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Bounds on the norm of quantum operators associated with classical Bell-type inequalities can be derived from
their maximal eigenvalues. This quantitative method enables detailed predictions of the maximal violations of
Bell-type inequalities.
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The violations of Bell-type inequalities represent a corner-violations of classical Bell-type inequalities.

stone of our present understanding of quantum probability As a starting point note that sind& + B)T = AT + Bf =
theory [1]. Thereby, the usual procedure is as follows: (i)(A+B) for arbitrary self-adjoint transformatiors B, the sum
First, the (in)equalities bounding the classical probabilitiesof self-adjoint transformations is again self-adjoint. That is,
and expectations are derived systematically; e.g., by enumegi| self-adjoint transformations entering the quantum corre-
ating all conceivable classical possibilities and their associspondent of any Bell-type inequality is again a self-adjoint
ated two-valued measures. These form the extreme pointgansformation. The sum does not preserve eigenvectors and
which span the classical correlation polytopes [2-12]; thesigenvalues; i.e.A+ B can have different eigenvectors and
faces of which are expressed by Bell-type inequalities whictejgenvalues thaA andB taken separately (i.eA andB need
characterize the bounds of the classical probabilities and ot necessar"y Commute)_ The norm of the Se|f-adj0int trans-
pectations; in Boole's term [13, 14], the “conditions of possi-formation resulting from summing the quantum counterparts
ble experience.” (Generating functions are another method tgf all the classical terms contributing to a particular Bell in-
find bounds on classical expectations [15, 16].) The Bell-typequality obeys the min-max principle. Thus determining the
inequalities contain sums of (joint) probabilities and expec-maximal violations of classical Bell inequalities amounts to
tations. (i) In a second step, the classical probabilities an@olving an eigenvalue problem. The associated eigenstates are
expectations in the Bell-type inequalities are substituted byhe multi-partite states which yield a maximum violation of

quantum probabilities and expectations. The resulting opethe classical bounds under the given experimental (parameter)
ators violate the classical bounds. Until recently, little wassetup.

known about the fine structure of the violations. Cirel'son
published an absolute bound for the violation for a partic'simplest nontrivial case is two particles measured alosig-a
ular Bell-type inequality, the Clauser-Horne-Shimony-Holt

, : ' gle (but not necessarily identical) direction on either side. The
(CHSH) inequality [2, 3, 17, 18]. Cabello has published ayqrtices are(p1, P2, pr2 = p1p2) for py, pe € {0,1} and thus

violat.ion of the CHSH ipequality peyond the quantum me‘_(O,QO), (0,1,0), (1,0,0), (1,1,1); the corresponding face
chanical bound by applying selectlon'schemes t.o particles IMBell-type) inequalities of the polytope spanned by the four
a GHZ_-state [1_9, 20]. R_ecently, deta|le_d numerical [21] and,g tices are given bpiz < pz, 0< p12 < 1, and

analytical studies [22] stimulated experiments [23] to test the
guantum bounds of certain Bell-type inequalities.

In what follows, a general method to compute quantum
bounds on Bell-type inequalities will be reviewed systemat-
ically. It makes u};‘; of th((]min-max principlefor self-ac)i/joint The classigal probabilities have to be substituted by the quan-
transformations (Ref. [24], Sec. 90 and Ref. [25], Sec. 75fUM ones; L.e.,
stating that the operator norm is bounded by the minimal
and maximal eigenvalues. These ideas are not entirely new P1 — 0:(6)
and have been mentioned previously [15, 21, 22], yetto our P2 — 02(8) =
knowledge no systematic investigation has been undertaken P12 — 012(6,8’
yet. It should also be kept in mind that this methagbri-
ori cannot produce quantum polytopes [21, 26], but the quan- . cosf sind . .
tum correspondents of classical polytopes. Indeed, as will b}Q"th a(®) = sin@ —cosB /)’ whereg is the relative mea-
demonstrated explicitly, the resulting geometric forms will notsurement angle in the-z-plane, and the two particles propa-
be convex. This, however, does not diminish the relevance afate along the-axis. The self-adjoint transformation corre-
these quantum predictions to experiments testing the quantusponding to the classical Bell-type inequality (1) can be de-

Let us demonstrate the method with a few examples. The

p1+p2—pr2 <1 1)

=3[2+0(8)]® 1,
L® 3 [l2+0(8)], @)
) =32+0(8)] @3 [l2+0(8)],



fined by 20,y = 6,0 = 30 adopted in [21, 22], one obtain®y;| =
Lo o o %{[(3—cosze)/2]1/2—1}.
01 O 0 In the Bell-basis{|@"),|W"), W), @)} with |gp*) =
011(0,6)=®(0)+%(0) ~2(0.0)= | § 5 028 sme |- 1/y/2(01)+[10)) and|o*) = 1/v/2(00) = [11)), the eigen-
00 ? sin22% vectors corresponding to the maximal violating eigenstates are
(3)

The eigenvalues dD;1 are 0 and 1, irrespective 6f The IR + " _ + n-3
min-max principle thus predicts a maximal bound ©f; V) = (F(@B =y =) 0t) +[e)) (1+F (a0, _y_’l_é) )%
which does not exceed the classical bound 1. In what fol-IH%) = (F*(a,B,,8)|[@") +[W7)) (1+F*(a,B,v,8)%) 2,
lows, we shall enumerate analytical quantum bounds for the . (6
more interesting cases comprising two and m@ng distinct with
measurement directions on either side, yielding the quantum
equivalents of the Clauser-Horne (CH) inequality, as well as F*(a,B,y,8) = +2./1—sin(a — ) sin(y— d)

of more general inequalities fon > 2 [10-12]. coga — &) — coga — &) — cogB —y) — cogB — 3)

Form= 2, a complete set of classical inequalities restricting sin(o —y) + sin(d—y) — sin(a — &) + sin(B—8)
possible probability values includes terms like in Eqg. (1), and
additionally the CH-inequality-1 < py3+ P14+ P23 — P24 — The states (6) are maximally entangled, corroborating the ap-

P1—ps < 0, as well as permutations thereof. proach of Cabello [22] to utilize a set of maximally entangled

Substituting the classical probabilities by quantum probagaes to reconstruct the quantum bound for the setting of the

bilities according to the rules in Eq. (2) provides the quantungative anglest — 0, B — 26, y — 6 andd — 36 [34]. ¢From

transformation the particular form of the eigenstates, we conclude that the

B maximal violating eigenstates of ti@&y, operator are maxi-

O22(01,B,Y,8) = dua(0t,y) +Gha(a,d) + G3(B,Y) mally entangled for general measurement angles lying in the
—024(B,0) — au(a) — as(y), (4)  x—zplane.

wher 5 denote the m rement anales Iving in th Generalizations form measurements per particle are
erea, B, v, 8 denote the easurement angies lying estraightforward; for example, the extensionthoeemeasure-
x—z-plane:a andp for one particley andd for the other one.

. ) L ment operators for each particle yields only one additional
The eigenvalues of the self-adjoint transformation in (4) are nonequivalent (with respect to symmetries) inequality [11, 12]

I33 = P14+ P15+ P16+ P24+ P25 — Pos+ P3s — P3s — P1 —
A1234(0,B,Y,0) = %(i V/1£sin(a—B)sin(y—3) — 1) 2ps — ps < 0 among the 684 inequalities [10] representing
(5) the faces of the associated classical correlation polytope. The
yielding the maximum bounglO,|| = max-1234Ai. Note  associated operator for symmetric measurement directions is
that for the particular choice of parametems= 0,3 = given by

033(0,6,26,0,6,20) = 014(0,0) + q15(0,8) + 016(0, 26) + q24(6, 0) + 025(6,0) — 026(8,20) +
+034(26,0) — q35(26,6) — 01(0) — 204(0) — 05(6)

—4sirto 0 0 0 @)
1 0 —5-2co®-3cosB+2cos® 4cof§  2sinB+3sinD-2sinD
— 1 0 4cog § —2(3+cosB) —2sind )
0 2sinf+3sind-2sinP —2sin8  2sir? § cog § (4cos8-3)
\
again in the Bell basis. In this basis, the operator—deto. (For convenience we omit here the dependencépn

033(0,6,20,0,6,20) splits into a direct sum of a one- The (real) eigenvalues can then be written as [27]
dimensional part-sir’8 and a three-dimensional part re-

spectively. Using the Cardano method (see Ref. [27]), one N |u\cos§ b
can solve the characteristic equation of the three dimensional 2 3 3
submatrixo in the lower right corner o® . b
g 33 Aza =/ |u(x)| [cosg + smg} —3 9

A3+ b(B)A%+c(B)A +d(B) =0, (8)
with u = 1/9(3c — b?) and co§ = Z(9%c — 2b® —
with the coefficientd = —Tro, c= 1/2(Tr20—Tr02), d= 27d)/(uy/|u]). In Fig. 1, the eigenvalues, A3, A4, together
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with the eigenvalué\; = —sir? 6 from the one-dimensional form as isOa3, i. e. they split up into a direct sum of two ma-
part of O3, are plotted as functions of the paramdlerThe trices in the Bell-basis; the maximal eigenvalues can therefore
be calculated explicitly using Egs. (8) and (9).
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FIG. 1: Eigenvalues oD33 in dependence of the relative an@le
FIG. 2: Maximum violation of the operat@®,nform=2,...,6 for
a symmetric measurement setup; longer dashes indicate targer

maximum violation of ¥4 is obtained fo® = 11/3 with the
associated eigenvector For experimental realizations of th®s3 case and spe-
V3 1 cial parameter configurations, thasatzof Cabello [22] and
Whan = —=- |0 )+ = |w). 10 Bovinoet al. [23] can be generalized to arbitrdncal unitary
%D 2
transformationsJ,, > € SU(2) ® SU(2) applied to each one of
As indicated in Ref. [11], this scheme can be extended tdhe two particles in some Bell-basis state separately; e.g.,
mmeasurements on each particle, by considering inequalities U (w1, 01, @1) @ U (wp, 02, @2)[). (12)

Imm < 0 and corresponding operat@g,m, of the form o
The single qubit operators are takenta@o,6,¢) = €20 ¢

m m—j+1 m-1 SU(2) with w as the rotation angle about the axis=
lom = 3 Zi P(AB;) — Zi P(A+1Bm-i+1) (sinBcosp, sinBsing,cosd)T. For example, the use of the
=1 = = Bell state|y*) and and the successive application of the lo-
m . . .
. cal unitary operatiot (w1,01,@1) @ U (wy,02,@) with wy =
_ _ ) — <
i;(m P(B) —P(A) <0 (11) 21/3, 01 = @ = /2 andw, = 6, = @ = 0 yields the maxi-

mal violating eigenvectofP o from Eq. (10) which is also
whereP(ABj) denotes the joint probability of obtaining the maximally entangled.
value one of the projection operatofs and B; operators For the generaih > 2 case, however, it is not always possi-
on the left and on the right hand side, aR@;),P(B;) the  ble to obtain all possible bipartite states by starting from a Bell
marginal probabilities on one side, respectively. For a choicetate: for general measurement angles, the experimental real-
of measurement directionf0,0,26,...,mB8} on both sides, ization additionally requires a two-qubit transformation from
the maximizing eigenvalues are plotted in Fig. 2. The ma-SU(4)/(SU(2) ® SU(2)), followed by a local unitary opera-
trices belonging to the operatd®ym (M < 6) are of the same tion U,.» in order to obtain all possible states [28]. As an
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example, consider the maximally violating but not maximally [7] I. Pitowsky, inBell’s Theorem, Quantum Theory and the Con-
entangled state &= 11/2: |Wn/2> =0.86/Y") +0.17|w~) + ceptions of the Universeedited by M. Kafatos (Kluwer, Dor-
0.47|¢~) cannot be obtained from a Bell state, as entangle- _ drecht, 1989), pp. 37-49. _

ment is preserved und&tJ(2) @ SU(2) operations. [8] I. Pitowsky, Mathematical Programmirii), 395 (1991).

) . . . [9] 1. Pitowsky, Brit. J. Phil. Sci45, 95 (1994).
Alternatively, multiport interferometry [29-31] offers a di- [10] I. Pitowsky and K. Svozil, Physical Review &4, 014102

rect proof-of-principle implementation: By choosing the ap- (2001), quant-ph/0011060, URhttp://dx.doi.org/10.
propriate transmission coefficients and phases in a generalized 1103/PhysRevA.64.014102.

beam splitter setup, one can prepare any pure state from gmi] D. Colins and N. Gisin (2003), quant-ph/0306129.
input state|11) = {0,0,0,1}T corresponding to a photon in [12] C. Sliwa, Physics Letters A317, 165 (2003), quant-

a single input port. Take, for example, the maximal eigen- 22?3073;0222?:(03)0;’1?; . http://dx.doi.org/10.1016/
_ _ + - -U.
state O_f theOss OE)erator al =12, Wz T 0.8614™) + [13] G. Boole,An investigation of the laws of thougfiDover edi-
0.17¢") +0.47)¢") = {0.34,0.73,0.49,034)7. The appro- tion, New York, 1958).
priate transmission parameters can be calculated via the idepx4] G. Boole, Philosophical Transactions of the Royal Society of
tification [29] London152, 225 (1862).
[15] R. F. Werner and M. M. Wolf, Phys. Rev. A4, 032112
o\ ' 034\ " e % cosuy T (2001), quant-ph/0102024, URhttp://dx.doi.org/10.
O rinyt=|273 & ™ cosupsinaay [16] gos?/r?hyﬁRev?éggé;) “quant h/0312117
= =1 : : . Schachner , quant-p :
0 0.49 € "’3.cosu)3_smmz.smw1 [17] B. S. Cirel'son (=Tsirel'son), Journal of Soviet MathemaBés
1 0.34 — SiNWg Sinwy Sinwy, 557 (1987).
(13) [18] L. A. Khalfin and B. S. Tsirelson, Foundations of Physk
tow; = 1.23, wp = 2.46, w3 = 0.60 andg; = @ = @3 = 0, 879 (1992).
whereR(N) is a SU(4) rotation serially composed by two- [19] A. Cabello, Physical Review Lette@8, 060403 (2002), quant-
dimensional beamsplitter matrices. ph/0108084.

In summary, we have shown how to construct the ex{20] Aﬁ/g;gseilgé Physical Review A6, 042114 (2002), quant-
zft quantum bounds of Bell-type_ |nequaI|t|es_ by solving thiZl] g Filipp and K. Svozil, Physical Review &9, 032101
_ genvalue problem of the a;somated self-adjoint t.ransform ~ (2004), quant-ph/0306092, URhttp://dx.doi.org/10.
tion. Several problems remain open. Among themis the exact  1103/pnysreva.69.032101.
derivation of the quantum correlation hull [21, 26], in partic- [22] A. Cabello, Physical Review Letter82, 060403 (2004),
ular whether the quantum hull is obtainable by extending the  quant-ph/0309172, URLhttp://dx.doi.org/10.1103/
classical Bell-type inequalities in the way as presented above; PhysRevLett.92.060403.
i.e., by substituting the quantum probabilities for the classical23] F- A- Bovino, G. Castagnoli, S. Castelletto, I. P. Degiovanni,
ones. This is by no means trivial, as the sections of the quan-  M: L. Rastello, and I. R. Berchera, Physical Review Letters

. ) . 92, 060404 (2004), quant-ph/0310042, URttp: //dx.doi .
tum hull need not necessarily be derivable by mere classical org/10.1103/PhysRevLett .92. 060404,

extensions. A second open question is related to the geomaby) p, R. HalmosFinite-dimensional vector spacéSpringer, New
ric structures arising from quantum expectation values. These  York, Heidelberg, Berlin, 1974).
need not necessarily be convex. Again, the question of dire¢25] M. Reed and B. SimonMethods of Modern Mathematical
extensibility remains open for the hull of quantum expecta-  Physics IV: Analysis of Operato(é.cademic Press, New York,
tions from the classical ones. 1978). _ . )

This research has been supported by the Austrian Scienég®) ! Pitowsky, inQuantum Theory: Reconsideration of Founda-

. . tions, Proceeding of the 2001 Vaxjo Confere(drld Scien-
Foundation (FWF), Project Nr. F1513. S. F. acknowledges tific, Singapore, 2002), quant-ph/0112068.

helpful conversations with B. Hiesmayer and S. Scheel. [27] D. Cocolicchio and D. Viggiano, J. Phys.38, 5669 (2000).

[28] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, Physical Review
A 67, 042313 (2003), URIhttp://dx.doi.org/10.1103/
PhysRevA.67.042313.

[29] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Physical

* Electronic addressifilipp@ati.ac.at Review Letter¥3, 58 (1994), URLhttp://dx.doi.org/10.
T Electronic addresssvozil@tuwien.ac.at; URL: http:// 1103/PhysRevLett.73.58.
tph.tuwien.ac.at/"svozil [30] M. Zukowski, A. Zeilinger, and M. A. Horne, Physical Review
[1] A. Peres,Quantum Theory: Concepts and Methd#duwer A 55, 2564 (1997), URLhttp://dx.doi.org/10.1103/
Academic Publishers, Dordrecht, 1993). PhysRevA.55.2564.
[2] B. S. Cirel'son (=Tsirel'son), Letters in Mathematical Physics [31] K. Svozil (2004), quant-ph/0401113.
4,93 (1980). [32] D. N. Mermin, Annals of the New York Academy of Sciences
[3] B. S. Cirel'son (=Tsirel'son), Hadronic Journal Supplem@nt 755, 616 (1995).
329 (1993). [33] J. L. Cereceda, Foundations of Physics Letigts401 (2001),
[4] M. Froissart, Nuovo Cimento B4, 241 (1981). quant-ph/0101143.
[5] I. Pitowsky, J. Math. Phy27, 1556 (1986). [34] Equivalent results hold for the Clauser-Horne-Shimony-Holt
[6] I. Pitowsky, Quantum Probability—Quantum Log{Springer, (CHSH) inequality [32, 33].

Berlin, 1989).



