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The violations of Bell-type inequalities represent a corner-
stone of our present understanding of quantum probability
theory [1]. Thereby, the usual procedure is as follows: (i)
First, the (in)equalities bounding the classical probabilities
and expectations are derived systematically; e.g., by enumer-
ating all conceivable classical possibilities and their associ-
ated two-valued measures. These form the extreme points
which span the classical correlation polytopes [2–12]; the
faces of which are expressed by Bell-type inequalities which
characterize the bounds of the classical probabilities and ex-
pectations; in Boole’s term [13, 14], the “conditions of possi-
ble experience.” (Generating functions are another method to
find bounds on classical expectations [15, 16].) The Bell-type
inequalities contain sums of (joint) probabilities and expec-
tations. (ii) In a second step, the classical probabilities and
expectations in the Bell-type inequalities are substituted by
quantum probabilities and expectations. The resulting oper-
ators violate the classical bounds. Until recently, little was
known about the fine structure of the violations. Cirel’son
published an absolute bound for the violation for a partic-
ular Bell-type inequality, the Clauser-Horne-Shimony-Holt
(CHSH) inequality [2, 3, 17, 18]. Cabello has published a
violation of the CHSH inequality beyond the quantum me-
chanical bound by applying selection schemes to particles in
a GHZ-state [19, 20]. Recently, detailed numerical [21] and
analytical studies [22] stimulated experiments [23] to test the
quantum bounds of certain Bell-type inequalities.

In what follows, a general method to compute quantum
bounds on Bell-type inequalities will be reviewed systemat-
ically. It makes use of themin-max principlefor self-adjoint
transformations (Ref. [24], Sec. 90 and Ref. [25], Sec. 75)
stating that the operator norm is bounded by the minimal
and maximal eigenvalues. These ideas are not entirely new
and have been mentioned previously [15, 21, 22], yet to our
knowledge no systematic investigation has been undertaken
yet. It should also be kept in mind that this methoda pri-
ori cannot produce quantum polytopes [21, 26], but the quan-
tum correspondents of classical polytopes. Indeed, as will be
demonstrated explicitly, the resulting geometric forms will not
be convex. This, however, does not diminish the relevance of
these quantum predictions to experiments testing the quantum

violations of classical Bell-type inequalities.
As a starting point note that since(A+ B)† = A† + B† =

(A+B) for arbitrary self-adjoint transformationsA,B, the sum
of self-adjoint transformations is again self-adjoint. That is,
all self-adjoint transformations entering the quantum corre-
spondent of any Bell-type inequality is again a self-adjoint
transformation. The sum does not preserve eigenvectors and
eigenvalues; i.e.,A+ B can have different eigenvectors and
eigenvalues thanA andB taken separately (i.e.,A andB need
not necessarily commute). The norm of the self-adjoint trans-
formation resulting from summing the quantum counterparts
of all the classical terms contributing to a particular Bell in-
equality obeys the min-max principle. Thus determining the
maximal violations of classical Bell inequalities amounts to
solving an eigenvalue problem. The associated eigenstates are
the multi-partite states which yield a maximum violation of
the classical bounds under the given experimental (parameter)
setup.

Let us demonstrate the method with a few examples. The
simplest nontrivial case is two particles measured along asin-
gle (but not necessarily identical) direction on either side. The
vertices are(p1, p2, p12 = p1p2) for p1, p2 ∈ {0,1} and thus
(0,0,0), (0,1,0), (1,0,0), (1,1,1); the corresponding face
(Bell-type) inequalities of the polytope spanned by the four
vertices are given byp12≤ p2, 0≤ p12≤ 1, and

p1 + p2− p12≤ 1. (1)

The classical probabilities have to be substituted by the quan-
tum ones; i.e.,

p1 → q1(θ) = 1
2 [I2 +σ(θ)]⊗ I2,

p2 → q2(θ) = I2⊗ 1
2 [I2 +σ(θ)] ,

p12 → q12(θ,θ′) = 1
2 [I2 +σ(θ)]⊗ 1

2 [I2 +σ(θ′)] ,
(2)

with σ(θ) =
(

cosθ sinθ
sinθ −cosθ

)
, whereθ is the relative mea-

surement angle in thex–z-plane, and the two particles propa-
gate along they-axis. The self-adjoint transformation corre-
sponding to the classical Bell-type inequality (1) can be de-
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fined by

O11(0,θ)= q1(0)+q2(θ)−q12(0,θ)=


1 0 0 0
0 1 0 0
0 0 cos2 θ

2
sinθ

2
0 0 sinθ

2 sin2 θ
2

 .

(3)
The eigenvalues ofO11 are 0 and 1, irrespective ofθ. The

min-max principle thus predicts a maximal bound ofO11

which does not exceed the classical bound 1. In what fol-
lows, we shall enumerate analytical quantum bounds for the
more interesting cases comprising two and more(m) distinct
measurement directions on either side, yielding the quantum
equivalents of the Clauser-Horne (CH) inequality, as well as
of more general inequalities form> 2 [10–12].

Form= 2, a complete set of classical inequalities restricting
possible probability values includes terms like in Eq. (1), and
additionally the CH-inequality−1≤ p13+ p14+ p23− p24−
p1− p3 ≤ 0, as well as permutations thereof.

Substituting the classical probabilities by quantum proba-
bilities according to the rules in Eq. (2) provides the quantum
transformation

O22(α,β,γ,δ) = q13(α,γ)+q14(α,δ)+q23(β,γ)
−q24(β,δ)−q1(α)−q3(γ), (4)

whereα, β, γ, δ denote the measurement angles lying in the
x–z-plane:α andβ for one particle,γ andδ for the other one.
The eigenvalues of the self-adjoint transformation in (4) are

λ1,2,3,4(α,β,γ,δ) =
1
2

(
±

√
1±sin(α−β)sin(γ−δ)−1

)
(5)

yielding the maximum bound‖O22‖ = maxi=1,2,3,4 λi . Note
that for the particular choice of parametersα = 0,β =

2θ,γ = θ,δ = 3θ adopted in [21, 22], one obtains|O22| =
1
2

{
[(3−cos4θ)/2]1/2−1

}
.

In the Bell-basis{|φ+〉, |ψ+〉, |ψ−〉, |φ−〉} with |ψ±〉 =
1/
√

2(|01〉± |10〉) and|φ±〉 = 1/
√

2(|00〉± |11〉), the eigen-
vectors corresponding to the maximal violating eigenstates are

|ν±〉 =
(
F±(α,β,−γ,−δ)|ψ+〉+ |φ−〉

)(
1+F±(α,β,−γ,−δ)2

)− 1
2 ,

|µ±〉 =
(
F±(α,β,γ,δ)|φ+〉+ |ψ−〉

)(
1+F±(α,β,γ,δ)2

)− 1
2 ,

(6)
with

F±(α,β,γ,δ) =±2
√

1−sin(α−β)sin(γ−δ)

× cos(α−δ)−cos(α−δ)−cos(β− γ)−cos(β−δ)
sin(α− γ)+sin(δ− γ)−sin(α−δ)+sin(β−δ)

.

The states (6) are maximally entangled, corroborating the ap-
proach of Cabello [22] to utilize a set of maximally entangled
states to reconstruct the quantum bound for the setting of the
relative anglesα = 0, β = 2θ, γ = θ andδ = 3θ [34]. ¿From
the particular form of the eigenstates, we conclude that the
maximal violating eigenstates of theO22 operator are maxi-
mally entangled for general measurement angles lying in the
x–z-plane.

Generalizations form measurements per particle are
straightforward; for example, the extension tothreemeasure-
ment operators for each particle yields only one additional
nonequivalent (with respect to symmetries) inequality [11, 12]
I33 = p14 + p15 + p16 + p24 + p25− p26 + p34− p35− p1−
2p4− p5 ≤ 0 among the 684 inequalities [10] representing
the faces of the associated classical correlation polytope. The
associated operator for symmetric measurement directions is
given by

O33(0,θ,2θ,0,θ,2θ) = q14(0,0)+q15(0,θ)+q16(0,2θ)+q24(θ,0)+q25(θ,θ)−q26(θ,2θ)+
+q34(2θ,θ)−q35(2θ,θ)−q1(0)−2q4(0)−q5(θ)

= 1
4

−4sin2 θ 0 0 0
0 −5−2cosθ−3cos2θ+2cos3θ 4cos2 θ

2 2sinθ+3sin2θ−2sin3θ
0 4cos2 θ

2 −2(3+cos2θ) −2sinθ
0 2sinθ+3sin2θ−2sin3θ −2sinθ 2sin2 θ

2 cos2 θ
2 (4cosθ−3)

 ,
(7)

again in the Bell basis. In this basis, the operator
O33(0,θ,2θ,0,θ,2θ) splits into a direct sum of a one-
dimensional part−sin2 θ and a three-dimensional parto, re-
spectively. Using the Cardano method (see Ref. [27]), one
can solve the characteristic equation of the three dimensional
submatrixo in the lower right corner ofO33

λ3 +b(θ)λ2 +c(θ)λ+d(θ) = 0, (8)

with the coefficientsb =−Tro, c = 1/2
(

Tr2o−Tro2
)
, d =

−deto. (For convenience we omit here the dependence onθ.)
The (real) eigenvalues can then be written as [27]

λ2 =−2
√
|u|cos

ξ
3
− b

3

λ3,4 =
√
|u(x)|

[
cos

ξ
3
±sin

ξ
3

]
− b

3
, (9)

with u = 1/9(3c − b2) and cosξ = 1
54

(
9bc − 2b3 −

27d
)
/
(
u
√
|u|

)
. In Fig. 1, the eigenvaluesλ2,λ3,λ4, together
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with the eigenvalueλ1 = −sin2 θ from the one-dimensional
part ofO33, are plotted as functions of the parameterθ . The
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FIG. 1: Eigenvalues ofO33 in dependence of the relative angleθ.

maximum violation of 1/4 is obtained forθ = π/3 with the
associated eigenvector

|Ψmax〉 =
√

3
2
|φ−〉+ 1

2
|ψ+〉. (10)

As indicated in Ref. [11], this scheme can be extended to
m measurements on each particle, by considering inequalities
Imm≤ 0 and corresponding operatorsOmm of the form

Imm =
m

∑
j=1

m− j+1

∑
i=1

P(AiB j)−
m−1

∑
i=1

P(Ai+1Bm−i+1)

−
m

∑
i=1

(m− i)P(Bi)−P(A1)≤ 0, (11)

whereP(AiB j) denotes the joint probability of obtaining the
value one of the projection operatorsAi and B j operators
on the left and on the right hand side, andP(Ai),P(B j) the
marginal probabilities on one side, respectively. For a choice
of measurement directions{0,θ,2θ, . . . ,mθ} on both sides,
the maximizing eigenvalues are plotted in Fig. 2. The ma-
trices belonging to the operatorsOmm (m≤ 6) are of the same

form as isO33, i. e. they split up into a direct sum of two ma-
trices in the Bell-basis; the maximal eigenvalues can therefore
be calculated explicitly using Eqs. (8) and (9).
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FIG. 2: Maximum violation of the operatorOmm for m= 2, . . . ,6 for
a symmetric measurement setup; longer dashes indicate largerm.

For experimental realizations of theO33 case and spe-
cial parameter configurations, theansatzof Cabello [22] and
Bovinoet al. [23] can be generalized to arbitrarylocal unitary
transformationsU2×2 ∈SU(2)⊗SU(2) applied to each one of
the two particles in some Bell-basis state separately; e.g.,

U(ω1,θ1,φ1)⊗U(ω2,θ2,φ2)|ϕ〉. (12)

The single qubit operators are taken asU(ω,θ,φ) = ei ω
2~n·~σ ∈

SU(2) with ω as the rotation angle about the axis~n =
(sinθcosφ,sinθsinφ,cosθ)T . For example, the use of the
Bell state|ψ+〉 and and the successive application of the lo-
cal unitary operationU(ω1,θ1,φ1)⊗U(ω2,θ2,φ2) with ω1 =
2π/3, θ1 = φ1 = π/2 andω2 = θ2 = φ2 = 0 yields the maxi-
mal violating eigenvector|Ψmax〉 from Eq. (10) which is also
maximally entangled.

For the generalm> 2 case, however, it is not always possi-
ble to obtain all possible bipartite states by starting from a Bell
state: for general measurement angles, the experimental real-
ization additionally requires a two-qubit transformation from
SU(4)/(SU(2)⊗SU(2)), followed by a local unitary opera-
tion U2×2 in order to obtain all possible states [28]. As an
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example, consider the maximally violating but not maximally
entangled state atθ = π/2: |Ψπ/2〉 = 0.86|ψ+〉+0.17|ψ−〉+
0.47|φ−〉 cannot be obtained from a Bell state, as entangle-
ment is preserved underSU(2)⊗SU(2) operations.

Alternatively, multiport interferometry [29–31] offers a di-
rect proof-of-principle implementation: By choosing the ap-
propriate transmission coefficients and phases in a generalized
beam splitter setup, one can prepare any pure state from an
input state|11〉 ≡ {0,0,0,1}T corresponding to a photon in
a single input port. Take, for example, the maximal eigen-
state of theO33 operator atθ = π/2, |Ψπ/2〉 = 0.86|ψ+〉+
0.17|ψ−〉+0.47|φ−〉 ≡ {0.34,0.73,0.49,0.34}T . The appro-
priate transmission parameters can be calculated via the iden-
tification [29]

0
0
0
1


T

R(N)−1 =


0.34
0.73
0.49
0.34


T

=


e−iφ1 cosω1

−e−iφ2 cosω2sinω1

e−iφ3 cosω3sinω2sinω1

−sinω3sinω2sinω1


T

(13)
to ω1 = 1.23, ω2 = 2.46, ω3 = 0.60 andφ1 = φ2 = φ3 = 0,
whereR(N) is a SU(4) rotation serially composed by two-
dimensional beamsplitter matrices.

In summary, we have shown how to construct the ex-
act quantum bounds of Bell-type inequalities by solving the
eigenvalue problem of the associated self-adjoint transforma-
tion. Several problems remain open. Among them is the exact
derivation of the quantum correlation hull [21, 26], in partic-
ular whether the quantum hull is obtainable by extending the
classical Bell-type inequalities in the way as presented above;
i.e., by substituting the quantum probabilities for the classical
ones. This is by no means trivial, as the sections of the quan-
tum hull need not necessarily be derivable by mere classical
extensions. A second open question is related to the geomet-
ric structures arising from quantum expectation values. These
need not necessarily be convex. Again, the question of direct
extensibility remains open for the hull of quantum expecta-
tions from the classical ones.
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