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Abstract

In this paper we prove Chaitin’s “heuristic principle”, the theorems of a finitely-
specified theory cannot be significantly more complex than the theory itself, for an appro-
priate measure of complexity. We show that the measure is invariant under the change
of the Gödel numbering. For this measure, the theorems of a finitely-specified, sound,
consistent theory strong enough to formalize arithmetic which is arithmetically sound
(like Zermelo-Fraenkel set theory with choice or Peano Arithmetic) have bounded com-
plexity, hence every sentence of the theory which is significantly more complex than the
theory is unprovable. Previous results showing that incompleteness is not accidental, but
ubiquitous are here reinforced in probabilistic terms: the probability that a true sentence
of length n is provable in the theory tends to zero when n tends to infinity, while the
probability that a sentence of length n is true is strictly positive.

1 Introduction

Gödel’s Incompleteness Theorem states that every finitely-specified, sound, theory which is
strong enough to include arithmetic cannot be both consistent and complete. Gödel’s original
proof as well as most subsequent proofs are based on the following idea: a theory which is
finitely-specified, sound, consistent and strong enough can express sentences about provability
within the theory, which, themselves, are not provable by the theory, but can be shown to be
true using a proof by contradiction. A true and unprovable sentence is called independent.
This type of proof of incompleteness does not answer the questions of whether independence
is a widespread phenomenon nor which kinds of sentences can be expected to be independent.

Chaitin [14] presented a complexity-theoretic proof of Gödel’s Incompleteness Theorem which
shows that high complexity is a reason of the unprovability of infinitely many (true) sen-
tences. This result suggested to him the following “heuristic principle”, a kind of information-
preservation principle: the theorems of a finitely specified theory cannot be significantly more



complex than the theory itself. This approach would address the second of the questions above,
that is, highly complex sentences are independent, and, as a consequence, would indicate that
independence is pervasive. A formal confirmation of the pervasiveness of independence has
been obtained in [9] via a topological analysis; a quantitative result is still missing.

In this paper we prove that a formal version of the “heuristic principle” is indeed correct for
an appropriate measure of complexity; the measure is invariant under the change of the Gödel
numbering. For this measure, δ, the theorems of a finitely-specified, sound, consistent theory
which is strong enough to include arithmetic have bounded complexity, hence every sentence
of the theory which is significantly more complex than the theory is unprovable. Previous
results showing that incompleteness is not accidental, but ubiquitous are here reinforced in
probabilistic terms: the probability that a true sentence of length n is provable in the theory
tends to zero when n tends to infinity, while the probability that a sentence of length n is
true is strictly positive.

The paper is organized as follows. In Sections 2 and 3 we present the background, the notation
and main results needed for our proofs. In Section 4 we discuss some general complexity-
theoretic results which will be used to prove the main result (Theorem 4.6). In Section 5
we prove that incompleteness is widespread in probabilistic terms. In Section 6 we use the
new complexity measure to prove Chaitin’s information-theoretic incompleteness result for
the Omega Number. We finish with a few general comments in Section 7. The bibliography
includes a selection of relevant papers and books, but is by no means complete.

2 Background

Gödel’s Incompleteness Theorem, announced on 7 October 1930 in Königsberg at the First
International Conference on the Philosophy of Mathematics1 is a landmark of the twentieth
century mathematics (see [32, 34, 31] for the original paper, [43, 48, 10, 35] for other proofs and
more related mathematical facts, [36, 38, 46, 27, 51, 28, 47, 5, 13, 35, 7] for more mathematical,
historical and philosophical details). It says that in a finitely-specified, sound, consistent
theory strong enough to formalize arithmetic, there are true, but unprovable sentences; so
such a theory is incomplete. A true and unprovable sentence is called independent. The
first condition states that axioms can be algorithmically listed; consistency means free of
contradictions; soundness means that any proved sentence is true.

According to Hintikka ([35], p. 4), with the exception of von Neumann, who immediately
grasped Gödel’s line of thought and its importance, incompleteness passed un-noticed in
Königsberg: even the speaker who summarized the discussion omitted Gödel’s result. In
spite of being praised, discussed, used or abused by many authors, the Incompleteness The-
orem seems, even after so many years since its discovery, stranger than most mathematical
theorems.2 For example, according to Solovay ([37], p. 399): “The feeling was that Gödel’s
theorem was of interest only to logicians”; in Smoryński’s words, ([37], p. 399), “It is fash-
ionable to deride Gödel’s theorem as artificial, as dependent on a linguistic trick.”

In 1974 Chaitin [14] presented a complexity-theoretic proof of Gödel’s Incompleteness Theo-
rem which shows that high complexity is a reason of the unprovability of infinitely many (true)
sentences. This complexity-theoretic approach was discussed by Chaitin [16, 17, 18, 20, 21, 23]

1Hilbert, von Neumann, Carnap, Heyting presented reports; the conference was part of the German Math-
ematical Congress.

2This is quite impressive, as mathematics abounds with baffling results.

2



and various authors including Davis [24], Tymoczko [50], Boolos and Jeffrey [3], pp. 288–291,
Svozil [49], Li and Vitányi [40], Barrow [1, 2], Calude [4, 6], Calude and Salomaa [11], Casti
[12], Delahaye [25]; it was critized by van Lambalgen [39], Fallis [30], Raatikainen [45], Hin-
tikka [35].

Chaitin’s proof in [14] is based on program-size complexity (Chaitin complexity) H: the
complexity H(s) of a binary string s is the size, in bits, of the shortest program for a universal
self-delimiting Turing machine to calculate s. The complexity H(s) is unbounded. The proof
shows that for every finitely-specified, sound, consistent theory strong enough to formalize
arithmetic, there exists a positive constant M such that no sentence of the form “H(x) > m”
is provable in the theory unless m is less than M . There are infinitely many true sentences
of the form “H(x) > m” with m > M , and each of them is unprovable in the theory.

The high H-complexity of the sentences “H(x) > m” with m > M is a source of their unprov-
ability.3 Is every true sentence s with H(s) > M unprovable by the theory? Unfortunately,
the answer is negative because only finitely many sentences s have complexity H(s) < M in
contrast with the fact that the set of all theorems of the theory is infinite. For example, ZFC
(Zermelo-Fraenkel set theory with choice) or Peano Arithmetic trivially prove all sentences
of the form “n + 1 = 1 + n”. The H-complexity of the sentences “n + 1 = 1 + n” grows
unbounded with n. This fact, noticed and discussed by Chaitin in Section 6 of [22] (reprinted
in [21] pp. 55–81) as well as by Svozil [49], pp. 123–125, is essential for the critique in [30, 45]
(cited in [35]); the works [22, 21, 49] seem to be unknown to the authors of [30, 45, 35].

Chaitin’s proof based on H cannot be directly extended to all unprovable sentences, hence
the problem of whether complexity is a source of incompleteness remained open. In this note
we prove that the “heuristic principle” proposed by Chaitin in [21], p. 69, namely that the
theorems of a finitely-specified theory cannot be significantly more complex than the theory
itself 4 is correct if we measure the complexity of a string by the difference between the
program-size complexity and the length of the string, our δ-complexity (Theorem 4.6). The
H-complexity of the sentences “n+ 1 = 1 + n” grows unbounded with n, but the “intuitive
complexity” of the sentences “n+1 = 1+n” remains bounded; this intuition is confirmed by
δ-complexity. Note that a sentence with a large δ-complexity has also a large H-complexity,
but the converse is not true. There are only finitely many strings with bounded H-complexity,
but infinitely many strings with bounded δ-complexity.

As a consequence of Theorem 4.6 we prove that the incompleteness phenomenon is more
widespread than previously shown in [32, 31, 14, 20, 21] and by the topological analysis of
[9]: the probability that a true sentence of length n is provable in the theory tends to zero
when n tends to infinity, while the probability that a sentence of length n is true is strictly
positive.

3Fallis [30], p. 264, argued that Gödel’s true but unprovable sentence G is likely to have excessive H-
complexity. Similarly, if the theory is capable of expressing its own consistency, then the corresponding
sentence is likely to have excessive H-complexity. It would be interesting to have a mathematical confirmation
of these facts.

4An “approximation” of this principle supported by Chaitin’s proof is that “one cannot prove, from a set
of axioms, a theorem that is of greater H-complexity than the axioms and know that one has done it”; see
[21], p. 69; see also Theorem 4.7 in Section 4.

3



3 Prerequisites

We follow the notation in [6]. By IN = {0, 1, 2, . . .} we denote the set of non-negative integers.
Further on, logQ denotes the base Q ≥ 2 logarithm and log n = blog2(n + 1)c; bαc is the
“floor” of the real α and dαe is the “ceiling” of α. The cardinality of the set A is denoted by
card (A). An alphabet with Q elements will be denoted by XQ; by X∗

Q we denote the set of
finite strings (words) on XQ, including the empty string λ. The length of the string w ∈ X∗

Q

is denoted by |w|Q.

For Q = 2 we use the special set B = {0, 1} instead of X2. We consider the following bijection
between non-negative integers and strings on B: 0 7→ λ, 1 7→ 0, 2 7→ 1, 3 7→ 00, 4 7→
01, 5 7→ 10, 6 7→ 11, . . . The image of n, denoted bin(n), is the binary representation of
the number n + 1 without the leading 1. Its length is |bin(n)|2 = log n. In general we
denote by stringQ(n) the nth string on XQ according to the quasi-lexicographical order. In
particular, bin(n) = string2(n). In this way we get a bijective function stringQ : IN → X∗

Q;
|stringQ(n)|Q = blogQ(n(Q− 1) + 1)c.
We assume that the reader is familiar with Turing machines processing strings, computability
and program-size complexity (see, for example, [4, 3, 6, 26]). The program set (domain) of
the Turing machine T is the set PROGT = {x ∈ X∗

Q : T halts on x}; when T halts on x,
T (x) is the result of the computation of T on x. A partial function ϕ from strings to strings
is called partial computable (abbreviated p.c.) if there is a Turing machine T such that: a)
PROGT = dom (ϕ), and b) T (x) = ϕ(x), for each x ∈ PROGT . A computable function
is a p.c. function ϕ with dom (ϕ) = X∗

Q. A set of strings is computable if its characteristic
function is computable. A set of strings is computably enumerable (abbreviated c.e.) if it is
the program set of a Turing machine.

A self-delimiting Turing machine is a Turing machine T such that its program set is a prefix-
free set of strings. Recall that a prefix-free set of strings S is a set such that no string in S
is a proper extension of any other string in S. In what follows the term machine will refer to
either a p.c. function with prefix-free domain or a self-delimiting Turing machine.

Each prefix-free set S ⊂ X∗
Q satisfies Kraft’s inequality:

∑∞
i=1 ri · Q−i ≤ 1, where ri =

card {x ∈ S : |x|Q = i}. A stronger result, the Kraft-Chaitin Theorem (see [6], p. 53),
is essential in algorithmic information theory: Let n1, n2, . . . be a computable sequence of
non-negative integers such that

∞∑
i=1

Q−ni ≤ 1. (1)

Then, we can effectively construct a prefix-free sequence of strings w1, w2, . . . such that for
each i ≥ 1, |wi|Q = ni.

The program-size complexity of the string x ∈ X∗
Q (relative to T ) is HQ,T (x) = min

{
|y|Q : y ∈

X∗
Q, T (y) = x

}
, where min ∅ = ∞. The Invariance Theorem states that we can effectively

construct a machine U = UQ (called universal ) such that for every machine T there exists a
constant ε > 0 such that for all x ∈ X∗

Q, HQ,U (x) ≤ HQ,T (x) + ε. In what follows we will fix
U and put HQ = HQ,U ; in particular, H2 denotes the program-size complexity induced by a
universal (binary) machine. If x is in X∗

Q, then x∗ = min{u ∈ X∗
Q : UQ(u) = x}, where the

minimum is taken according to the quasi-lexicographical order; it is seen that HQ(x) = |x∗|Q.
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4 Complexity and Incompleteness

In this section we introduce the δ-measure and then prove for it Chaitin’s “heuristic principle”:
the theorems of a finitely-specified theory cannot be significantly more complex than the theory
itself.

First we introduce the δ-measure. Recall that UQ is a fixed universal machine on XQ and
HQ = HQ,UQ

. In what follows we will work with the function δQ(x) = HQ(x) − |x|Q (note
that −δQ is a “deficiency of randomness” function in the sense of [6], Definition 5.21, p. 113).
The δ-complexity is “close”, but not equal, to the conditional HQ-complexity, of a string
given its length.

The complexity measures HQ and δQ have similarities as δQ is defined from HQ by means of
some simple computable functions; for example, they are both uncomputable. But HQ and
δQ differ in an essential way: given a positive N , the set {x ∈ X∗

Q : HQ(x) ≤ N} is finite
while, by Corrolary 4.3, the set {x ∈ X∗

Q : δQ(x) ≤ N} is infinite. Note that the conditional
HQ-complexity does not have this property. A sentence with a large δQ-complexity has also
a large HQ-complexity, but the converse is not true. For example, the HQ-complexity of a
(true) sentence of the form “1 + n = n + 1” is about blogQ nc plus a constant, a function
which tends to infinity as n→∞; however, their δQ-complexity is bounded.

In view of Theorem 5.4 in [6], p. 102, there exists a constant c > 0 such that:

max
|x|Q=N

δQ(x) ≥ HQ(stringQ(N))− c, (2)

so there are strings of arbitrarily large δQ-complexity.

The following result is taken from [6] (Theorem 5.31, p. 117).

Theorem 4.1 For every t ≥ 0, the set CQ,t = {x ∈ X∗
Q : δQ(x) > −t} is immune, that is,

the set is infinite and contains no infinite c.e. subset.

Corollary 4.2 For every t ≥ 0, the set Complex Q,t = {x ∈ X∗
Q : δQ(x) > t} is immune.

Proof. As Complex Q,t ⊂ CQ,t and every infinite subset of an immune set is immune itself,
we only need to show that Complex Q,t is infinite. To this aim we use formula (2) and the
fact that the function HQ(stringQ(N)) is unbounded. ❏

Corollary 4.3 For every t ≥ 0, the set {x ∈ X∗
Q : δQ(x) ≤ t} is infinite.

Proof. The set in the statement is not even c.e. because, by Corollary 4.2, its complement
is immune. ❏

The above result suggests that any “reasonable” theory cannot include more than finitely
many theorems with high δ-complexity. And, indeed, a simple analysis confirms this fact.
A formal language used by a theory capable of speaking about natural numbers includes
variables (a fixed variable x and the sign ′ may be used to generate all variables, x, x′,′′,
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etc.), the constant 0, function symbols for successor, addition and multiplication, s,+, ·,
the sign for equality, =, logical connectives,¬,∧,∨,⇒, quantifiers, ∀,∃, and parentheses, (,).
They form an alphabet X15.5 The formal language consists of well-formed formulae which
respect strict syntactical rules; for example, each left parenthesis has to be matched with
exactly one right parenthesis. Theorems are then defined by specifying the axioms and the
inference rules. For instance, the system Q introduced by R. M. Robinson (see, for example,
[29]) contains the logical axioms (propositional, substitution, ∀-distribution, equality axioms)
and the following seven axioms: Q1: (s(x) = s(x′)) ⇒ (x = x′), Q2: ¬(0 = s(x)), Q3:
(¬(x = 0)) ⇒ ∃x′(x = s(x′)), Q4: x + 0 = x, Q5: x + s(x′) = s(x + x′), Q6: x · 0 = 0,
Q7: x · s(x′) = (x · x′) + x, and the inference rules of modus ponens and generalisation.
A proof in the system Q is a sequence of well-formed formulae such that each formula is
either an axiom, or is derived from two earlier formulae in the sequence by an inference
rule. Theorems are well-formed formulae which have proofs in Q. As theorems are special
well-formed formulae, it is clear that each theorem x in the system Q has rather small H15-
complexity, more precisely, H15(x) is not larger than its length plus a fixed constant. Such
a remark suggests that Chaitin’s “heuristic principle” may be true for δ15. However, this
property could be a consequence of some particular way of writing/coding the theorems! To
be able to measure somehow the “intrinsic” complexity of a theorem we need to prove that
the property is invariant with respect to a system of acceptable names, in our case, Gödel
numberings.

To make the discussion precise, let us fix a formal language L ⊂ X∗
Q. A Gödel numbering for

L is a computable, one-to-one function g : L→ B∗, i.e. a system of unique binary names for
the well-formed formulae of L. For example, a Gödel numbering for the well-formed formulae
of the system Q can be obtained by coding the elements of the alphabet X15 with the first
15 binary strings of length four, and then extend this coding according to the syntax of the
language. Various other possibilities can be imagined; see for example, [3, 29].

As the set of theorems is a c.e. subset of the set of well-formed formulae, we will work only
with computable, one-to-one functions g : T → B∗ defined on the set of theorems.

The δ-complexity of a theorem u ∈ T induced by the Gödel numbering g is defined by:

δg(u) = H2(g(u))− dlog2Qe · |u|Q. (3)

The formula for δf is essentially the formula defining δQ relativized to the Gödel numbering
g: the factor dlog2Qe has the role of “adjusting” the sizes of the alphabets XQ and B.

The first result confirms the intuition: we prove that δg is, up to an additive constant, equal
to dlog2Qe · δQ.

Theorem 4.4 Let T ⊂ X∗
Q be c.e. and g : T → B∗ be a Gödel numbering. Then, there

effectively exists a constant c (depending upon UQ, U2, and g) such that for all u ∈ T we
have:

|δg(u)− dlog2Qe · δQ(u)| ≤ c. (4)

Proof. First we prove the existence of a constant c1 such that

δg(u) ≤ dlog2Qe · δQ(u) + c1. (5)

5Of course, we can work with smaller or larger alphabets, depending on specific needs.
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For each string w ∈ PROGUQ
we define nw = dlog2Qe · |w|Q, and we note that∑

w∈PROGUQ

2−nw =
∑

w∈PROGUQ

2−dlog2 Qe·|w|Q ≤
∑

w∈PROGUQ

Q−|w|Q ≤ 1,

because PROGUQ
is prefix-free. Using now the Kraft-Chaitin Theorem, we can effectively

construct, for every w ∈ PROGUQ
a binary string sw such that |sw|2 = nw and the set

{sw : w ∈ PROGUQ
} is c.e. and prefix-free. This allows us to construct the machine C

defined by
C(sw) = g(UQ(w)), for w ∈ PROGUQ

.

As C(sw∗) = g(UQ(w∗)) = g(w) we have

HC(g(w)) ≤ |sw∗ |2 = dlog2Qe · |w∗|Q = dlog2Qe ·HQ(w).

Applying the Invariance Theorem we get a constant c1 > 0 such that

δg(w) = H2(g(w))− dlog2Qe · |w|Q
≤ dlog2Qe · (HQ(w)− |w|Q) + c1

= dlog2Qe · δQ(w) + c1,

which proves (5).

Secondly we prove the existence of a constant c2 such that

dlog2Qe · δQ(u) ≤ δg(u) + c2. (6)

For each w ∈ PROGU2 such that |w|2 ≥ log2Q, we put mw = d|w|2 · logQ 2e ≥ 1, and we
note that ∑

w∈PROGU2
,|w|2≥log2 Q

Q−mw ≤
∑

w∈PROGU2
,|w|2≥log2 Q

2−|w|2 ≤ 1,

hence, in view of the Kraft-Chaitin Theorem, we can effectively construct, for every w ∈
PROGU2 with |w|2 ≥ log2Q, a string tw ∈ X∗

Q of length |tw|Q = mw such that the set
{tw : w ∈ PROGU2} is c.e. and prefix-free. In this way we construct the machine D defined
by D(tw) = u if U2(w) = g(u). This construction is well-defined because g is a Gödel
numbering. It is seen that if U2(w) = u and |w|2 ≥ log2Q, then HD(u) ≤ d|w|2 · logQ 2e, so
applying the Invariance Theorem we get a constant d such that

dlog2Qe ·HQ(u) ≤ dlog2Qe ·HD(u) + d ≤ H2(g(u)) + d,

hence there is a constant c2 such that (6) becomes true. We have used the fact that dlog2Qe ·
dm · logQ 2e ≤ m, for all integers m > 0.

Finally, (4) follows from (5) and (6). ❏

As a consequence, asymptotically, the δ-measure is independent of the Gödel numbering.

Corollary 4.5 Let T ⊂ X∗
Q be c.e. and g, g′ : T → B∗ be two Gödel numberings. Then,

there effectively exists a constant c (depending upon U2, g and g′) such that for all u ∈ T we
have:

|δg(u)− δg′(u)| ≤ c. (7)

7



Proof. The relation (7) follows from Theorem 4.4. However, it is instructive to give a short,
direct proof. To this aim consider the machine C defined for w ∈ B∗ by C(w) = g(u) if
U2(w) = g′(u). The definition is correct because PROGC ⊂ PROGU2 and g is computable
and one-to-one. If U2(s) = g′(u), then C(s) = g(u), so by the Invariance Theorem there
exists a constant c1 such that for all u ∈ L, δg(u) ≤ δg′(u) + c1. Finally, (7) follows by
symmetry. ❏

Theorem 4.6 Consider a finitely-specified, arithmetically sound (i.e. each arithmetical
proven sentence is true), consistent theory strong enough to formalize arithmetic, and de-
note by T its set of theorems written in the alphabet XQ. Let g be a Gödel numbering for T .
Then, there exists a constant N , which depends upon UQ, U2 and T , such that T contains no
x with δg(x) > N .

Proof. Because of syntactical constraints, there exists a positive constant d such that for
every x ∈ T , HQ(x) ≤ |x|Q + d, i.e. δQ(x) ≤ d (see also the discussion of the system Q
following Corrolary 4.3). Hence in view of Theorem 4.4, there is a constant N ≥ d such that
for every x ∈ T , δg(x) ≤ N . ❏

Every sentence x in the language of T with δg(x) > N is unprovable in the theory; every
such “true” sentence is thus independent of the theory.

Do we have examples of such sentences? First, Chaitin’s sentences of the form “H2(x) > n”,
for large n are such examples.

Here is another way to construct true sentences of high δ-complexity. A formula ϕ(x) in the
language of arithmetic is called Σ1 if it is of the form (∃y)θ(x, y), where θ contains only two
free variables x and y. We write IN |= ϕ(n) to mean that ϕ(n) is true when n is interpreted
as a non-negative integer. The Representation Theorem (see [48]) states that a set R ⊂ IN
is c.e. iff there (effectively) exists a Σ1 formula ϕ(x) such that for all n ∈ IN we have:
n ∈ R ⇔ IN |= ϕ(n).

For every a ∈ IN, the set {n ∈ IN : δQ(stringQ(n)) ≤ a} is c.e., so in view of the Representation
Theorem there exists a Σ1 formula ϕ (depending on UQ, a) such that for every n ∈ IN we
have: δQ(stringQ(n)) ≤ a ⇔ IN |= ϕ(n). Consequently, the formula ψ = ¬ϕ represents the
predicate “δQ(stringQ(n)) > a”. Because of consistency and soundness, by enumerating the
theorems in T of the form ψ(m) (corresponding to true formulae ψ(m)) we get an enumeration
of the set {x ∈ T : ψ(string−1

Q (x)) ∈ T } ⊂ {x ∈ T : δQ(x) > a}.

Now let a be a non-negative integer. As {x ∈ T : ψ(string−1
Q (x)) ∈ T } is a c.e. subset of the

immune set {x ∈ X∗
Q : δQ(x) > a}, it has to be finite, that is, there exists an M ∈ IN such

that for every x ∈ T with ψ(string−1
Q (x)) ∈ T we have: |x|Q ≤ M . We have got Chaitin’s

statement ([21], p. 69):

Theorem 4.7 Every finitely-specified, arithmetically sound, consistent theory strong enough
to formalize arithmetic can prove only, for finitely many of its theorems, that they have high
δ-complexity.

The theory can formalise all sentences of the form ψ(m) in a very economical way, i.e. with
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small δ-complexity, but is incapable of proving more than finitely many instances: almost all
true formulae of the form ψ(m) are unprovable.

Comments (a) Theorem 4.6 establishes a limit on the δg-complexity of provable sentences
in T ; the bound depends upon the chosen Gödel numbering g. In this approach it makes no
sense to measure the power of the theory by its complexity, i.e. through the minimal N such
that the theory proves no sentence x with δg(x) > N (see also the discussion in [39]).

(b) Theorem 4.6 does not hold true for an arbitrary finitely-specified theory as there are c.e.
sets containing strings of arbitrary large δ-complexity.

(c) It is possible to have incomplete theories without high δ-complexity sentences; for example,
an incomplete theory for propositional tautologies.

5 Is Incompleteness Widespread?

The first application complements the result of [9] stating that the set of unprovable sentences
is topologically large. We probabilistically show that only a few true sentences can be proven
in a given theory, but the set of true sentences is “large”.

We begin with the following result:

Proposition 5.1 Let N > 0 be a fixed integer, T ⊂ X∗
Q be c.e. and g : T → B∗ be a Gödel

numbering. Then,

lim
n→∞

Q−n · card {x ∈ X∗
Q : |x|Q = n, δg(x) ≤ N} = 0. (8)

Proof. We present here a direct proof.6 In view of Theorem 4.4, there exists a constant
c > 0 such that

{x ∈ X∗
Q : |x|Q = n, δg(x) ≤ N} ⊆ {x ∈ X∗

Q : |x|Q = n, dlog2Qe · δQ(x) ≤ N + c}.

So, we only need to evaluate the limit

lim
n→∞

Q−n · card {x ∈ X∗
Q : |x|Q = n, δQ(x) ≤M} = 0, (9)

where M = d(N + c)/dlog2Qee.
First we note that for every n we have: {x ∈ X∗

Q : |x|Q = n, δQ(x) ≤M} = {x ∈ X∗
Q : |x|Q =

n,∃y ∈ X∗
Q (|y|Q ≤ n+M,UQ(y) = x)}, so

card {x ∈ X∗
Q : |x|Q = n, δQ(x) ≤M} ≤ card {y ∈ X∗

Q : |y|Q ≤ n+M, |UQ(y)|Q = n}
≤ card {y ∈ X∗

Q : |y|Q ≤ n+M,UQ(y) halts}

6Alternatively, one can evaluate the size of the set of strings of a given length having almost maximum
δQ-complexity.
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Consequently,

lim
n→∞

Q−n · card {x ∈ X∗
Q : |x|Q = n, δQ(x) ≤M} = lim

n→∞

n+M∑
i=1

Q−n · ri, (10)

where ri = card {y ∈ X∗
Q : |y|Q = i, UQ(y) halts}. Using the Stolz-Cesaro Theorem we get

lim
n→∞

n+M∑
i=1

Q−n · ri = QM · lim
m→∞

m∑
i=1

Q−i · ri = QM/(Q− 1) · lim
m→∞

Q−m · rm = 0, (11)

due to Kraft’s inequality
∑∞

i=1 ri ·Q−i ≤ 1. So, in view of , (9), (10) and (11) we get (8). ❏

Theorem 5.2 Consider a consistent, sound, finitely-specified theory strong enough to for-
malize arithmetic. The probability that a true sentence of length n is provable in the theory
tends to zero when n tends to infinity, while the probability that a sentence of length n is true
is strictly positive.

Proof. We fix a consistent, sound, finitely-specified theory, let T be its set of theorems and
let g be a Gödel numbering of T . For every integer n ≥ 1, let T n = {x ∈ T : |x|Q = n}.
By Theorem 4.6, there exists a positive integer N such that T ⊆ {x ∈ X∗

Q : δg(x) ≤
N}. Consequently, for every n: T n ⊆ {x ∈ X∗

Q : |x|Q = n, δg(x) ≤ N}, so in view of
Proposition 5.1, the probability that a sentence of length n is provable in the theory tends
to zero when n tends to infinity.

Next consider the sentences hx,m =“HQ(x) > m”, where x is a string over the alphabet XQ.
For every n ≥ 1 there exists a positive integer Nm such that for every string x ∈ X∗

Q of length
|x|Q > Nm, hx,m is true.

For each fixed m, |hx,m|Q = |x|Q + c, so for every m ≥ 1 and n ≥ Nm + c we have:

card {w ∈ X∗
Q : |w|Q = n,w is true} ·Q−n ≥ card {x ∈ X∗

Q : |x|Q = n− c, } ·Q−n ≥ Q−c,

showing that the probability that a sentence of length n is true is strictly positive. ❏

6 Incompleteness and ΩU

The second application is to use δ to prove Chaitin’s Incompleteness Theorem for ΩU [16]
(see also the analysis in [25, 8, 6]). This shows that δ is a “natural” complexity. We start
with the following preliminary result:

Lemma 6.1 Let x1x2 · · · be an infinite binary sequence and let F be a strictly increasing
function mapping positive integers to positive integers. If the set {(F (i), xF (i)) : i ≥ 1} is
c.e., then there exists a constant ε > 0 (which depends upon U and the characteristic function
of the set) such that for all k ≥ 1 we have:

δ2(x1x2 · · ·xF (k)) ≤ ε− k. (12)
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Proof. To prove (12), for k ≥ 1 we consider the strings:

w1xF (1)w2xF (2) · · ·wkxF (k), (13)

where each wj is a string of length F (j) − F (j − 1) − 1, F (0) = 0. In this way we effec-
tively generate all binary strings of length F (k) in which the bits on the “marked”positions
F (1), . . . , F (k) are fixed.

It is clear that
∑k

i=1 |wi| = F (k) − k and the mapping (w1, w2, . . . , wk) 7→ w1w2 · · ·wk is
bijective, hence to generate all strings of the form (13) we only need to generate all strings
of length F (k) − k. Hence, we consider the enumeration of all strings of the form (13) for
k = 1, 2, . . . The lengths of these strings form the sequence

F (1), F (1), . . . , F (1)︸ ︷︷ ︸
2F (1)−1 times

, . . . , F (k), F (k), . . . , F (k)︸ ︷︷ ︸
2F (k)−k times

, . . .

which is computable and satisfies the inequality (1) as
∑∞

k=1 2F (k)−k · 2−F (k) = 1. Hence, by
the Kraft-Chaitin Theorem, for every string w of length F (k) − k there effectively exists a
string zw having the same length as w such that the set {zw ∈ B∗ : |w|2 = F (k)− k, k ≥ 1}
is prefix-free. Indeed, from a string w of length F (k) − k we get a unique decomposition
w = w1 · · ·wk, and zw as above, so we can define C(zw) = w1xF (1)w2xF (2) · · ·wkxF (k); C is
a machine. Clearly, δC(w1xF (1)w2xF (2) · · ·wkxF (k)) ≤ |zw|2 − F (k) = −k, for all k ≥ 1. So
by the Invariance Theorem we get the inequality (12). ❏

Consider now Chaitin’s Omega Number, the halting probability of U : ΩU = 0.ω1ω2 · · · , see
[15]. The binary sequence ω1ω2 · · · is (algorithmically) random. There are various ways to
characterize randomness (see for example [18, 6, 26]). A particular useful way is the following
complexity-theoretic criterion due to Chaitin: there exists a positive constant µ such that for
every n ≥ 1,

δ2(ω1ω2 · · ·ωn) ≥ −µ. (14)

The condition (14) is equivalent to
∑∞

n=0 2−δ2(ω1ω2···ωn) <∞, cf, [42].

It is easy to see that the inequality (12) in Lemma 6.1 contradicts (14), so a sequence
x1x2 · · ·xn · · · satisfying the hypothesis of Lemma 6.1 cannot be random.

Theorem 6.2 Consider a consistent, sound, finitely-specified theory strong enough to for-
malize arithmetic. Then, we can effectively compute a constant N such that the theory cannot
determine more than N scattered digits of ΩU = 0.ω1ω2 · · ·

Proof. Assume that the theory can determine infinitely many digits of ΩU = 0.ω1ω2 · · ·
Then, we could effectively enumerate an infinite sequence of digits of ΩU , thus satisfying the
hypothesis of Lemma 6.1 which would contradict the randomness of ω1ω2 · · · ❏

7 Conclusions

There are various illuminating proofs of Gödel’s Incompleteness Theorem and some inter-
esting examples of true but unprovable sentences (see for example [21, 44, 33]). Still, the
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phenomenon of incompleteness seems, even after almost 75 years since its discovery, strange
and to a large extent irrelevant to ‘mainstream mathematics’, whatever this expression might
mean. Something is missing from the picture. Of course, the ‘grand examples’ are missing;
for example, no important open problem except Hilbert’s tenth problem, see [41], was proved
to be unprovable. Other questions of interest include the source of incompleteness and how
common the incompleteness phenomenon is. These two last questions have been investigated
in this note.

Chaitin’s complexity-theoretic proof of Gödel’s Incompleteness Theorem [14] shows that high
complexity is a sufficient reason for the unprovability of infinitely many (true) sentences. This
approach suggested that excessive complexity may be a source of incompleteness, and, in fact,
Chaitin (in [22, 21]) stated this as a “heuristic principle”: “the theorems of a finitely-specified
theory cannot be significantly more complex than the theory itself”. By changing the measure
of complexity, from program-size H(x) to δ(x) = H(x)− |x|, we have proved (Theorem 4.6)
that for any finitely-specified, sound, consistent theory strong enough to formalize arithmetic
(like Zermelo-Fraenkel set theory with choice or Peano Arithmetic) and for any Gödel num-
bering g of its well-formed formulae, we can compute a bound N such that no sentence x
with complexity δg(x) > N can be proved in the theory; this phenomenon is independent on
the choice of the Gödel numbering. For a theory satisfying the hypotheses of Theorem 4.6,
the probability that a true sentence of length n is provable in the theory tends to zero when
n tends to infinity, while the probability that a sentence of length n is true is strictly positive.
This result reinforces the analysis in [9] which shows that the set of independent sentences is
topogically large.

According to Theorem 4.6, sentences expressed by strings with large δg-complexity are un-
provable. Is the converse implication true? In other words, given a theory as in the statement
of Theorem 4.6, are there independent sentences x with low δg-complexity? Even if such sen-
tences do exist, in view of Theorem 5.2, the probability that a true sentence of length n with
δg-complexity less than or equal to N is unprovable in the theory tends to zero when n tends
to infinity.

Other open questions which are interesting to study include: a) the complexity of some
concrete independent sentences, like the sentence expressing the consistency of the theory
itself, b) the problem of finding other (more interesting?) measures of complexity satisfying
Theorem 4.6, c) a stronger version of Theorem 5.2: under the same conditions, the probability
that a sentence of length n, expressible in the language of the theory, is provable in the theory
tends to zero when n tends to infinity.
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Complexity 5, 5 (2000); 28–34.

[3] G. S. Boolos, R. C. Jeffrey, Computability and Logic, Cambridge University Press,
Cambridge, 1989. Third Edition.

[4] C. Calude, Theories of Computational Complexity, North-Holland, Amsterdam, 1988.

[5] C. S. Calude, A genius’s story: two books on Gödel. The life and works of a master
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1879–1931, Harvard University Press, Cambridge, MA, 1967.
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[37] G. Kolata, Does Gödel’s theorem matter to mathematics? in L. A. Harrington,
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