolutions. Most of these programs deal with symbol-objects P systems, and
can incorporate cooperative rules, as well as priority relations or other features. There

12

are also programs which simulate P systems with active membranes.

While almost all of these programs deal with “standard” P systems, as defined in the
previous sections, some of them also deal with probabilities or reaction rates assigned to
evolution rules, either given in advance or dynamically computed during the evolution
of the system, according, e.g., to the population of objects from a given region of the
system at a given time. Of course, such programs are closer to the biochemical reality
of the cell and they were the programs used in applications related to the cell biology –
see the next section.

Very important is the information provided by the programs. In most cases, one can
follow the state of the system along different paths of the computation, with or without
graphs displaying the population of certain objects in time. Rather suggestive is the
output provided by a program used in [72], based on [26], which provides in a Math-
ematica style the image of the so-called Sevilla carpet associated with a computation
(the Sevilla carpet is the parallel computing counterpart of the Szilard language from
language theory: a rectangle is constructed, indicating in each time unit which rules are
used; actually, for each rule one gives the number of times the rule is used, so that a
two-variable mapping is obtained, with natural values; Sevilla carpet gives in this way
an image of the combined space-time complexity of the computation – details can be
found in [23]).

Of a special interest are the implementations/simulations on a distributed hardware,
such as those done in [24] and [80], and, especially, that reported in [70], which has used
a reconfigurable hardware.

On the other hand, it is highly possible that a more fruitful approach from the computer
science point of view is not to implement a P system as it is, as a whole model, but to
incorporate in new types of software products features of membrane computing, more
general, features of cell structure and functioning, such as compartmentalization through
membranes, localization, decentralization, loose control of program units, and so on. An
illustration of this strategy is LMNtal (read “elemental”), the language developed by
T. Ueda and his collaborators, where membranes and multisets appear explicitly in the
language design – see [83].

6.1.7 Applications

Membrane computing started from the cell biology as an attempt to learn something
useful for computer science, not as a model of the “real” cell; after becoming abstract
enough and mathematically enough developed, the theory returned to biology, as a
possible tool for simulating not only local phenomena from the cell but possibly also
simulating the cell as a whole. This is by no means an easy task: in several places it was

13

said that after completing the genome project, the main challenge for the bio-informatics
of our century is to model and simulate the cell as a whole (see, e.g., [43], [82]). On
the other hand, membrane computing has some intrinsic features which make it a good
candidate for a framework to approach the whole cell simulation: it is a discrete and
algorithmic model, easy to implement on a computer and, rather important, easy to
scale-up (which is one of the difficulties of dealing with differential ecuations); moreover,
the model is easy to understand by biologists, hence easy to check, modify, apply; finally,
this is a model which has been initiated with inspiration from the cell structure and
functioning, it is not coming “from outside”, it is not necessary to adapt it to a new
reality, as it happens with models initially used in physics, mechanics, linguistics and
then applied to biology.

Actually, up to now, only local processes were modelled with P systems, along a strategy
of the following type: one captures in a P systems model the features of a specified
biological process (dealing with populations of molecules evolving in the compartments
of a cell), one takes or one writes a program for simulating that type of P systems, and
one performs experiments with the program, tunning certain parameters and following
the evolution of the system, hence of the real process, in various circumstances; in
most cases, graphical representations of the evolution in time of multiplicities of certain
objects are provided. Respiration in bacteria [5], photosynthesis [52], processes related
to the imune system [31], [78], and other processes [24], [77] were studied in this way.
We do not recall any detail here, but we refer to the papers mentioned above, to the
chapter of [58] devoted to biological applications, as well as to the papers available in
the Milano web page.

This is the “standard” type of applications in biology. A less operational one, but tried
already also in linguistics and management, is to mainly use the language of MC. This
means not only the long list of concepts either newly introduced, or related to each
other in a new manner in this area, but also the way to represent a cell-like structure, as
proposed in membrane computing. This representation is rather attractive for biologist:
Euler-Venn diagrams, with labels for membranes, with multisets of objects (chemicals)
placed in regions, and with sets of rules placed either in regions (the case of rewriting-like
rules) or near membranes, to suggest that they are associated with the membranes (the
case of symport/antiport rules).

A promising aplication – and not so expected, although this was happening also for
Lindenmayer systems – is in computer graphics, see [38].

6.1.8 Using Fuzzy Set Theory

Althought there are a few papers proposing ways to “fuzzify” P systems, this is mainly a
research topic, of a real interest for applications in biology. Counting the multiplicity of

14

objects is by no means a realistic assumption; the biologists work with concentrations,
gradients, with a “linguistic logic” dealing with terms such as “sufficient”, “too much”,
“less than necessary”, “less probable”, and so on. We mention here only a few papers
dealing with fuzzy P systems: [17], [54], [79], as well as [53], [27] for approaches to
probabilistic P systems.

6.1.9 Dynamic Systems Approaches

Similar to the previous topic, also investigating P systems as dynamical systems and
not as computing devices is mainly a subject for further researches. The interest for
applications is obvious: halting is a computer science feature, Turing inspired, while the
goal of cells is life, the evolution itself. Duration, periodicity, attractors, reachability
of configurations with specified properties, stability, and other related notions become
central, moving to a secondary level of interest the computability issues. We again
mention only a few titles, [10] and [47], with the mentioning that the second one contains
a large number of ideas for future researches, as well as a comprehensive bibliography.

6.1.10 Computing Beyond Turing

We have mentioned above this topic in the framework of other “advanced” issues, such
as the reversibility of computations, and the conservation of objects (which happens
in symport/antiport systems, but not necessarily in transition P systems with multiset
rewriting rules) or of energy related to object evolution. The web page many times
mentioned above contains several titles related to these topics.

Is it possible to use P systems to increase the computational power beyond Turing? The
answer is affirmative (see [14]); more details will be given in the next section.

6.1.11 Concluding Remarks

As stated in the introduction, this section was only intended to offer a bird eye view
of the recent developments in membrane computing, especially pointing out research
topics which were or it is plausible/important to be investigated, and providing bibli-
ographical hints of interest. Actually, the bibliography below contains also unrefereed
titles, especially of collective volumes and PhD theses, where much more material can be
found. The reader interested in membrane computing is strongly advised to follow the
developments of the domain through the web page in Milano, in particular, looking for
the volumes of the next editions of the workshops and the brainstorming weeks devoted
to membrane computing.

15

6.2 Trespassing the Turing Barrier

For more than fifty years the Turing machine model of computation has defined what
it means to “compute” something; the foundations of the modern theory of computing
are based on it.

Furthermore, as it has been noted by various authors (see, for example, [13]), the (silicon)
computer, whose capacity for handling information has been growing at a rate ten million
times faster than information handling did in our nervous system during the more than
600 million years of evolution, seems to be the only important commodity ever to become
exponentially better as it gets cheaper. However, this exponential race is essentially
“Turing-bounded”, it cannot produce feasible solutions to many intractable problems
and, more importantly for our investigations here, it cannot solve Turing unsolvable
problems.

Hypercomputation or super-Turing computation is a “computation” that transcends the
limit imposed by Turing’s model. For a recent perspective one can consult the special
issues of the journal Minds and Machines, [25]; see also [55] for a lucid analysis, [88]
for a comprehensive bibliography and the section ‘Computation and Turing machines’
in [81] (especially the critical paper [29]).

Are these studies just mere idle speculations, pure theoretical abstractions studied for
their own sake, with little or no regard to the ‘real world’? We dare to answer this
rhetorical question in the negative. First, according to [18], “If science really is essen-
tially the carrying out of a calculation, then the limits of science are necessarily extended
whenever we extend our computational capabilities”. Promises are very high: if mate-
rialised, science will reach points that have never been seen before. But, what about
the case of failure? Even in this case the gain will be also immense (and, arguably, sci-
entifically more interesting), as negative results will reveal new limits, with far-reaching
implications in mathematics, computer science, physics, biology, and philosophy.

6.2.1 What is Turing Barrier?

Recall the Merchant Problem: we have 10 stacks of coins, each stack containing 100
coins, and we know that at most one stack contains only false coins, weighting 1.01 g;
true coins weight 1 g. The problem is to find the stack with false coins (if any) by
only one weighting. The classical solution reduces the problem to the weighting of a
special combination of coins: one coin from the first stack, two coins from the second
stack, . . . , ten coins from the tenth stack. If the false coins are present in the N -th
stack, then the weight of the combination will be 55 + N

100
g; otherwise the weight is

just 55 g. Probably the elegant solution described above was the very first solution of a

16

computational problem bearing typical features of quantum computing, see an extended
discussion in [15].

In the Infinite Merchant Problem we assume that we have countable many stacks, given
in some computable way, all of them, except at most one, containing true coins only.
True coins weight 1 and false coins weight 1 + 2−j, j > 0. Again we are allowed to take
a coin from each stack and we want to determine whether all coins are true or there is
a stack of false coins.

First, one can show that the Infinite Merchant Problem is classically undecidable by
reducing it to the Halting Problem, i.e. the problem to decide whether an arbitrary
Turing machine halts on an arbitrary input; hence, the the Infinite Merchant Problem
is not solvable by any Turing machine. The undecidability is determined by the impos-
sibility to decide in a finite time the answers to an infinite number of questions, “does
the first stack contain a false coin?”, “does the second stack contain a false coin?”, etc.
This might be caused either by the fact that the time of the computation grows indef-
initely or by the fact that the space of computation grows indefinitely or both. The
classical theories of computability and complexity (see, for example, [12]) do not give
any indication in this respect.

6.2.2 A Quantum Approach

The quantum approach to the Infinite Merchant Problem developed in [15, 1] shows that
time can be made finite provided we use a specific probabilistic strategy.2 We are given
a probability θ = 2−n and we assume that we work with a device (described below) with
sensitivity given by a real ε = 2−m. Then, we compute classically a time T = Tθ,ε and
run the “device” on a random input for the time T . If we get a click, then the system
has false coins; if we do not get a click, then we conclude that with probability greater
than 1 − θ all coins are true. An essential part of the method is the requirement that
the time limit T is classically computable.

The device (with sensitivity ε) will distinguish the values of the iterated quadratic form
〈Qt(x),x〉 =

∑∞
i=1 qt

i |xi|2, by observing the difference between averaging over trajectories
of two discrete random walks with two non-perturbed and perturbed sequences tl, t̃l of
“stops”. The non-perturbed sequence corresponds to equal steps δm = 1, tl =

∑l
m=0 δm,

and the perturbed corresponds to the varying steps ∆m, 0 < ∆m < δm, t̃l =
∑l

m=0 ∆m.
The device sensitivity is defined in terms of the Sobolev norm.

Two cases may appear. If for some T > 0, 〈QT (x), x〉 ≥ ‖ x ‖2 + ε ‖ x ‖2
1, then

the device has clicked and we know for sure that there exist false coins in the system.
However, it is possible that at some time T > 0 the device hasn’t (yet?) clicked because

2Other “physical” approaches to solve Turing uncomputable problems have been proposed in [30, 42].

17

〈Qt(x), x〉 < ‖ x ‖2 +ε ‖ x ‖2
1 . This may happen because either all coins are true,

i.e., 〈Qt(x), x〉 < ‖ x ‖2 +ε ‖ x ‖2
1, for all t > 0, or because at time T the growth of

〈QT (x),x〉 hasn’t yet reached the threshold ‖ x ‖2 +ε ‖ x ‖2
1. In the first case the device

will never click, so at each stage t the test-vector x produces “true” information; we can
call x a “true” vector. In the second case, the test-vector x is “lying” at time T as we
do have false coins in the system, but they were not detected at time T ; we say that x
produces “false” information at time T .

If we assume that there exist false coins in the system, say at stack j, but the “device”
does not click at the moment T , then the test-vector x belongs to the indistinguishable
set Fε,T = {x ∈ l12 | ((1 + γ)T − 1) | xj |2< ε ‖ x ‖2

1, for some j}.

In [15] it was proven that the Wiener measure of the indistinguishable set, W̃ (Fε,T)
converges computably to zero. Denote by P (N) the a priori probability of absence of
false coins in the system. Then, the a posteriori probability that the system contains only
true coins, when the device did not click after running the experiment for the time T , is

Pnon-click(N) > 1− 1− P (N)

P (N)
·

√
ε√

(1 + γ)T − 1− ε
√∏∞

m=1 ∆m

.

A Brownian solution based on resonance amplification was discussed in [1]. A special
role in the above scenario is played by the ability of producing truly random inputs for
the described device. Is this physically possible? The answer is affirmative: not only it
is possible to produce reliable truly quantum random bits, but there exist commercial
products doing this, for example QRandom produced by GAP-Optique, a company
affiliated with the University of Geneva, see [71].

6.2.3 A P Systems Approach

In what concerns the possibility of computing beyond Turing by using P systems, there
is only one paper devoted to this topic, [14]. Recall that the main problem is to carry
on an infinite computation in a finite amount of time. The basic tool to achieve this
is acceleration: as in Figure 1 we have two scales of time, an external, global one, of
the “user” of the accelerated device (the black box in the figure), and the internal,
local time of the device. The problem is formulated in global time, at some moment t,
and introduced into the accelerated device, which is able to perform an ‘inner’ infinite
computation in a finite number, T , of external time units, when the “user” gets the
answer to the problem.

The idea came from [73, 11, 87] who observed that a process that performs its first step
in one unit of (global) time, the second step in 1/2 unit of (global) time, and, in general,
each subsequent step in half the (global) time of the step before, is able to complete an

18

-

6

?

-

t t + T

(M, n) [yes]

global time

AccUT

Figure 1: The interplay between local and global time used for solving the Halting
Problem by means of an accelerated device

infinity of steps in just two global units of time since 1 + 1
2

+ 1
4

+ · · · = 2. A universal
Turing machine working in this kind of accelerated manner is capable of deciding the
Halting Problem: at some (global) time t one introduces (the code of) any particular
Turing machine M and an input n into the accelerated universal Turing machine, and
in two (global) time units we have the answer, yes or no, whether M(n) halts or not
(here, T = 2).

Acceleration does not conflict with the Turing model of computation as the mathematical
definition of a Turing machine does not specify how long does it take to perform an
individual step. Even more, [86] has shown that no known physical law forbids such an
acceleration.

We take here a different approach, grounded on suggestions coming from cell and brain
biology: starting from the observation that nature creates smaller and smaller compart-
ments in a cell in ordet to enhance the reactivity of the enclosed chemicals, we can
introduce the hypothesis that the time is not measured with the same unit in all com-
partments of a P system, but lower compartments have smaller units. More exactly,
we assume that the time unit decreases in such a way that, if the membrane structure
becomes deeper and deeper (for instance, by means of membrane creation), then an
arbitrarily deep structure can be obtained, with the time units smaller and smaller, such
that arbitrarily many steps of computation can be done in an inner membrane while
only one time unit elapses outside the system. In this way, in a constant number of
units of external time (time of observer), the system can perform arbitrarily many steps
in its compartments, and this can lead to computations which cannot be done by Turing
machines.

The same result is obtained for tissue-like P systems or neural-like P systems if we sup-
pose that the channels among cells/neurons are faster and faster during the computation
(they “learn”, hence become continuously more efficient). It was in this context that
the important idea of deterministic computations was considered for the first time for
recognizing P systems. In both models acceleration is a part of the hardware not a
quality of the environment; ultimately, these hypotheses should be validated or not by
biophysics. Details can be found in [14].

19

References

[1] V. A. Adamyan, C. S. Calude, B. S. Pavlov, Transcending the limits of Turing
computability, in T. Hida (ed.). Proceedings of Winter School, Meijo University,
Japan, World Scientific, Singapore, to appear.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

[3] A. Alhazov, C. Martin-Vide, Gh. Păun, eds., Pre-Proceedings of Workshop on
Membrane Computing, WMC 2003. Tarragona, Spain, July 2003, Technical Report
28/03, Rovira i Virgili University, Tarragona, 2003.

[4] A. Alhazov, R. Freund, Gh. Păun, P systems with active membranes and two
polarizations. In [62], 20–36.

[5] I.I. Ardelean, M. Cavaliere, Modelling biological processes by using a probabilistic
P system software. Natural Computing, 2, 2 (2003), 173–197.

[6] G. Bel-Enguix, R. Gramatovici, Parsing with active P automata. In [48], 31–42.

[7] F. Bernardini, M. Gheorghe, Population P systems. Journal of Universal Computer
Science, 10, 5 (2004), 509–539.

[8] D. Besozzi, Computational and modelling power of P systems. PhD Thesis, Univ.
degli Studi di Milano, 2004.

[9] D. Besozzi, I.I. Ardelean, G. Mauri, The potential of P systems for modeling the
activity of mechanosensitive channels in E. Coli. In [3], 84–102.

[10] L. Bianco, F. Fontana, G. Franco, V. Manca, P systems in bio systems, in [22],
2004.

[11] R. M. Blake, The paradoxes of temporal process, Journal of Philosophy, 23 (1926),
645–654.

[12] C. S. Calude, Information and Randomness: An Algorithmic Perspective, 2nd Edi-
tion, Revised and Extended, Springer Verlag, Berlin, 2002.

[13] C.S. Calude, J.L. Casti, Parallel thinking, Nature, 392 (9 April 1998), 549–551.

[14] C.S. Calude, Gh. Păun, Bio-steps beyond Turing. CDMTCS Research Report 226,
Univ. of Auckland (November 2003), and BioSystems, 2004.

[15] C. S. Calude, B. Pavlov, Coins, quantum measurements, and Turing’s barrier,
Quantum Information Processing 1, 1–2 (2002), 107–127.

[16] C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds., Multiset Processing. Math-
ematical, Computer Science, and Molecular Computing Points of View. Lecture
Notes in Computer Science, 2235, Springer-Verlag, Berlin, 2001.

[17] J. Casasnovas, J. Miro, M. Moya, F. Rossello, An approach to membrane computing
under inexactitude, Intern. J. Foundations of Computer Sci., to appear.

[18] J.L. Casti, The One True Platonic Haven, Joseph Henry Press, New York, 2003.

[19] M. Cavaliere, Evolution-communication P systems. In [64], 134–145.

20

[20] M. Cavaliere, C. Martin-Vide, Gh. Păun, eds., Proceedings of the Brainstorm-
ing Week on Membrane Computing; Tarragona, February 2003. Technical Report
26/03, Rovira i Virgili University, Tarragona, 2003.

[21] R. Ceterchi, R. Gramatovici, N. Jonoska, K.G. Subramanian, Tissue-like P sys-
tems with active membranes for picture generation. Fundamenta Informaticae, 56,
4 (2003), 311–328.

[22] G. Ciobanu, Gh. Păun, M.J. Perez-Jimenez, eds. Applications of Membrane Com-
puting. Springer-Verlag, Berlin (in preparation).

[23] G. Ciobanu, Gh. Păun, Gh. Ştefănescu, Sevilla carpets associated with P systems.
In [20], 135–140.

[24] G. Ciobanu, G. Wenyuan, A P system running on a cluster of computers. In [48],
123–139.

[25] B.J. Copeland, Hypercomputation, Minds and Machines, 12, 4 (2002), 461–502.

[26] A. Cordon-Franco, M.A. Gutierrez-Naranjo, M. Perez-Jimenez, F. Sancho-
Caparrini, Implementing in Prolog an effective cellular solution to the Knapsack
problem. In [48], 140–152.

[27] A. Cordon-Franco, F. Sancho-Caparrini, A note on complexity measures for prob-
abilistic P systems. Journal of Universal Computer Science, 10, 5 (2004), 559–539.

[28] E. Csuhaj-Varju, G. Vaszil, P automata or purely communicating accepting P sys-
tems. In [3], 219–233.

[29] M. Davis, The myth of hypercomputation, in [81], 195–211.

[30] G. Etesi, I. Németi, Non-Turing computations via Malament-Hogarth space-times,
International Journal of Theoretical Physics, 41 (2002), 341–370.

[31] G. Franco, V. Manca, A membrane system for the leukocyte selective recruitment.
In [48], 180–189.

[32] R. Freund, Special variants of P systems inducing an infinite hierarchy with respect
to the number of membranes. Bulletin of the EATCS, 75 (October 2001), 209–219.

[33] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science, in
press.

[34] R. Freund, M. Oswald, A short note on analysing P systems. Bulletin of the EATCS,
78 (2003), 231–236.

[35] R. Freund, A. Păun, Membrane systems with symport/antiport: universality re-
sults. in [64], 270–287.

[36] P. Frisco, Theory of Molecular Computing. Splicing and Membrane Systems. PhD
Thesis, Leiden University, The Netherlands, 2004.

[37] P. Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with sym-
port/antiport. In [64], 288–301.

21

[38] A. Georgiou, M. Gheorghe, F. Bernardini, Generative devices used in graphics. In
[22].

[39] O.H. Ibarra, On the computational complexity of membrane computing systems.
Theoretical Computer Science, 320, 1 (2004), 98–109.

[40] O.H. Ibarra, The number of membranes matters. In [3], 218–231.

[41] O.H. Ibarra, Z. Dang, O. Egecioglu, Catalytic membrane systems, semilinear sets,
and vector addition systems. Theoretical Computer Sci., 312, 2-3 (2004), 378–400.

[42] T.D. Kieu, Quantum hypercomputation, Minds and Machines, 12, 4 (2002), 541–
561.

[43] H. Kitano, Computational systems biology. Nature, 420, 14 (2002), 206–210.

[44] S.N. Krishna, Infinite hierarchies on some variants of P systems. Submitted, 2003.

[45] A. Leporati, C. Zandron, G. Mauri, Conservative computations in energy-based P
systems. [51], 268–282.

[46] W.R. Loewenstein, The Touchstone of Life. Molecular Information, Cell Commu-
nication, and the Foundations of Life. Oxford University Press, New York, Oxford,
1999.

[47] V. Manca, On the dynamics of P systems. In [51], 29–43.

[48] C. Martin-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds., Membrane
Computing. International Workshop, WMC2003, Tarragona, Spain, Revised Pa-
pers. Lecture Notes in Computer Science, 2933, Springer-Verlag, Berlin, 2004.

[49] C. Martin-Vide, Gh. Păun, P systems with symport/antiport rules; A survey. In
Modeling in Molecular Biology (G. Ciobanu, G. Rozenberg, eds.), Springer-Verlag,
Berlin, 2004, 175–192.

[50] C. Martin-Vide, Gh. Păun, J. Pazos, A. Rodriguez-Paton, Tissue P systems. Theo-
retical Computer Sci., 296, 2 (2003), 295–326 (see also TUCS Technical Report No.
421, September 2001).

[51] G. Mauri, Gh. Păun, C. Zandron, eds., Pre-proceedings of Fifth Workshop in Mem-
brane Computing, WMC5, Milano, MolCoNet Publication, 2004.

[52] T.Y. Nishida, Simulations of photosynthesis by a K-subset transforming system
with membranes. Fundamenta Informaticae, 49, 1-3 (2002), 249–259.

[53] A. Obtulowicz, Probabilistic P systems. In [64], 377–387.

[54] A. Obtulowicz, General multi-fuzzy sets and fuzzy membrane systems. In [51], 316–
326.

[55] T. Ord, Hypercomputation: Computing more than the Turing Machine, Honours
Thesis, Computer Science Department, University of Melbourne, Australia, 2002;
arxiv.org/ftp/math/papers/0209/0209332.pdf.

[56] A. Păun, Gh. Păun, The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20, 3 (2002), 295–306.

22

[57] Gh. Păun, Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

[58] Gh. Păun, Computing with Membranes: An Introduction. Springer-Verlag, Berlin,
2002.

[59] Gh. Păun, Membrane computing: Main ideas, basic results, applications. In Molec-
ular Computational Models: Unconventional Approaches (M. Gheorghe, ed.), Idea
Group Publ., London, 2004.

[60] Gh. Păun, Membrane computing: Power and efficiency (A quick overview). Proc
DNA10, Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.), Univ. Milano-
Bicocca, 2004, 1–15.

[61] Gh. Păun, Membrane computing (after the second Brainstorming Week, Sevilla,
February 2004). Bulletin of the EATCS, 83 (June 2004), 159–170.

[62] Gh. Păun, A. Riscos-Nunez, A. Romero-Jimenez, F. Sancho-Caparrini, eds., Pro-
ceedings of the Second Brainstorming Week on Membrane Computing, Sevilla,
February 2004. Technical Report 01/04 of Research Group on Natural Comput-
ing, Sevilla University, Spain, 2004

[63] Gh. Păun, G. Rozenberg, A guide to membrane computing. Theoretical Computer
Science, 287, 1 (2002), 73–100.

[64] Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds. Membrane Computing.
International Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, Revised
Papers. Lecture Notes in Computer Science, 2597, Springer-Verlag, Berlin, 2003.

[65] Gh. Păun, C. Zandron, eds., Pre-proceedings of Workshop on Membrane Computing.
Curtea de Argeş, Romania, August 2002, MolCoNet Publication No 1, 2002.

[66] M.J. Perez-Jimenez, A. Riscos-Nunez, A linear-time solution for the Knapsack prob-
lem using active membranes. In [48], 250–268.

[67] M.J. Perez-Jimenez, A. Riscos-Nunez, Solving SUBSET-SUM problem by P systems
with active membranes. New Generation Computing, 2004.

[68] M. Perez-Jimenez, A. Romero-Jimenez, F. Sancho-Caparrini, Teoŕıa de la Compleji-
dad en Modelos de Computatión Celular con Membranas. Editorial Kronos, Sevilla,
2002.

[69] M. Perez-Jimenez, A. Romero-Jimenez, F. Sancho-Caparrini, Complexity classes in
cellular computation with membranes. Natural Computing, 2, 3 (2003), 265–285.

[70] B. Petreska, C. Teuscher, A reconfigurable hardware membrane system. In [48],
267–283.

[71] http://www.idquantique.com/.

[72] A. Riscos-Nunez, Programacion celular. Resolucion eficiente de problemas numeri-
cos NP-complete. PhD Thesis, Univ. Sevilla, 2004.

[73] B.A.W. Russell, The limits of empiricism, Proceedings of the Aristotelian Society,
36 (1936), 131–150.

23

[74] P. Sosik, P systems versus register machines: two universality proofs. In [65], 371–
382.

[75] P. Sosik, The power of catalysts and priorities in membrane systems. Grammars,
6, 1 (2003), 13–24.

[76] P. Sosik, The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing, 2, 3 (2003), 287–298.

[77] Y. Suzuki, Y. Fujiwara, H. Tanaka, J. Takabayashi, Artificial life applications of a
class of P systems: Abstract rewriting systems on multisets. In [16], 299–346.

[78] Y. Suzuki, S. Ogishima, H. Tanaka, Modeling the p53 signaling network by using
P systems. In [20], 449–454.

[79] A. Syropoulos, Fuzzifying P systems. Submitted, 2004.

[80] A. Syropoulos, P.C. Allilomes, E.G. Mamatas, K.T. Sotiriades, A distributed sim-
ulation of P systems. In [48], 355–366.

[81] C. Teuscher (ed.), Alan Turing: Life and Legacy of a Great Thinker, Springer-
Verlag, Heidelberg, 2003.

[82] M. Tomita, Whole-cell simulation: A grand challenge of the 21st century. Trends
in Biotechnology, 19 (2001), 205–210.

[83] K. Ueda, N. Kato, LNMtal: a language model with links and membranes. In [51],
65–79.

[84] G. Vaszil, On the size of P systems with minimal symport/antiport. In [51], 422–431.

[85] C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems using P systems
with active membranes. In Unconventional Models of Computation (I. Antoniou,
C.S. Calude, M.J. Dinneen, eds.), Springer-Verlag, London, 2000, 289–301.

[86] K. Svozil, The Church-Turing Thesis as a guiding principle for physics, in C.S.
Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of Computation,
Springer-Verlag, Singapore, 1998, 371–385.

[87] H. Weyl, Philosophie der Mathematik und Natureissenschaft, R. Oldenburg, Mu-
nich, 1927.

[88] www.hypercomputation.net/bib.

24

